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ABSTRACT

Transactional memory is an alternative to locks for handling concurrency in multi-threaded environ-
ments. Instead of providing critical regions that only one thread can enter at a time, transactional memory
records sufficient information to detect and correct for conflicts if they occur. This paper surveys the range
of options for implementing software transactional memory in Scala. Where possible, we provide refer-
ences to implementations that instantiate each technique. As part of this survey, we document for the
first time several techniques developed in the implementation of Manchester University Transactions for
Scala. We order the implementation techniques on a scale moving from the least to the most invasive
in terms of modifications to the compilation and runtime environment. This shows that, while the less
invasive options are easier to implement and more common, they are more verbose and invasive in the
codes using them, often requiring changes to the syntax and program structure throughout the code.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we survey the range of options for adding software
transactional memory (STM) [11] to Scala, examining the advan-
tages and disadvantages of each approach from the view of both
the application programmer and the transactional memory imple-
menter. This survey includes the introduction of several thus far
undocumented techniques developed during our work on Manch-
ester University Transactions for Scala (MUTS) which complement
our initial implementation [9], specifically the work within byte-
code rewriting on the use of closures and annotations. Where pos-
sible, we provide references to implementations that use each sur-
veyed technique and describe in detail the technique used. We will
attempt to order the techniques on a scale moving from the least
invasive through to the most invasive in terms of modifications
to the compilation and runtime environment. This will show that,
while the less invasive options are easier to implement and more
common, they are also more verbose and invasive in the codes us-
ing them, often requiring changes to the syntax and program struc-
ture throughout the code. Overall, we show that, as with all trade-
offs, the optimum point is not at either end, but somewhere in the
middle.

1.1. Why Scala

As multi-core and many-core processors continue to increase
their prevalence and core count, there is a growing need to de-
velop general-purpose programming models which can effec-
tively allow programmers to harness these processors. Approaches
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which appear to be gaining traction are the addition of elements
of functional programming to conventional languages and the
use of transactional memory. Scala’s possibly unique combination
of functional programming and imperative/object-oriented pro-
gramming means that, although every technique for implementing
STM described in this paper is possible in other languages, the use
of Scala allows the examination of the entire range within a single
environment.

This work was carried out as part of the Teraflux project [17],
which is examining possible future many-core architectures and
programming models. This includes a high-level programming
model based on Scala and containing transactional memory. After
examining the currently available transactional memories for
Scala and failing to find one that fulfilled our requirements, we
decided to examine the possible options and tradeoffs of different
strategies in order to implement our own transactional memory
(MUTS) and facilitate the implementation of other transactional
memories.

Before we examine the different implementation strategies for
STMs, we will introduce in more detail transactional memory,
software transactional memory, and Scala.

1.2. Transactional memory

To ensure that correct results are generated by programs per-
forming concurrent access to shared state, it is necessary to control
access to the shared state. Without such controls, errors can occur
when threads interleave reads and writes. For example, consider
a program that contains a counter to keep track of the number of
completed threads. In this example, each thread at the end of its
execution performs the assignment counter = counter + 1 to
increment the counter. Unfortunately, if thread A reads the value of
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proc 1
Read counter
Increment counter

proc 2

Read counter
Increment counter
Write counter
Write counter

Fig.1. Anexample demonstrating the problem with uncontrolled concurrency. The
execution of these two statements should increment counter by 2, but because of
their interleaving they only increment the value by 1.

counter, then Thread B reads the value of counter, increments
it and writes it back, when thread A writes back its result, because
it read counter before B incremented the counter, the value of
counter will be one less than it should be, and the computation
may no longer behave correctly. An example of this interleaving
can be seen in Fig. 1.

Traditionally, this issue is handled by some form of locking that
restricts the access to the shared state to a single thread at a time.
This approach has several complications.

1. The composition of functions that require a lock forces the en-
capsulation of the implementation of the composed functions
to be broken. For example, if we have functions to deposit and
withdraw money from bank accounts, each of these functions
will require a lock to ensure that the balances remain correct. To
now construct a function that atomically transfers money from
one account to another so that all money can remain accounted
for at all times, it is necessary to get the locks of both the sending
account and the receiving account before the functions can be
invoked. To achieve this, the locking mechanisms for the indi-
vidual functions, and therefore information about their internal
data structures, have to be made available to the programmer.
This breach of encapsulation affects both programmability and
maintainability.

2. Code that requires multiple locks to be acquired is prone to
dead-lock or live-lock as competing functions may attempt to
gain the same set of locks in a different order. If the set of locks
required is known in advance, then a total order can be applied
to the locks to overcome this, but for a large collection of inter-
esting problems it is not possible to determine the set of locks
required ahead of the computation, for example, exploring a
graph in order to make modifications.

3. Locking is pessimistic: it assumes that there will be a conflict,
and so restricts access on the basis of this. This pessimistic na-
ture of the locking means that opportunities for concurrency are
missed. As the world is forced to use parallel processing due to
physical limits preventing the increase in speed of single-core
processors, this is becoming a serious issue.

One solution to these problems is transactional memory [11].
Here, instead of taking locks, the code executes and records
sufficient information such that conflicts can be detected and, in
the event of a conflict, one of the conflicting transactions can be
rolled back and restarted while the other commits. The underlying
system is constructed so that, when the transaction has completed,
it will attempt to commit, and if it succeeds, its changes to the
system will appear atomically to all other threads; otherwise, the
transaction will roll back such that, as far as all other threads
are aware, it never executed. This means that the semantics of
transactions are equivalent to having a single global lock that the
transaction takes, while it executes, but because of the underlying
implementation the possible concurrency can be far higher.

We will now describe how this alternative approach addresses
the specific points raised about locks.

Fig. 2. A simple binary tree for demonstrating transactional memory.

1. Because transactions can be nested within one another, and
the collection of data and the handling of collision detection is
all dealt with by the transactional memory, the user does not
need to be aware of any of the internal locking information of
functions, so the composition of functions does not require the
breaking of encapsulation.

2. As there are no specific locks, just logged information, there is
no possibility of dead-locking. Live-lock is possible with some
collision detection mechanisms, but the use of live-lock-free
collision management resolves this.

3. Transactions do not have locks that prevent code from execut-
ing concurrently. As a result, they are optimistic, and concur-
rency is not restricted for non-conflicting actions.

1.2.1. Example

To demonstrate the behaviour of transactional memory, we
will look at an example of access to a binary tree. A labelled
representation of the tree can be seen in Fig. 2. For this example,
each node contains some data and up to two child references. We
will now consider the behaviour with transactional memory under
several scenarios.

Two threads read F: Both threads will traverse the tree, reading
the children of A and C before reading the content of F. As all
these actions are reads, there are no conflicts, so the transactional
memory system will allow both threads to progress in parallel and
commit.

One threads reads F and another modifies G: Both threads will read
from A and C; the first thread will read the content from F and the
second thread will write to G’s content. As the second thread does
not modify any of the values read by the first, again there is no con-
flict, and the transactional memory will allow the threads to runin
parallel and commit. This would also be true if the first thread was
modifying the content of F or, because the node children and their
content are separate, if one of the threads modified C’s data.

Two threads modify F and G: In this scenario, a conflict is possible. If
either thread completes before the other reaches F or G, then there
is no conflict. However, if both threads attempt to modify the nodes
at the same time, the transactional memory system will detect the
conflict, and one of the threads will be reverted and retried. This
reversion will result in the computation already performed by this
thread being wasted.

Aside from the composability and dead-lock or live-lock free-
dom of transactions, the hope with transactional memory is that
the wasted computation is less than the computation that would
otherwise be required to manage fine-grained locking at a level
which is able to support a similar level of parallelism.

Locking. If the above example had been implemented with locking,
it would have to use fine-grained locking to allow any parallel
execution. This locking could use a lock per node, acquiring the
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required node locks at the next level down before releasing the lock
at the current node if this node is not to be modified. Alternatively,
there could be separate read and write locks for each node. Both
strategies are complex to implement correctly and include a large
number of locking operations.

Currently optimized locking can outperform transactional
memory; however, a straight performance comparison is unfair,
as locking is able to take advantage of hardware support that is
currently unavailable to transactional memory, but such support
is becoming available [2,6,12].

1.3. Software transactional memory

Software transactional memory (STM) [16], as the name sug-
gests, is a transactional memory implemented entirely in software,
so without any specific hardware support. Conceptually, STMs con-
sist of three parts.

1. A backend that records the actions within the transaction. This
handles the logging of reads and writes, conflict detection, and
the committing of the transaction.

2. A frontend that the user interacts with. This is responsible for
providing a user interface through which the user selects the
areas of code and variables within the code that are to be trans-
actional. If features such as the automatic retrying of transac-
tions in the event of failure are handled by the STM, this is the
part of the STM that will perform that task.

3. A boundary interface. This is an interface that the backend will
implement and the frontend will make calls to. The provision
of this interface allows for different backends to be chosen ac-
cording to the code or operating environment, and for multiple
different frontends to be used at the same time.

This separation is not to say that there are not implementations
that dispense with the boundary interface and attempt to merge
the frontend and backend code, but that it is always possible to
refactor such codes into these three components without loss of
functionality. In principle, all sufficiently functional backends can
be fitted to all frontends, and the backends are simply a library
implementing one of the many well-documented and surveyed
transactional memory algorithms [11]. Therefore, in this paper we
will confine our survey to the available frontends and the user and
implementer tradeoffs involved in using each of these.

Hardware transactional memory is starting to appear in com-
mercial processors [2,12]; however, despite the performance ben-
efits of such systems, they are unlikely in the near future to
replace software transactional memory, as by their nature they
are bounded to finite-sized transactions. Instead, hardware TM will
probably be incorporated into the backend of software TM to im-
prove the performance of software TM by providing a hybrid TM
system [7]. For such a system the work on the frontend discussed
in this paper is still relevant.

1.4. Scala

Scala [15] is a general-purpose programming language de-
signed to smoothly integrate features of object-oriented [19] and
functional languages [3]. By design, it supports seamless integra-
tion with Java, including existing compiled Java code and libraries.
The compiler produces Java byte-code [14], meaning that you can
call Scala from Java and you can call Java from Scala. Scala is a pure
object-oriented language in the sense that every value is an ob-
ject. The types and behaviour of objects are described by classes
and traits which are extended by subclassing and a flexible mixin-
based composition mechanism as a replacement for multiple in-
heritance. However, Scala is also a functional language in the sense
that every function is a value. This is furthered through the provi-
sion of a lightweight syntax for defining anonymous functions, as
shown in Fig. 3, and support for higher-order functions, also seen

def apply( f1:() => Int, f2:Int => Int) {
println(£2(£10))

apply () => 42, (x:Int) => x*x)
}

Fig. 3. A snippet of Scala code demonstrating the construction of two anonymous
functions and them being passed as arguments into a third conventional function.
The first anonymous function takes no inputs and produces an output (42). The
second anonymous function takes an integer as an input and returns this value
squared. The function apply takes these two functions as arguments and applies
the second function to the output of the first. It then prints the resulting value.

in Fig. 3, for the nesting of functions, and for currying. Scala’s case
classes and its built-in support for pattern matching algebraic types
are equivalent to those used in many functional programming lan-
guages.

Scala is statically typed and equipped with a type system that
statically enforces that abstractions are used in a safe and coherent
manner. A local type inference mechanism means that the user is
not required to annotate the program with redundant type infor-
mation.

Scala supports two types of reference: immutable values, which
are denoted val, and mutable variables, which are denoted var.
While this has no effect on the overall behaviour of the transac-
tional memory interfaces described, as it is good coding practice,
where possible we will convert variables into values. An example of
such an occasion is when the mutable state is encapsulated within
an object such as a reference cell.

Finally, Scala provides a combination of language mechanisms
that make it easy to smoothly add new language constructs in
the form of libraries. Specifically, any method may be used as
an infix or postfix operator, and closures are constructed auto-
matically depending on the expected type (target typing). A joint
use of both features facilitates the definition of new statements
without extending the syntax and without using macro-like meta-
programming facilities.

2. Evaluating Scala STMs

There is a wide range of techniques for implementing the fron-
tends of STMs in Scala. These work through a combination of one
or more of the following elements: library calls, annotations, byte-
code rewriting, and compiler modifications. Also, Scala’s ability to
define anonymous functions and to pass them into other functions
as arguments (closures) is important in many Scala STMs, and an
example of the use of anonymous functions as function parame-
ters can be seen in Fig. 3. Table 1 maps the different available tech-
niques to the STMs that implement these techniques.

Before we look at the different ways of implementing these
frontends, we will briefly consider some of the points that these
should be rated against. Table 2 provides a summary for each im-
plementation strategy of the properties that take a discrete value.

Java compatible: Scala is Java compatible; however, this does not
mean that all frontends are automatically compatible with Java.
Some require features of Scala that cannot be described in Java code
without a high level of understanding of the workings of the Scala
compiler. For example, using frontends that require the passing of
compiler-inserted implicit parameters or the passing of functions
as arguments to other functions is problematic in Java code. For
techniques that are not Java compatible, we note if the technique
can be combined with techniques that are Java compatible to allow
transactions accessing the same shared state to be constructed in
both Scala and Java.
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Table 1
Summary of the different implementation strategies and software transactional
memories that implement them.

Implementation style Implementations

Pure libraries Explicit library calls -

Reference cells Multi-Verse [18]
CCSTM [5]
ScalaSTM [5]
RadonSTM [4]

Closures and reference cells CCSTM [5]
ScalaSTM [5]

Byte-code rewriting Class annotations Multi-Verse [18]

Method annotations MUTS [9]

Closures MUTS [9]

Parser modifications MUTS [9]

Compiler modifications -

Supports strong isolation: If a TM supports strong isolation, no ac-
tion of the programmer or user can result in transactional data
being accessed from outside of a transaction. If instead only weak
isolation is supported, it is possible to access data being manip-
ulated in a transaction from outside of a transaction. This can
then allow the non-committed state of a transaction to be ob-
served and modified, potentially undermining the correctness of
the code. Strong isolation can also be broken by the presence of
non-transactional mutable data within a transaction; such data
may exist as an optimization.

Supports legacy code: The use of code compiled by others is a rou-
tine part of writing programs; however, not all STMs are able to
instrument this code. This means that it is not possible to include
within transactions compiled methods that contain side effects.
Examples of such methods are those contained within the Scala
mutable collections and the Java Util libraries.

No runtime modifications: Some STMs form a simple library that can
just be added to the classpath; others require the addition of more
advanced JVM arguments, or the use of special compilers.

Clarity of code: Different methods of implementing transactional
frontends require different syntaxes. These different syntaxes offer
differing levels of complexity and verbosity. Excessive verboseness
or complicated syntax can act as a barrier to the use of the transac-
tional frontend, or result in difficulty reading and writing code that
uses it.

No alternative syntax: A specific point relating to clarity of code is
that while some STMs may be less verbose than others, some of
these require that the code inside a transaction uses a different
syntax to code outside a transaction. For example, an alternative
assignment statement is required for some techniques. As the
standard assignment operator can still be used, but may not be
valid, such changes not only increase the application programmer
workload, but also allow for the creation of subtle bugs.

No duplicate methods: To call functions from both inside and out-
side a transaction, some STMs required that the user constructs

Table 2
Summary of approaches and their properties.

two copies of methods, one that is transactional and one that is
not. Others are able to automatically construct a transactional and
a non-transactional method from a single piece of user code. The
ability to construct both methods from a single piece of code re-
moves the opportunity for discrepancies between the two func-
tions to be added when writing or maintaining the code, as well as
reducing the workload for the programmer.

Guarantees correct transactions: Some STMs guarantee that all
variables that need to be instrumented as part of a transaction will
be, while others leave it to the programmer to ensure this. If the
programmer fails to add all the required instrumentation, then the
transaction may no longer be correct, and a race condition will have
been introduced into the program.

2.1. Performance

The performance of the techniques can be affected by a range of
issues, including the following.

e The backend used to support the STM.

e The level of optimization provided by the compiler.

o The level of code analysis implemented within the technique.
e The hardware/VM used to execute the program.

e The problem they are used to solve.

For example, techniques that introduce the indirection to the back-
end before compilation may prevent optimizations such as partial
evaluation being applied. This optimization would be possible if
the indirection were introduced after compilation. Other compilers
may be more advanced and still introduce the optimization, or less
advanced and not employ this optimization at all. Another exam-
ple would be techniques that examine the byte-code, which may or
may not do analysis to identify code that does not need instrumen-
tation. This level of variation, coupled with the differing scopes of
the integration addressed by the different techniques, means that
their performance in their own right cannot be sensibly compared.
For this reason we shall not attempt to compare the performance
of the techniques, but would point the reader to the performance
analysis provided by specific implementations for specific prob-
lems on specific hardware [11,5,13].

3. Scala STMs

We will now look in detail at how each of the different STM
frontends can be implemented, appraising as we go the advantages
and disadvantages of each. In order to keep these lists complete,
many of the advantages and disadvantages will be duplicated for
the different approaches. To demonstrate the use of the different
options, we will use the example code shown in Fig. 4 for transfer-
ring money between accounts and keeping some simple logging.
It consists of two classes: a class Account that contains a balance
and methods for adding and removing money, and a class Teller
that contains methods for performing operations on accounts.

Pure libraries

Byte-code rewriting Compiler modifications

Explicit
library calls  cells

Reference Closures and Class
reference cells

Method
annotations annotations

Closures Parser
modifications

Java compatible . .
Combinable with Java compatible techniques - - °
Supports strong isolation

Supports legacy code

No runtime modifications . ° °
Guarantees correct transactions
No alternative syntax .

No duplicate methods
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class Teller(log:Log) {
var transactions = 0

def transfer(from:Account, to:Account, amount:Int) {
println("About to transfer " + amount)

from.withdraw(amount)
to.deposit (amount)

log.value = log.value + amount
transactions = transactions + 1

println("Transferred " + amount)
}
}

class Account {
var value = 0

def deposit(amount:Int) {
value = value + amount

}

def withdraw(amount:Int) {
value = value - amount
}
¥

Fig. 4. Scala code for transferring money between accounts while keeping some
basic logging. This contains two classes: a class Account that contains a balance
and methods for adding and removing money, and a class Teller that contains
methods for performing operations on accounts. This example will be used to
demonstrate the syntax of the different STM frontends.

3.1. Pure libraries

In this section, we will examine the transactional memory
implementations that can be provided as just a library without any
supporting infrastructure. The principal advantage of this approach
is that it can be used by any programmer without the use of other
tools. However, this also means that it can only be applied to
functions that they control the source code for. In addition, pure
software libraries in Scala are unable to provide strong isolation.
While libraries such as ScalaSTM claim to offer strong isolation [5],
this property only applies if the programmer only writes code that
obeys rules set down by ScalaSTM. It is a property of all correct
transactional memory implementations that, if no action to breach
strong isolation is taken, strong isolation is maintained. For strong
isolation to be meaningful it has to be such that, no matter what
the programmer or future user does, transactional data cannot be
accessed from outside of a transaction.

3.1.1. Explicit library calls

Explicit library calls is the simplest form of STM to implement,
and it is used to implement TinySTM [8] in C. The absence of
pointers in JVM byte-code makes the implementation even more
verbose in JVM-based environments. With this technique there
is no frontend, and the user interacts directly with the boundary
interface. This means that the user inserts library calls to explicitly
start a transaction and create a context to hold the required logging
information about the transaction. This is followed by the addition
of library calls which use this context for every transactional read
and write, and finally a library call to attempt to commit the
transaction. In the event of the transaction failing, the user is
responsible for constructing all the control logic to handle this
failure. An example of the function in Fig. 4 written in this style can
be seen in Fig. 5. In this example, the transaction is initialized and
its context constructed through the call ¢ = TM.getContext().
Transactional reads and writes are invoked through the context
methods get and set, and the transaction is committed through
the context method commit. The methods get and set require
a reference to the object containing the data and the name of the

data identifier. The method set also requires the value the data
should be set to, and for efficiency reasons get takes the current
value of the data. This example is still missing much of the code
required to handle exceptions generated during the transaction
and transactional aborts.

Advantages

e The principal advantage of this technique is its simplicity, which
allows it to be implemented in almost any language, without
any change to the runtime system, compiler, or associated code.

e This method also allows the user explicit control over which
reads and which writes are made transactional, allowing for
the potential for better optimization of transactions through
the elimination of unnecessary recording of reads and writes.
However, such optimizations make the code fragile, and bugs
can be hard to find.

Disadvantages This technique has many disadvantages, including
the following.

e The large volume of library calls obscures the code, making it
hard to determine what the code is doing.

e There is no means by which the compiler can alert the user to
the absence of a call for a read or write within a transaction. This
can lead to values that should be part of the transaction being
accessed non-transactionally.

e The user is required to add in all the control logic.

e There is no way that existing compiled code which contains side
effects can be used transactionally within a transaction.

e If a function needs to be called from both transactional and
non-transactional code, then two copies of the function are
required. This makes the construction and maintenance of code
significantly harder.

3.1.2. Reference cells

A partial solution to variables being accidentally modified in a
non-transactional way from inside a transaction can be found by
the construction of reference cells that hold the transactional data.
These can then be used in conjunction with the type system to
ensure that, as long as all accesses are directed to the reference
cell, and not directly to the value it contains, the value will always
be accessed transactionally. This access could be done via methods
located in a separate object, but typically they are placed either
in the reference cell object or the context object. This approach
is applicable to almost all languages, and is supported in Scala
by RadonSTM [4], Multi-Verse [18], CCSTM [5], and ScalaSTM [5].
The latter two, while able to support this approach, extend it
with ScalaSTM using closures, as described in Section 3.1.3, and
Multi-Verse extends it through byte-code rewriting, as described
in Section 3.2.1. As Scala does not allow = to be overridden, it is
necessary to create an alternative method, such as :=, which must
be used for assigning new values to reference cells. An example of
the code introduced in Fig. 4 can be seen in Fig. 6, modified to use
reference cells instead.

Advantages

e The user is not forced to make all values within a transaction
transactional; this provides the potential for user-implemented
optimization.

e As long as no other references are kept to the value contained
within the reference cell, the value within the cell will only
be accessible from within a transaction. However, it should be
noted that, as transactions may appear within libraries, this
property is unenforceable in the general case.

e Potentially Java compatible.
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import ...

class Teller(log:Log) {
var transactions = 0

def transfer(from:AccountTM, to:AccountTM, amount:Int) {
println("About to transfer " + amount)

do {
val ¢ = TM.getContext()
from.withdraw(amount, c)
to.deposit (amount, c)
c.set(log, "value", c.get(log, "value", log.value) + amount)
c.set(this, "transactions", c.get(this, "transactions", transactions) + 1)

} while(!c.commit);

println("Transferred " + amount)
}
}

class AccountTM {
var value = 0

def deposit(amount:Int, c:Context) {
c.set(this, "value", c.get(this, "value", value) + amount)

def withdraw(amount:Int, c:Context) {
c.set(this, "value", c.get(this, "value", value) - amount)

// Required for non-transactional environments
class Account {
var value = 0

def deposit(amount:Int) {
value = value + amount

}

def withdraw(amount:Int) {
value = value - amount
}
}

Fig. 5. An example of the code modification required when adding a transaction to the code in Fig. 4. This code is still missing control logic to handle exceptions and
transactional aborts.

Disadvantages - If implicit parameters are used to hide the use of the context,
then the reference cells are not compatible with Java.

- If explicit references are passed, they obscure the code
through too many references to the context.

- If the cell internally references a global ThreadLocal context
or uses some similar technique, then the repeated lookups

e There is no way that existing compiled code that contains side
effects can be used transactionally within a transaction.

e The user is required to construct the code to handle beginning,
committing, and retrying transactions.

o If a function needs to be called from both transactional and will impede performance.
non-transactional code, or a data structure needs to be used e Syntax differences for operations such as assignment exist be-
in both transactional and non-transactional code, then two tween transactional and non-transactional code, making the
copies are required. This makes the addition and maintenance addition or removal of transactions to existing code more labour
of transactions in the code significantly harder. intensive.

e Values can be used in transactions without wrapping them in
reference cells. This allows for side effects from transactions to 3.1.3. Closures and reference cells
be visible before committing and for variables to not be reset Closures can be used to address the need for the user to explic-
correctly in the event of a transactional roll back. itly manage the starting, committing, and retrying of transactions.
e The reference cells require access to a context in order to bind This technique takes advantage of Scala’s lightweight construction
their actions to a transaction. All approaches we are aware of  of anonymous functions, and its ability to pass functions as argu-
have problems. ments to other functions. This restricts this technique to languages
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import ...

class Teller(log:LogTM) {
val transactions = new RefCell(0)

def transfer(from:AccountTM, to:AccountTM, amount:Int) {
println("About to transfer " + amount)

do {
val ¢ = TM.getContext()
from.withdraw(amount, c)
to.deposit (amount, c)
log.value := (log.value(c) + amount, c)
transactions := (transactions(c) + 1, c)
} while(!c.commit);

println("Transferred " + amount)
}
}

class AccountTM {
val value = new RefCell(0)

def deposit(amount:Int, c:Context) {
value := (value(c) + amount, c)

}

def withdraw(amount:Int, c:Context) {
value := (value(c) - amount, c)

}

// Required for non-transactional environments
class Account {
var value = 0

def deposit(amount:Int) {
value = value + amount

}

def withdraw(amount:Int) {
value = value - amount
}
}

Fig. 6. The code modification required when adding a transaction to the code in
Fig. 4 withRefCell objects acting as reference cells for the transactional data. Note
the use of := instead of = within the transactions. This code is still missing control
logic to handle exceptions etc.

supporting these properties. With this option, instead of construct-
ing all the control logic, the user passes a closure containing the
code they would like to execute transactionally to a library func-
tion. This library function then handles the creation of the transac-
tion context and the control logic for committing and retrying if a
transaction fails. The use of closures can be combined with a range
of options to form a frontend, and we will look at other forms in
Section 3.2.3. However, in a pure library they are normally com-
bined with reference cells. The general form is that the user pro-
vides a closure that takes a context as a parameter. The function
receiving the closure will then execute the transaction, calling the
closure at the appropriate moments. The context can be an implicit
parameter, allowing it to be omitted from the rest of the closure,
with the compiler adding it in again later. This is the technique used
by ScalaSTM [5], CCSTM [5], and Multi-Verse [18], and an example
can be seen in Fig. 7.

Advantages
e The user is not forced to make all values within a transaction

transactional; this provides the potential for user-implemented
optimization.

import ...

class Teller(log:LogTM) {
val transactions = new RefCell(0)

def transfer(from:AccountTM, to:AccountTM, amount:Int) {
println("About to transfer " + amount)

atomic{ (implicit c:Context) => {
from.withdraw(amount)
to.deposit (amount)
log.value := log.value + amount
transactions := transactions + 1

println("Transferred " + amount)
}
}

class AccountTM {
val value = new RefCell(0)

def deposit(amount:Int) (implicit c:Context) {

value := value + amount

}

def withdraw(amount:Int) (implicit c:Context) {
value := value - amount

}

// Required for non-transactional environments
class Account {
var value = 0

def deposit(amount:Int) {
value = value + amount

}

def withdraw(amount:Int) {
value = value - amount
}
}

Fig. 7. The code modification required when adding a transaction to the code in
Fig. 4 with reference cells and the control logic hidden in a function that accepts
closures. Note the continuing use of := instead of = within the transactions, and
the additional implicit parameters.

e As long as no other references are kept to the value contained
within the reference cell, the value within the cell will only be
accessed from within a transaction. However, it should be noted
that, as transactions may appear within libraries, this property
is essentially unenforceable in the general case.

e The library handles beginning, committing, and retrying of
transactions.

Disadvantages

e There is no way that existing compiled code that contains side
effects can be used transactionally within a transaction.

e If a function needs to be called from both transactional and
non-transactional code, or a data structure needs to be used
in both transactional and non-transactional code, then two
copies are required. This makes the addition and maintenance
of transactions in the code significantly harder.

e Values can be used in transactions without wrapping them in
reference cells. This allows for side effects from transactions and
the potential for variables to not be reset correctly in the event
of a transactional collision.

e The use of closures means that it is not Java compatible.
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e The reference cells require access to a context in order to bind
their actions to a transaction. All approaches we are aware of
have problems.

- If implicit parameters are used to hide the use of the context,
then the reference cells are not compatible with Java.

- If explicit references are passed, they obscure the code
through too many references to the context.

- If the cell internally references a global ThreadLocal context
or uses some similar technique, then the repeated lookups
will impede performance.

e Syntax differences for operations such as assignment exist
between transactional and non-transactional code, making the
addition or removal of transactions to existing code more labour
intensive.

3.2. Byte-code rewriting

If an STM is going to work with legacy code, or the code is to
contain functions that can be used both from inside and outside of
transactions, then it is necessary it use some form of modification
to the JVM to allow code to be used in both transactional and
non-transactional contexts. One such form of this is byte-code
rewriting. The idea with byte-code rewriting is that, instead of the
user adding in the instrumentation directly through reference cells
or library calls, they mark the code that should be transactional and
then the instrumentation is added by a rewrite of the code. This
rewrite can either occur offline, or when the code is loaded into
the JVM. As all transactional code must be present at the time of
the rewrite, and this may include libraries in the JVM, performing
the rewrite when the code is loaded into the JVM is usually the
preferred option.

The rewriting of code in the JVM is achieved through the con-
struction of a Java Agent that is provided to the JVM as an argument.
The Java Agent is a program that receives the byte-code from the
class loader, and returns it, having read it and if appropriate mod-
ified it. Java Agents can be used for gathering statistics about code,
modifying its behaviour, or simply for instrumenting it to gather
information for performance analysis or debugging.

As discussed above, to add transactions to existing code using
a rewrite, the rewrite must insert additional code to perform the
instrumentation. Typically, this will be the addition of calls such
as those discussed for pure libraries, the difference being that
now, instead of the user having to add the calls, the calls will be
added automatically, with the user simply marking the scope of
the transactions through one of the mechanisms discussed below.
This hides complexity from the user and prevents the code they
work with from being obscured by the calls. Within these different
annotation mechanisms rewrites are one of two types: those that
only make changes relative to the source code that contains the
transaction, and those that make wider changes to allow the
transaction to expand into other code that it interacts with. Before
we introduce the different ways of marking transactions, we will
discuss the implementation of both types.

Code local to the transaction: If the modifications are to be made
only to the code local to the transaction, the mechanism is rela-
tively simple. The Java Agent detects the marking for the transac-
tion and then for the region marked instruments the code using
either reference cells or library calls.

All code in the program: This second type is more interesting, as
this is the type that allows transactions to span into unmarked and
precompiled code. It is also the more involved option, as methods
may appear in both transactional and non-transactional code, and
in general there is no way of determining which situation the
method will appear in when it is loaded, or deduce that the method
will only be used in one context. For example, two objects can be
constructed from the same class, and one may only be used within

transactions, while the other is only used in non-transactional
code, or indeed the use of an object may change over the course
of a program’s execution. This means that reference cells cannot
be used, and any solution must revolve around the use of library
calls when accessing object fields. The standard technique to
overcome this is to construct for every non-transactional method
a complementing transactional method. These methods are then
differentiated from each other by their method signature, with the
transactional methods taking a context which they can then use
with the instrumenting library calls. In addition, the instrumented
methods also use the context when making any other method calls.
The net effect of this is that two independent sets of functions
are created: one with no instrumentation, and the other where all
accesses are instrumented. The system is then completed by the
user marking sections that should be transactional and the STM
inserting the appropriate code to start the transaction by creating
a context and switching code bases, and then when the transaction
is complete to switch back and commit.

The applicability of these techniques to other languages is de-
pendent not only on the semantics of the language, but also on the
level of support for code rewriting. We will now look at the differ-
ent ways of marking the boundaries of transactions.

3.2.1. Class annotations

With this approach, the user adds annotations to the class def-
initions to state that modifications to this class should be transac-
tional. This is then detected by the rewriter and used to instrument
the class. For example, in Multi-Verse [ 18], the presence of this an-
notationresults in the automatic insertion of reference cells replac-
ing either the object’s fields or the entire object, depending on the
configuration of the STM. In addition, all the methods within the
object are now made transactional. To allow multiple transactional
methods to be nested within a single method to form a single trans-
action, it is necessary to indicate a start point for the transaction.
This can be achieved either by the addition of library calls or, as in
Multi-Verse, the addition of method annotations. This is applicable
in most languages, and an example of this can be seen in Fig. 8.

Advantages

o The use of annotations on the objects simplifies the addition of
transactions to programs.

e The user is not forced to make all values within a transaction
transactional; this provides the potential for user-implemented
optimization.

e Can be compatible with all JVM-based languages.

e Can provide strong separation of transactional and non-
transactional data.

Disadvantages

e There is no way that existing compiled code which contains side
effects can be used transactionally within a transaction.

e The automatic creation of transactions for all methods within an
object canrestrict the structure of programs, or negatively affect
their performance through the execution of unnecessary trans-
actions. These restrictions on the scope of the transactions can
potentially cause problems using transactions to maintain data
invariants. An example of this for implicit transactions on vari-
able accesses can be seen in Fig. 9. At the method level, this can
be overcome with additional annotations, but this further re-
stricts the structure of the program by defining method bound-
aries. For example, now it is not possible to have a method
that contains many lines of non-transactional code and a small
transaction. Furthermore, the programmer can forget to include
this additional annotation.

e Requires a Java Agent to be added to the JVM arguments.
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import

@TransactionalObject
class Teller(log:Log) {
var transactions = 0
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def transfer(from:Account, to:Account, amount:Int) {

println("About to transfer " +

transferTM(from, to, amount)

amount)

println("Transferred " + amount)

}

//Method factored out to constrain the scope of the transaction

@TransactionalMethod

private def transferTM(from:Account, to:Account, amount:Int) {

from.withdraw(amount)
to.deposit (amount)

log.value = log.value + amount
transactions

}
}

O@TransactionalObject
class Account {
var value 0

def deposit(amount:Int) {
value = value + amount

}

def withdraw(amount:Int) {
value value - amount

}
}

transactions + 1

Fig. 8. The additional annotations required for object-level transactions via annotations. Note that the duplicate classes and changes to the syntax are no longer required;

however, refactoring the methods to constrain the scope of the transactions is required.

proc 1 | proc 2
a=2%a
if(a==Db)
keep going
else
fail badly
b=2*%b

Fig. 9. Code that should maintain the invariant that a == b. While strong
separation is maintained, the implicitly constructed transactions on the left allow
the data invariant to be invalidated.

3.2.2. Method annotations

An alternative approach used in Deuce STM [13] for Java and
extended to Scala by MUTS [9] is to mark methods which will
be transactional. Methods that are called from this method are
then implicitly transactional. To do this, the programmer adds an
annotation to the method. This is applicable to most languages.
In the case of Deuce STM the annotation is @Atomic. The Java
Agent then constructs instrumented versions of all methods as
described at the start of this section. When the atomic annotation

is encountered, the annotated method is also replaced with a
method that handles the context construction and control logic for
the transactions. This method, having initialized the transaction,
then calls the instrumented version of the original method, so
starting the transactional code. Once this method completes, the
transaction is committed or retried, accordingly. Example code
including a transaction can be seen in Fig. 10.

Advantages

e Can use legacy code within transactions.

Compatible with Java.

Only one copy of each method is required, even if the method
is used both inside and outside of transactions.

Not possible to fail to instrument values within a transaction.

Clean code.

Disadvantages

e Granularity of transactions is fixed at the method level. This
can adversely affect the structure of the code; for example, if
a method requires several small transactions, these all have to
be refactored out as new methods.
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import ...

class Teller(log:Log) {
var transactions = 0

def transfer(from:Account, to:Account, amount:Int) {
println("About to transfer " + amount)

transferTM(from, to, amount)

println("Transferred " + amount)

}

//Method factored out to constrain the scope of the transaction

QAtomic

private def transferTM(from:Account, to:Account, amount:Int) {

from.withdraw(amount)
to.deposit (amount)

log.value = log.value + amount

transactions = transactions + 1

}
}

class Account {
var value = 0

def deposit(amount:Int) {
value = value + amount

}

def withdraw(amount:Int) {
value = value - amount
}
}

Fig. 10. The additional annotations required for method-level transactions via annotations. Again note that the duplicate methods and changes to the syntax are no longer
required; however, refactoring the methods to constrain the scope of the transactions is. With this setup there is only one annotation, so data invariants will be maintained,

but strong isolation will not be provided.

e It is only capable of supporting weak isolation.
e Requires a Java Agent to be added to the JVM arguments.

3.2.3. Closures

The restrictions on the granularity of transactions displayed by
method annotations can be addressed at the cost of direct compati-
bility with Java through the use of closures. Here, through the use of
Scala’s lightweight syntax for constructing functions, the user con-
structs a closure that is passed to a library function to be executed
transactionally. This allows the construction of lightweight atomic
blocks [10] without syntax changes. An example is given in Fig. 11.
It is worth noting that this technique can coexist with method an-
notations, meaning that, although closures cannot easily be used
in Java, transactions based on an STM that accepts closures can be.

The implementing library can be constructed by simply adding
an atomic method annotation to a function the library provides and
which executes the passed function within this function. This is
demonstrated in Fig. 12. Alternatively, the library function can con-
tain all the code required to construct the transaction context and
its associated control logic, calling to the instrumented version of
the passed function once the transaction has been initialized and
committing it once the function completes. This will require ma-
nipulation of the byte-code when the library is compiled in order

to pass the extra argument, but all of this will happen before the
library is released to users. This second approach is slightly more
efficient than the first, and it is easier to modify the control logic.
An example of the required transformation can be seen in Fig. 13.
Both approaches have been implemented as part of MUTS [9].!

Advantages

e Can use legacy code within transactions.

e Only one copy of each method is required, even if the method
is used both inside and outside of transactions.

e Not possible to fail to instrument values within a transaction.
e Clean code.
e Unrestricted transaction granularity.

Disadvantages

o It is only capable of supporting weak isolation.
e Requires a Java Agent to be added to the JVM arguments.
o Not directly compatible with Java.

1 http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS]/.
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import ...

class Teller(log:Log) {
var transactions = 0

def transfer(from:Account, to:Account, amount:Int) {
println("About to transfer " + amount)
atomic{
from.withdraw(amount)
to.deposit (amount)
log.value = log.value + amount
transactions = transactions + 1
}
println("Transferred " + amount)
}
}

class Account {
var value = 0

def deposit(amount:Int) {
value = value + amount

}
def withdraw(amount:Int) {

value = value - amount
}
}

Fig. 11. The replacement of annotations with a closure taking the method to be
executed atomically. While at the machine level the bounding of the transaction
is still achieved by factoring out a method, at the code level the resulting
fragmentation is no longer present.

Q@Atomic

def atomic(f: => Unit) {
£0O

}

Fig.12. Anexample of a method that can be used with closures and the annotations
provided by Deuce so that the user code does not have to be fragmented in order
to assert finer granularities on methods. This works by taking the closure and then
through the presence of the annotation, executing the closure in a transaction.

3.2.4. Parser modifications

In the case of some of the byte-code rewriting examples, the
syntactic overhead is reduced to importing a library; however,
to truly remove all the syntactic overhead it is necessary to
modify the parser to accept transactions; for example, see Fig. 14.
Having modified the parser to accept and detect atomic blocks, the
contents of the block can then be encoded using existing elements
of the language. Doing so, it is possible to add in the transformation
shown in Fig. 15. This adds all the context creation, the control
logic, and the instrumentation of the method variables without
the need to further modify the compiler pipeline. Having done
all of this, it is then necessary to mark the transaction so that it
can be integrated with the instrumented method calls once they
are created during the byte-code rewrite. As at this stage, the
constructed abstract syntax tree is yet to go through the rest of the
compiler and may be restructured: one of the most effective ways
to mark the transactional code without the need to further modify
the compiler is to wrap it in a try catch for a specially constructed
class of exception. The range of the resulting exception handler
will then be included in the compiled code and can be clearly
read out once the code is compiled, regardless of any compile-time
transformations. During the byte-code rewrite, this information
can then be used to determine which method calls need to be
modified to call their instrumented counterparts. At the same

time, all references to the special exception can be removed. The
inclusion of such an exception can be clearly seen in Fig. 15. Again,
this technique is compatible with both the method annotations
and the closure-based versions of TM, and all of these coexist in
MUTS [9].

Advantages

Can use legacy code within transactions.

Only one copy of each method is required, even if the method
is used both inside and outside of transactions.

Not possible to fail to instrument values within a transaction.
Complete control of the syntax.

e Unrestricted transaction granularity.

Disadvantages

Is only capable of supporting weak isolation.

Requires a Java Agent to be added to the JVM arguments.
Not directly compatible with Java.

Compilation must use the modified parser.

Adds new keywords to the language.

3.3. Compiler modifications

The final and most invasive technique for introducing transac-
tions into Scala is to enter them purely within the Scala compiler.
This would allow complete control over the generated code, so al-
lowing properties such as strong isolation to be enforced. How-
ever, the structure of the compiler means that this would be an
extremely involved task, requiring modifications to many compi-
lation phases. In addition, such a modification would still be re-
stricted to adding transactions to code which is compiled using this
compiler. As such, without support for such modifications from not
just the Scala community, but also the Java community, this ap-
proach would be unlikely to be more effective than one of the byte-
code rewriting approaches. As a result of this, we are unaware of
any implementations that take this approach.

Advantages

e Is capable of supporting strong isolation.

Only one copy of each method is required, even if the method
is used both inside and outside of transactions.

Not possible to fail to instrument values within a transaction.
Complete control of the syntax.

Unrestricted transaction granularity.

Requires no modifications to the runtime environment.

Disadvantages

Not compatible with Java.

Cannot use legacy code within transactions.
Compilation must use the modified compiler.
Adds new keywords to the language.

4. Conclusions

In this paper, we have described all the available approaches to
transactional memory in Scala that we are aware of, and where we
are aware of implementations that use these approaches we have
included references to them. This has included the documentation
for the first time of a number of approaches implemented by the
MUTS STM suite. We have then rated these approaches against
a number of criteria, and ordered them from the least invasive
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def atomic(block: => Unit) {
var committed = false
do {
val context:Context = TM.beginTransaction()
try {
/* This line has been modified in the byte-code to add the
* context as a function argument. In doing so the execution
* passes from the non-instrumented code to the instrumented
* code.
*/
block.apply(context)
committed = TM.commit(context)
} catch {
case e:TransactionException => context.rollback()
case e:Exception => {
committed = TM.commit (context)
if (committed) throw e
}
}
} while(!committed)
}

161

Fig. 13. Anexample of a more efficient means of starting transactions using closures. This technique also allows for easier modification of the control logic of the transactions
as required. As commented in the code, the call to execute the closure is modified to take the context. This change facilitates the move from uninstrumented code to
instrumented code. The exception TransactionException is used allow transactions to abort from within the function ‘block’ in the event of a collision. When it is thrown, it
is caught by the managing code, and the transaction is rolled back and retried.

Table 3

Summary of the different implementation strategies and their relative usability and invasiveness tradeoffs.

Implementation style

Usability issues

Pure libraries

Explicit library calls e Verbose code
e Duplicate methods required

e Unable to incorporate legacy code

e Required calls can be omitted

Reference cells e Verbose code
e Duplicate methods required

e Unable to incorporate legacy code

e Alternative syntax required
e Required calls can be omitted

Closures and reference cells e Duplicate methods required

e Unable to incorporate legacy code

o Alternative syntax required
e Required calls can be omitted

Byte-code rewriting

Class annotations e Refactoring required
Method annotations
Closures e None

Parser modifications

e Requires modifications to the language specification

Compiler modifications

e Unable to incorporate legacy code
e Requires modifications to the language specification

Implementation style

Invasiveness

Pure libraries

Explicit library calls
Reference cells
Closures and reference cells

e None

Byte-code rewriting

Class annotations
Method annotations
Closures

Parser modifications

e Inclusion of a Java agent in the VM boot loader.

e Inclusion of a Java agent in the VM boot loader
e Modifications to the parser of the Scala compiler.

Compiler modifications

o Extensive modifications to both the Scala and the Java compiler.

to the most invasive in terms of modifications to the compiler
and runtime. In doing so, we have shown that there is a trade off
between ease of construction and ease of use when programming.

A summary of this can be seen in Table 3. As with most tradeoffs,
the optimum point is not at either end of the spectrum, but
somewhere in the middle. This is demonstrated by the lack of
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class Teller(log:Log) {
var transactions = 0

def transfer(from:Account, to:Account, amount:Int) {
println("About to transfer " + amount)
atomic{
from.withdraw(amount)
to.deposit (amount)
log.value = log.value + amount
transactions = transactions + 1
}
println("Transferred " + amount)
}
}

class Account {
var value = 0

def deposit(amount:Int) {
value = value + amount

}

def withdraw(amount:Int) {
value = value - amount
¥
}

Fig. 14. Our example using parser modifications. Finally there is complete control
of the syntax and no need to import libraries, but this is at the expense of modifying
the parser and adding new keywords into the language.

implementations at the end points. While we have an opinion on
the location of the optimum point and have targeted our STM
implementations accordingly, time will tell exactly where this
point is.

Currently, the two most common transactional memories for
Scala are Multi-Verse, which is included as part of the Akka plat-
form [1], and ScalaSTM, which is being aimed at inclusion in
the Scala standard library. These two STMs represent two differ-
ing philosophies to implementing transactional memory: on the
one hand, modifying the runtime environment for clean code and
strong semantics, and on the other, accepting the weaknesses and
restricted use of transactions in exchange for the ability to operate
without modification to the runtime environment. The remaining
STMs have a relatively small uptake; however, Deuce STM for Java,
which MUTS is based on, is relatively well used. The third philoso-
phy, to modify the language and both the Java and Scala compilers,
thus far has no traction, and as discussed is unlikely to, as it is both
more invasive and less user friendly than the byte-code rewriting
approach.

It is the authors’ opinion that, while ScalaSTM is relatively pop-
ular, it is too constrained to act as a general-purpose transactional
memory for Scala in the long term. For this reason, we expect that
extensions to the runtime system such as those offered by Multi-
Verse and MUTS will provide transactions for Scala in the long
term. However, we would also expect that support for transactions
in the compiler and language directly, while unlikely to happen
in many existing languages, is likely in new languages as transac-
tional memory becomes more ubiquitous.
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var context$TM:Context = null;
var transaction-Variables_Backup = transaction.Variables
var committed$TM = false;

atomic_retry$1() {

context$TM = TM.beginTransaction();

try {
atomic
Body
Body —
} } catch {

committed$TM = TM.commit (context$TM)

case e:TransactionArea => ()
case e:TransactionException => ()
case e:Exception => { committed$TM =

TM. commit (context$TM) ;

if (committed$TM) throw e

}
}
+s

if (!committed$TM) {
Transaction_Variables = transaction_Variables_Backup
atomic_retry$1()

}

Fig. 15. Transformation of a transaction block into existing Scala abstract syntax tree constructs. The code in italics is dependent on the environment that the specific block

is called from.
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