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Abstract

This paper describes a work-flow language ‘Martlet’ for the analysis of large quantities of distributed
data. This work-flow language is fundamentally different to other languages as it implements a new pro-
gramming model. Inspired by inductive constructs of functional programming this programming model
allows it to abstract the complexities of data and processing distribution. This means the user is not required
to have any knowledge of the underlying architecture or how to write distributed programs.

As well as making distributed resources available to more people, this abstraction also reduces the po-
tential for errors when writing distributed programs. While this abstraction places some restrictions on the
user, it is descriptive enough to describe a large class of problems, including algorithms for solving Singular
Value Decompositions and Least Squares problems. Currently this language runs on a stand-alone middle-
ware. This middleware can however be adapted to run on top of a wide range of existing work-flow engines
through the use of JIT compilers capable of producing other work-flow languages at run time. This makes
this work applicable to a huge range of computing projects.

1 Introduction

The work-flow language Martlet described in this
paper implements a new programming model that
allows users to write parallel programs and analyse
distributed data without having to be aware of the
details of the parallelisation. It abstracts the paral-
lelisation of the computation and the splitting of the
data through the inclusion of constructs inspired by
functional programming. These allow programs to
be written as an abstract description that can be ad-
justed to match the data set and available resources
automatically at runtime. While this programming
model adds some restriction to the way programs
can be written, it is possible to perform complex cal-
culations across a distributed data set such as Singu-
lar Value Decomposition or Least Squares problems,
and it creates a much more intuitive way of working
with distributed systems. This allows inexperienced
users to take advantage of the power of distributed
computing resources, and reduces the work load on
experienced distributed programmers.

While applicable to a wide range of projects,
this was originally created in response to some
of the problems faced in the distributed analysis

of data generated by the ClimatePrediction.net1[9,
12] project. ClimatePrediction.net is a distributed
computing project inspired by the success of the
SETI@home2[1] project. Users download a model
of the earth’s climate and run it for approximately
fifty model years with a range of perturbed control
parameters before returning results read from their
model to one of the many upload servers.

The output of these models creates a data set that
is distributed across many servers in a well-defined
fashion. This data set is too big to transport to a sin-
gle location for analysis, so it must be worked on in
a distributed manner if a user wants to analyse more
than a small subset of the data. In order to derive
results, it is intended that users will submit analy-
sis functions to the servers holding the data set. As
this data set provides a resource for many people, it
would be unwise to allow users to submit arbitrary
source code to be executed. In addition users are un-
able to ascertain how many servers a given subset
of this data that they want to analyse spans, and nor
should they care. Their interest is in the information
they can derive from the data, not how it is stored.
These requirements mean a trusted work-flow lan-

1http://www.climateprediction.net
2http://setiathome.ssl.berkeley.edu



guage is required as an intermediate step, allowing
the construction of analysis functions from existing
components, and abstracting the distribution of the
data from the user.

2 Related Work

Existing work-flow languages such as BPEL[2], Pe-
gasus [7] and Taverna [11] allow the chaining to-
gether of computational functions to provide addi-
tional functions. They have a variety of supporting
tools and are compatible with a wide range of dif-
ferent middlewares, databases and scientific equip-
ment. They all implement the same programming
model where a known number of data inputs are
mapped to computational resources and executed,
taking advantage of the potential for parallelisation
where possible and supporting if and while state-
ments etc. As they only take a known number of
inputs, none of them are able to describe a generic
work-flow in which the number of inputs is un-
known, which the middleware can then adapt to
perform the described function at runtime once the
number of inputs is known.

Independently Google have developed a program-
ming model called Map-Reduce [6] to perform dis-
tributed calculations. This is similar to, but not as
general, or as loosely coupled as Martlet. The im-
plementing library works with the Google File Sys-
tem [8] to allow parallel calculations on data, while
abstracting the complexity of the data storage and
processing. Though similar, as it is aimed at the in-
ternal work of Google programmers working with
large clusters. As such it is a set of objects that
are dependant on the Google infrastructure and ex-
tended by the user. These require that the user to
provide information about the environment such as
the number of computers to be involved in the cal-
culation, and functions to partition the data. All of
these make it not suited to the more public heteroge-
neous domain that this project is aimed at.

3 Example Problem

The average temperature of a given set of returned
models is an example of a situation where the level
of abstraction described in this paper is required.
If this data spans a servers, this calculation can be
described in way that could be used for distributed
computing as:
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where each subset of the data set has a computation
performed on it, with the results used by a final com-
putation to produce the over all average. Each of
these computations could occur on a different com-
puting resource.

To write this in an existing work-flow language
in such a way that it is properly executed in paral-
lel, the user must first find out how many servers
their required subset of data spans. Only once this
value is known can the work-flow be written, and if
the value of a changes the work-flow must be rewrit-
ten. The only alternative is that the user himself must
write the code to deal with the segregated data. It is
not a good idea to ask this of the user since it adds
complexity to the system that the user does not want
and may not be able to deal with, as well as adding a
much greater potential for the insertion of errors into
the process. In addition, work-flow languages are
not usually sufficiently descriptive for a user to be
able to describe what to do with an unknown num-
ber of inputs, so it is not possible just to produce a
library for most languages This problem is removed
with Martlet, by making such abstractions a funda-
mental part of the language.

4 Introducing Martlet

Our work-flow language Martlet supports most of
the common constructs of the existing work-flow
languages. In addition to these constructs, it also has
constructs inspired by inductive constructs of func-
tional programming languages [5]. These are used to
implement a new programming model where func-
tions are submitted in an abstract form and are only
converted into a concrete function that can be exe-
cuted when provided with concrete data structures
at runtime. This hides from the user the parallel na-
ture of the execution and the distribution of the data
they wish to analyse.

We chose to design a new language rather than
extending an existing one because the widely used
languages are already sufficiently complex that an
extension for our purposes would quickly obfuscate
the features we are aiming to explore. Moreover, at
the time the decision was taken, there were no suit-
able open-source work-flow language implementa-
tions to adapt. It is hoped that in due course the ideas
developed in this language will be added into other
languages.



The inspiration for this programming model came
from functional programming languages where it
is possible to write extremely concise powerful
functions based on recursion. The reverse of a list of
elements for instance can be defined in Haskell [5]
as;

reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

This simply states that if the list is empty, the
function will return an empty list, otherwise it will
take the first element from the list and turn it into a
singleton list. Then it will recursively call reverse
on the rest of the list and concatenate the two lists
back together. The importance of this example is the
explicit separation between the base case and the in-
ductive case. Using these ideas it has been possible
to construct a programming model and language that
abstracts the level of parallelisation of the data away
from the user, leaving the user to define algorithms
in terms of a base case and an inductive case.

Along with the use of functional programming
constructs, two classes of data structure, local and
distributed, were created. Local data structures are
stored in a single piece; distributed data structures
are stored in an unknown number of pieces spanning
an unknown number of machines. Distributed data
structures can be considered as a list of references to
local data structures. These data structures allow the
functional constructs to take a set of distributed and
local data structures, and functions that perform op-
erations on local data structures. These are then used
as a base case and an inductive case to construct a
work-flow where the base function gets applied to all
the local data structures referenced in the distributed
data structures, before the inductive function is used
to reduce these partial results to a single result. So,
for example, the distributed average problem looked
at in Section 3, taking the distributed matrix A and
returning the average in a column vector B, could be
written in Martlet as the program in Figure 1.

Due to this language being developed for large
scale distributed computing on huge data sets, the
data is passed by reference. In addition to data, func-
tions are also passed by reference. This means that
functions are first class values that can be passed into
and used in other functions, allowing the workflows
to be more generic.

5 Syntax and Semantics

To allow the global referencing of data and func-
tions, both are referenced by URIs. The inclusion
of these in scripts would make them very hard to

read and would increase the potential for user errors.
These problems are overcome using two techniques.
First, local names for variables in the procedure are
used, so the URIs for data only need to be entered
when the procedure is invoked. This means that in
the procedure itself all variable names are short, and
can be made relevant to the data they represent. Sec-
ond, a define block is included at the top of each
procedure where the programmer can add abbrevia-
tions for parts of the URI. This works because the
URIs have a logical pattern set by whom the func-
tion or data belongs to and the server it exists on. As
a result the URIs in a given process are likely to have
much in common.

The description of the process itself starts with the
keyword “proc”, then there is a list of arguments
that are passed to the procedure, of which there must
be at least one due to the stateless nature of pro-
cesses. While additional syntax describing the read,
write nature of the arguments could improve read-
ability, it is not included as it would also prevent
certain patterns of use. This may change in future
variants of the language. Finally there is a list of
statements in between a pair of curly braces, much
like C. These statements are executed sequentially
when the program is run.

There are two types of statement: normal state-
ments and expandable statements. The difference
between the two types of statements is the way they
behave when the process is executed. At runtime an
expand call is made to the data structure represent-
ing the abstract syntax tree. This call makes it adjust
its shape to suit the set of concrete data references it
has been passed. Normal statements only propagate
the expand call through to any children they have,
whereas expandable statements adjust the structure
of the tree to match the specific data set it is required
to operate on.

5.1 Normal Statements

As the language currently stands, there are six dif-
ferent types of normal statement. These are if-
else, sequential composition, asynchronous compo-
sition, while, temporary variable creation, and pro-
cess calls. Their syntax is as follows:

Sequential Composition is marked by the key-
word seq signalling the start of a list of statements
that need to be called sequentially. Although the
seq keyword can be used at any point where a state-
ment would be expected, in most places sequential
composition is implicit. The only location that this
construct really is required is when one wants to
create a function in which a set of sequential lists



// Declare URI abbreviations in order to improve the script readability
define
{

uri1 = baseFunction:system:http://cpdn.net:8080/Martlet;
}

proc(A,B)
{
// Declare the required local variables for the computation. Y and Z
// are used to represent the two sets of values Yi and Zi in the
// example equations. ZTotal will hold the sum of all the Zi’s.

Y = new dismatrix(A);
Z = new disinteger(A);
ZTotal = new integer(B);

// The base case where each Yi and Zi is calculated, and recorded in
// Y and Z respectively. The map construct results in each Zi and Yi
// being calculated independently and in parallel.

map
{

matrixSum:uri1(A,Y);
matrixCardinality:uri1(A,Z);

}

// The inductive case, where we sum together the distributed Yi’s
// and Zi’s into B and ZTotal respectively.

tree((YL,YR)\Y -> B, (ZL,ZR)\Z -> ZTotal)
{

matrixSumToVector:uri1(YL,YR,B);
IntegerSum:uri1(ZL,ZR,ZTotal);

}
// Finally we divide through B with ZTotal to finish computing the
// average of A storing the result in B.

matrixDivide:uri1(B,ZTotal,B);
}

Figure 1: Function for computing the average of a matrix A split across an unknown number of servers. The
syntax and semantics of this function is explained in Section 5.



of statements were run concurrently by an asyn-
chronous composition. An example of this is shown
in Figure 2

Asynchronous Composition is marked by the
keyword async and encompasses a set of state-
ments. When this is executed each statement in the
set is started concurrently. The asynchronous state-
ment only terminates when all the sub-statements
have returned.

In order to prevent race conditions it is necessary
that no process uses a variable concurrently with a
process that writes to the variable. This is enforced
by the middleware at runtime.

if-else & while are represented and behave the
same as they would in any other procedural lan-
guage. There is a test and then a list of statements.

Temporary Variables can be created by state-
ments that look like

identifier =
new type(identifier);

The identifier on the left hand side of the equality
is the name of the new variable. The type on the
right is the type of the variable, and the identifier on
the right is a currently existing data structure used to
determine the level of parallelisation required for the
new variable. For example if the statement was

A = new DisMatrix(B);

this will create a distributed matrix A that is split
into the same number of pieces as B. The type field is
required as there is no constraint that the type of A is
the same as the type of B. This freedom is required as
there is no guarantee that a distributed data structure
of the right type is going to appear at this stage in the
procedure, as was the case in the average calculation
example in Figure 1.

Process calls fall into one of two categories. They
can either be statically named in the function or
passed in as a reference at runtime. Both appear as
an identifier and a list of arguments.

5.2 Expandable Statements

The are four expandable statements, map, foldr,
foldl and tree. Each of these has a functional
programming equivalent. Expandable statements
don’t propagate the call to expand to their children
and must have been expanded before the function
can be computed. This means that on any given path
between the root and a leaf there must be at most one
expandable statement.

async{
seq{

function1(A,B,C);
function2(A,B);
function3(B,C);

}

seq{
function4(D,E);
function1(D,E,F);
function5(E,F);

}
}

Figure 2: seq used to run two sequential sets of op-
erations asynchronously.

map is equivalent to map in functional program-
ming where it takes a function f and a list, and ap-
plies this function to every element in the list. This
is shown below in Haskell:

map f [] = []
map f (x:xs) = (f x):(map f xs)

Map in Martlet encompasses a list of statements as
shown in the example below. Here function calls
f1 and f2 are implicitly joined in a sequential
composition to create the function represented by
f in the Haskell definition. The list is created by
distributed values A and B. While in its unexpanded
abstract form, this example maps onto the abstract
syntax tree also shown below.

map
{
f1(A);
f2(A,B);

}

map seq

f1(A)

f2(A, B)

When this is expanded, it looks at the distributed
data structures it has been passed and creates a copy
of these statements to run independently on each
piece of the distributed data structure as shown in
Figure 3.

Due to the use of an asynchronous statement in
this transformation, no local value that is passed into
the map statement can be written to. However local
values created within the map node can be written
to.



async

seq

f1(A1)

f2(A1, B1)

seq

f1(A2)

f2(A2, B2)

seq

f1(A3)

f2(A3, B3)

Figure 3: The abstract syntax tree for the example
map statement after expand has been called setting
A = [A1, A2, A3] and B = [B1, B2, B3].

foldr is a way of applying a function and an ac-
cumulator value to each element of a list. This is
defined in Haskell as:

foldr f e [] = e
foldr f e (x: xs) = f x

(foldr f e xs)

This means that the elements of a list xs
= [1,2,3,4,5] can be summed by the state-
ment; foldr (+) 0 xs which evaluates to
1+(2+(3+(4+(5+0))))
Foldr statements are constructed from the foldr

keyword followed by a list of one or more statements
which represent f. An example is shown below with
its corresponding abstract syntax tree.

foldr
{

f1(A,C);
f2(B,C);

}

foldr seq

f1(A, C)

f2(B, C)

When this function is expanded this is replaced by
a sequential statement that keeps any non-distributed
arguments constant and calls f repeatedly on each
piece of the distributed arguments as shown in Fig-
ure 4.

seq

seq

f1(A3, C)

f2(B3 , C)

seq

f1(A2, C)

f2(B2 , C)

seq

f1(A1, C)

f2(B1 , C)

Figure 4: The abstract syntax tree for the example
foldr statement after expand has been called setting
A = [A1, A2, A3] and B = [B1, B2, B3].

foldl is the mirror image of foldr so the
Haskell example would now evaluate to
((((0+1)+2)+3)+4)+5
The syntax tree in Martlet is expanded in almost

exactly the same way as foldr. The only difference
is the function calls from the sequential statement
are in reverse order. The only time that there is any
reason to choose between foldl and foldr is when f
is not commutative.

tree is a more complex statement type. It con-
structs a binary tree with a part of the distributed
data structure at each leaf, and the function f at each
node. When executed this is able to take advantage
of the potential for parallel computation. A Haskell
equivalent is:

tree f [x] = x
tree f (x:y:ys) =

f (tree f xs’) (tree f ys’)
where (xs’,ys’) =

split (x:y:ys)

split is not defined here since the shape of the
tree is not part of the specification. It will however
always split the list so that neither is empty.

Unlike the other expandable statements, each
node in a tree takes 2n inputs from n distributed data
structures, and produce n outputs. As there is insuf-
ficient information in the structure to construct the
mappings of values between nodes within the tree,
the syntax requires the arguments that the statements
use to be declared in brackets above the function in



such a way that the additional information is pro-
vided.

Non-distributed constants and processes used in f
are simply denoted as a variable name. The relation-
ship between distributed inputs and the outputs of f
are encoded as (ALeft,ARight)\A->B, where
ALeft and ARight are two arguments drawn from
the distributed input A that f will use as input. The
output will then be placed in B and can be used as an
input from A at the next level in the tree.

Lets consider a function that uses a method sum
passed into the statement as s, a distributed argu-
ment X as input and outputs the result to the non-
distributed argument A. This could be written as:

tree((XL,XR)\X -> A)
{

s(A,XL,XR);
}

tree s(A, XL, XR)

When this is expanded, it uses sequential, asyn-
chronous and temporary variables in order to con-
struct the tree as shown in Figure 5. Because of
the use of asynchronous statements any value that
is written to must be passed in as either an input or
an output.

5.3 Example

If the Martlet program to calculate averages from
the example in Figure 1 where submitted it would
produce the abstract syntax tree shown in Figure 6.
This could then be expanded using the techniques
show here to produce a concrete functions for differ-
ent concrete datasets.

6 Conclusions

In this paper we have introduced a language and pro-
gramming model that use functional constructs and
two classes of data structure. Using these constructs
it is able to abstract from users the complexity of
creating parallel processes over distributed data and
computing resources. This allows the user simply to
think about the functions they want to perform and
does not require them to worry about the implemen-
tation details.

Using this language, it has been possible to de-
scribe a wide range of algorithms, including algo-
rithms for performing Singular Value Decomposi-
tion, North Atlantic Oscillation and Least Squares.

To allow the evaluation of this language and pro-
gramming model, a supporting middleware has been
constructed [10] using web services supported by

Apache Axis [3] and Jakarta Tomcat [4]. As we have
found no projects with a similar approach aimed at
a similar style of environment, a direct comparison
with other projects has not been possible. This work
is, however, currently being tested with data from the
ClimatePrediction.net project with favorable results
and will hopefully be deployed on all our servers
over the course of the next year allowing testing on
a huge data set.

At runtime, when concrete values have been pro-
vided, it is possible to convert abstract functions into
concrete functions. The concrete functions then con-
tain no operations that are not supported by a range
of other languages. As such, it is envisaged that the
middleware will in time be cut back to a layer that
can sit on top of existing work-flow engines, pro-
viding extended functionality to a wide range of dis-
tributed computing applications. This capability will
be provided through the construction of a set of JIT
compilers for different work-flow languages. Such
compliers need only take a standard XML output
produced at runtime and performing a transforma-
tion to produce the language of choice. This would
then allow a layer supporting the construction of dis-
tributed data structures and the submission of ab-
stract functions to be placed on top of a wide range
of existing resources with minimal effort, extend-
ing their use without affecting their existing func-
tionality. Such a middleware would dramatically in-
crease the number of projects that Martlet is appli-
cable to. Hopefully the ideas in Martlet will then
be absorbed into the next generation of work-flow
languages. This will allow both existing and future
languages to deal with a type of problem that thus far
has not been addressed, but will become ever more
common as we generate ever-larger data sets.
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