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Abstract. In transactional memory, conflicts between two concurrently
executing transactions reduce performance, reduce scalability, and may
lead to aborts, which waste computing resources. Ideally, concurrent ex-
ecution of transactions would be ordered to minimise conflicts, but such
an ordering is often complex, or unfeasible, to obtain. This paper iden-
tifies a pattern, called repeat conflicts, that can be a source of conflicts,
and presents a novel technique, called steal-on-abort, to reduce the num-
ber of conflicts caused by repeat conflicts. Steal-on-abort operates at
runtime, and requires no application-specific information or offline pre-
processing. Evaluation using a sorted linked list, and STAMP-vacation
with different contention managers show steal-on-abort to be highly ef-
fective at reducing repeat conflicts, which leads to a range of performance
improvements.

1 Introduction

Recent progress in multi-core processor architectures, coupled with challenges in
advancing uniprocessor designs, has led to mainstream processor manufacturers
adopting multi-core designs. Modest projections suggest hundred-core proces-
sors to be common within a decade. Although multi-core has re-invigorated the
processor manufacturing industry, it has raised a difficult challenge for software
development.

The execution time of software has improved on successive generations of
uniprocessors thanks to the increasing clock frequency, and complex strategies
designed to take advantage of instruction-level parallelism. However, on future
multi-core processors this ‘free’ improvement will not materialise unless the soft-
ware is multi-threaded, i.e., parallelised, and thus able to take advantage of the
increasing number of cores. Furthermore, the number of cores predicted in future
processors suggests software will need to scale to non-trivial levels.

Parallel (or concurrent) programming using explicit locking to ensure safe ac-
cess to shared data has been the domain of experts, and is well-known for being
challenging to build robust and correct software. Typical problems include data
races, deadlock, livelock, priority inversion, and convoying. Parallel applications
also usually take longer to build, and correcting defects is complicated by the
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difficulty in reproducing errors. However, the move to multi-cores requires adop-
tion of parallel programming by the majority of programmers, not just experts,
and thus simplifying it has become an important challenge.

Transactional Memory (TM) is a new parallel programming model that seeks
to reduce programming effort, while maintaining or improving execution perfor-
mance, compared to explicit locking. The need to simplify parallel programming,
as indicated earlier, has led to a surge in TM research. In TM, programmers are
required to mark those blocks of code that access shared data as transactions,
and safe access to shared data by concurrently executing transactions is ensured
implicitly (i.e., invisibly to the programmer) by a TM system. The TM system
searches for conflicts by comparing each executing transaction’s data accesses
against that of all other concurrently executing transactions, also known as con-

flict detection or validation. If conflicting data accesses are detected between
any two transactions, one of them is aborted, and usually restarted immediately.
Selecting the transaction to abort, or conflict resolution, is based upon a policy,
typically referred to as a contention management policy. If a transaction com-
pletes execution without aborting, then it commits, which makes its changes to
shared data visible to the whole program.

In order to achieve high scalability on multi-core architectures, it is impor-
tant that the number of conflicts is kept to a minimum, as conflicts require the
execution of conflict resolution code, which reduces effective parallelism by devi-
ating execution from application code. Effective parallelism is further reduced by
the grace period offered by some contention management policies to the victim
transaction of a conflict, during which the non-victim transaction must wait.
Finally, if the conflict leads to an abort, then not only is effective parallelism
reduced by restarting the aborted transaction and repeating work performed
previously, but computing resources used in executing the aborted transaction
are also wasted. This is made worse in certain (update-in-place) TM implemen-
tations, which use further computing resources in rolling back any updates made
by the aborted transaction.

The order in which transactions are executed concurrently can affect the
number of conflicts that occur, and given complete information a priori it may be
possible to determine an optimal order (or schedule) that minimises the number
of conflicts. However, in practice this is difficult to achieve because complete
information is not available for many programs, e.g., due to dynamic transaction
creation, or because it is impractical to obtain. Additionally, even if complete
information is available, the search space for computing the optimal order of
transactions is likely to be unfeasibly large.

This paper presents a novel technique called steal-on-abort, which aims to im-
prove transaction ordering at runtime. As mentioned earlier, when a transaction
is aborted it is typically restarted immediately. However, due to close tempo-
ral locality, the immediately restarted transaction may repeat its conflict with
the original transaction, which may lead to another aborted transaction. Steal-
on-abort targets such a scenario: a transaction that is aborted is not restarted
immediately, but instead ‘stolen’ by the non-aborted transaction, and queued
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behind it, thus preventing the two transactions from conflicting again. Two key
advantages of steal-on-abort are that it requires no application-specific infor-
mation or offline pre-processing, and it is only executed when an abort occurs,
thus adding no overhead when transactions are largely committing. Even when
aborts do occur in large numbers, the evaluation suggests that the overhead of
steal-on-abort is low.

Steal-on-abort is evaluated using DSTM2 [1], a Software TM (STM) im-
plementation, that has been modified to employ random work stealing [2] to
execute transactions. Steal-on-abort is evaluated with different contention man-
agers using two widely used benchmarks in TM: a sorted linked list [3], and
STAMP-vacation [4]. The evaluation reveals hundred-fold performance improve-
ments for some contention managers, while negligible performance difference for
others.

The remainder of this paper is organised as follows: Section 2 introduces steal-
on-abort, and Section 4 its implementation in DSTM2, along with strategies for
tuning it to particular workload characteristics. Section 6 evaluates steal-on-
abort’s performance in the benchmarks mentioned earlier. Section 7 discusses
recent related work. Finally, Section 8 completes the paper with a summary.

2 Steal-on-abort

In all TM implementations, conflict resolution is invoked when a data access
conflict between two concurrently executing transactions is detected. Conflict
resolution may give the victim transaction a grace period before aborting it, but
once a transaction is aborted then typically it is restarted immediately. However,
we observed that the restarted transaction may conflict with the same opponent
transaction again, which we refer to as a repeat conflict, and lead to another
abort.

In general it is difficult to predict the first conflict between any two transac-
tions, but once a conflict between two transactions is observed, it is logical not
to execute them concurrently again (or, at least, not to execute them concur-
rently unless the repeat conflict is avoided). Steal-on-abort takes advantage of
this idea, and consists of three parts. First, it does not restart the aborted trans-
action immediately; the opponent transaction ‘steals’ the aborted transaction,
and hides it. This dynamic reordering avoids repeat conflicts from occurring,
since the two transactions are prevented from executing concurrently. Secondly,
the thread whose transaction has been stolen acquires a new transaction to ex-
ecute. The new transaction has an unknown likelihood of conflict, whereas the
stolen transaction has a higher likelihood of conflicting due to the chance of a
repeat conflict. If the new transaction commits, then throughput may improve.
Thirdly, when a transaction commits it releases all the transactions it has stolen.

Since steal-on-abort relies on removing repeat conflicts to improve perfor-
mance, the more repeat conflicts that occur in an application, the more effective
steal-on-abort is likely to be. In applications that have a high number of unique
aborts, i.e., few of them are repeat conflicts, steal-on-abort may be less effective
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at improving results. It is worth noting that steal-on-abort, like most contention
management policies, reorders transactions with the aim of improving perfor-
mance, which has implications for fairness. The effect on fairness is dependent
on application characteristics, and it is beyond the scope of this paper to provide
a complete analysis of steal-on-abort’s impact.

Steal-on-abort’s design complements the current function of conflict resolu-
tion. As the name suggests, steal-on-abort will only reorder transactions when
the call to abort a transaction is made, not when a conflict is detected. Existing
and future contention management policies can be used to respond to conflicts as
usual, and steal-on-abort will only come into play when a transaction is aborted.
This maintains the flexibility of using different contention management policies,
while still attempting to reduce repeat conflicts.

3 Effectiveness and Applicability

However, the contention management policy can influence the performance of
steal-on-abort. For example, steal-on-abort’s benefit could be reduced when us-
ing the Greedy contention management policy [5], which in some cases causes
the victim transaction to wait indefinitely for a resumption notification from its
opponent. Since the victim is not aborted, steal-on-abort is never invoked. Con-
versely, steal-on-abort could have a greater impact when contention management
policies such as Aggressive, which immediately aborts the opponent transaction,
are used.

The benefit of steal-on-abort also changes with the method of updating
shared data employed. Update-in-place requires an aborted transaction to roll
back original values to shared objects as part of its abort operation. Steal-on-
abort is likely to provide better throughput with update-in-place, than deferred-
update, since steal-on-abort may reduce the number of aborts that occur, and
thus the number of times roll back is performed. Deferred-update typically has
a much faster abort operation, and consequently may see a lesser benefit from
steal-on-abort.

Visibility of accesses also affect the benefit of steal-on-abort. The detection
of repeat conflicts requires one transaction be active while another concurrently
executing (active) transaction conflicts with it, and aborts, multiple times. Such
a scenario can only occur when visible accesses are used: either read, write, or
both, with both giving greater likelihood of detecting repeat conflicts. Steal-
on-abort is not applicable if both reads and writes are invisible, as conflicts
cannot be detected between active transactions, which prevents repeat conflicts
from occurring. Furthermore, the quicker the accesses are detected, the higher
the chance of repeat conflicts. As a result, steal-on-abort is likely to be most
effective when visible reads and visible writes are used in conjunction with eager
validation (i.e., checking for conflicts upon each data access, as opposed to lazy
validation, which checks for conflicts after executing the transaction, not as each
access is performed). This should not come as a surprise; steal-on-abort attempts
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to reduce conflicts, and a configuration with visible accesses and eager validation
is most suited to the quick detection of conflicts.

4 Implementation in DSTM2

This section details the concrete implementation of steal-on-abort in DSTM2,
and then goes on to explain the two design variants of steal-on-abort evaluated
in this paper. DSTM2, like most other STM implementations [6–8], creates a
number of threads that concurrently execute transactions, and is extended to
support the three key parts of steal-on-abort. First, each thread needs to store
transactions stolen by its currently executing transaction. Second, each thread
needs to acquire a new transaction if its current transaction is stolen. Finally,
a safe mechanism for stealing active transactions is required. We implemented
a thread pool framework to support the first two parts, and a lightweight syn-
chronisation mechanism to implement the third part.

4.1 Thread Pool Framework

DSTM2, like other STMs [6–8], creates a number of threads that concurrently ex-
ecute transactions. This is extended into a thread pool model where application
threads submit transactional jobs to a thread pool that executes transactions.
The thread pool model simplifies the task of stealing and releasing transactions,
and for acquiring new transactions when a thread’s transaction is stolen.

The thread pool comprises of worker threads, and Figure 1 illustrates that
each worker thread has its own work queue holding transactional jobs, in the
form of a deque (double-ended queue) named mainDeque. A transactional job is
simply an object that holds parameters needed to execute a transaction. In re-
mainder of this paper we use the terms transaction and job, and the terms deque
and queue, interchangeably. Per-thread deques are used as a single global deque
may result in high synchronisation overhead. Worker threads acquire jobs from
the head of their own queue, and place it in the thread-local variable currentJob,
to execute. Worker threads acquire a job when their current job commits, or is
stolen through steal-on-abort. The benchmarks used in this paper were modi-
fied to load jobs onto each thread’s mainDeque in a round-robin manner during
benchmark initialisation, which is excluded from the execution times reported.

In order to keep threads busy, randomised work stealing [2] is used for load
balancing. Figure 2 illustrates work stealing in action. If a thread’s deque is
empty, then work stealing attempts to steal a job from the tail of another ran-
domly selected thread’s deque. If a job is not available in the other thread’s
deque, then yet another thread is randomly selected. In any one attempt to steal
jobs from other threads, the threads from which theft has already been attempted
are recorded so that random selection is performed only over the remaining
threads. If a job is obtained through work stealing, then it is stored in the thread
variable currentJob, and not in any deque. Since each thread’s deque can be ac-
cessed by multiple threads concurrently, it needs to be thread-safe. As DSTM2 is
Java-based, the deque used is a java.util.concurrent.LinkedBlockingDeque.
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Fig. 1. DSTM2 is modified to implement per-thread deques that store transactional
jobs. Threads take jobs from the head of their own deque.

4.2 Steal Operation

To implement the steal operation, a second private deque, named stolenDeque,
is added to each worker thread to hold jobs stolen by an executing transaction.
Once a transaction commits, the jobs in the stolenDeque are moved to the
mainDeque. The second deque is necessary to hide stolen jobs otherwise they
may be taken through randomised work stealing, and executed concurrently by
other threads while the current transaction is still active, which re-introduces
the possibility of a repeat conflict.

Figure 3 illustrates steal-on-abort in action. Steal-on-abort is explained from
the perspectives of the victim thread (the one from which the aborted transaction
is stolen) and the stealing thread. Each thread has an additional flag, called
stolen. If a victim thread detects its transaction has been aborted, it waits for
its stolen flag to be set, following which it first attempts to acquire a new job,
and then clears the stolen flag. The victim thread must wait on the stolen

flag, otherwise access to the variable currentJob may be unsafe.
The stealing thread operates as follows. In DSTM2, a transaction is aborted

by using Compare-And-Swap (CAS) to change its status flag from ACTIVE to
ABORTED. If the stealing thread’s call to abort the victim thread’s transaction
in this manner is successful, it proceeds to steal the victim thread’s job that is
stored in its currentJob variable, and places the job in the stealing thread’s
stolenDeque. After the job is taken, the victim thread’s stolen flag is set.
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Fig. 2. If a thread’s deque is empty, it steals work from the tail of another, randomly
selected, thread’s deque.

Fig. 3. Steal-on-abort in action. Thread A is executing a transaction based on Job
2, and Thread B is executing a transaction based on Job 6. In step 1, thread A’s
transaction conflicts with, and aborts, Thread B’s transaction. In step 2, thread A
steals thread B’s job, and places it in its own stolenDeque. In step 3, after thread A
finishes stealing, thread B gets a new job, and starts executing it immediately.
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4.3 Semantic Considerations

There are two important changes to consider when using a thread pool to execute
transactions. First, in the implementation described above, application threads
submit transactional jobs to the thread pool to be executed asynchronously,
rather than executing transactions directly. This requires a trivial change to the
application code.

Secondly, application threads that previously executed a transactional code
block, and then executed code that depended on the transactional code block
(e.g. code that uses a return value obtained from executing the transactional
code block), are not easily supported using asynchronous job execution. This
dependency can be accommodated by using synchronous job execution; for ex-
ample, the application thread could wait on a condition variable, and be notified
when the submitted transactional job has committed. Additionally, the trans-
actional job object could be used to store a return value from the committed
transaction that may be required by the application thread’s dependent code.
Such synchronous job execution requires a simple modification to the implemen-
tation described already. However, the use of asynchronous job execution, where
possible, is preferred as it permits greater parallelism. Solely using synchronous
job execution limits the extent to which worker threads may execute simulta-
neously, as the maximum number of jobs would be limited to the number of
application threads.

4.4 Eliminating Repeat Conflicts

The implementation described does not completely eliminate repeat conflicts.
As transactions are abort-stolen by the currently executing transaction, they
are placed in a steal queue associated with the thread in which the aborter is
executing. When the transaction being executed by a thread commits, all the
transactions in the thread’s steal queue are moved to the thread’s work queue.
However, there is still a chance of repeat conflict. Imagine transaction T1 and
T2 conflict, and T2 is abort-stolen by (and serialised behind) T1. Transaction
T3 then conflicts with transaction T1, and abort-steals it. Now transactions T1
and T2 are in the steal queues of different threads (so T2 is no longer serialised
behind T1), and could possibly conflict again.

A second approach is for per-transaction steal queues. When a transaction
abort-steals another, it adds it to its own internal steal queue. Once a transaction
commits, it releases its abort-stolen transactions from its internal steal queue into
the work queue of the thread in which it was executing. This approach guarantees
repeat conflicts do not occur, since an abort-stolen transaction will never be
made visible until its stealer commits. This approach has been investigated, but
is not presented in this paper, as the former approach is sufficiently efficient at
reducing repeat conflicts for the evaluation performed.
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5 Steal-on-abort Strategies

Two steal-on-abort strategies that differ in when they choose to re-execute a
stolen job are described and evaluated. When an aborted job is stolen, and
subsequently moved from the stolenDeque to the mainDeque, it can either be
placed at the head of the mainDeque, or the tail.

Steal-Tail If jobs are placed at the tail, the thread will execute the stolen jobs
last, although the job may be executed earlier by another thread due to work
stealing. As an example of where Steal-Tail may benefit, the round-robin allo-
cation of jobs means jobs that were created close in time will likely be executed
close in time. For benchmarks with a close relationship between a job’s creation
time and its data accesses, executing a stolen job right after the current job may
lead to conflicts with other transactions, therefore placing stolen jobs at the tail
of the deque may reduce conflicts.

Steal-Head If jobs are placed at the head, the thread will execute the stolen jobs
first. For benchmarks that do not show the temporal locality described above,
placing jobs at the head of the deque may take advantage of cache locality
to improve performance. For example, data accessed by transaction A, which
aborts and steals transaction B’s job, is likely to have at least one data element
(the data element that caused a conflict between the two transactions), in the
processor’s local cache.

6 Evaluation

This section presents highlights the potential performance benefit of using steal-
on-abort, and analyses how such benefits are achieved, and the overhead of using
steal-on-abort. As mentioned already, this paper only evaluates the per-thread
steal queues implementation. In this section, ‘Normal’ refers to execution without
steal-on-abort, Steal-Head refers to steal-on-abort execution where stolen jobs
are moved to the head of the mainDeque, and Steal-Tail refers to execution where
stolen jobs are moved to the tail. All execution schemes utilise the thread pool
framework described earlier.

6.1 Platform

The platform used to execute benchmarks is a 4 x dual-core (8-core) Opteron
880 2.4GHz system with 16GB RAM, running openSUSE 10.1, and using Sun
Hotspot Java VM 1.6 64-bit with the flags -Xms4096m -Xmx14000m. Benchmarks
are executed using DSTM2 set to using the shadow factory, eager validation,
and visible accesses. Benchmarks are executed with 1, 2, 4, and 8 threads, each
run is repeated 6 times. Mean results are reported with ±1 standard deviation
error bars.
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6.2 Benchmarks

The benchmarks used to evaluate steal-on-abort1 are linked list [3], and STAMP-
vacation [4]. Hereafter, they are referred to as List, and Vacation, respectively.
List is a microbenchmark that transactionally inserts and removes random num-
bers from a sorted linked list. Vacation is a non-trivial transactional benchmark
from the STAMP suite (version 0.9.5) ported to DSTM2 that simulates a travel
booking database with three tables to hold bookings for flights, hotels, and cars.
Each transaction simulates a customer making several bookings, and thus sev-
eral modifications to the database. The number of threads used represents the
number of concurrent customers.

Evaluating steal-on-abort requires the benchmarks to generate large amounts
of transactional conflicts, and the method of achieving high contention for each
benchmark is described. List is configured to perform 20,000 randomly selected
insert and delete transactions with equal probability. Additionally, after execut-
ing its code block, each transaction waits for a short delay, which is randomly
selected using a Gaussian distribution with a standard deviation of 1.0, and a
mean duration of 3.2ms. The execution time of the average committed transac-
tion in List is 6ms before the delays were added. The delays are used to simulate
transactions that perform extra computation while accessing the data structures.
This also increases the number of repeat conflicts. To induce high contention in
Vacation, it is configured to build a database of 128 relations per table, and
execute 1,024,768 transactions, each of which performs 50 modifications to the
database. The small size of the table, and the large number of modifications per
transaction, results in high contention.

6.3 Contention Managers

A contention manager (CM) is invoked by a transaction that detects a conflict
with another (opponent) transaction. In this evaluation, three CMs are used to
provide coverage of the published CM policies: Aggressive [3], Polka [9], and Pri-
ority. Aggressive immediately aborts the opponent transaction. Polka, the pub-
lished best CM, gives the opponent transaction time to commit, before aborting
it. Polka waits exponentially increasing amounts of time for a dynamic number
of iterations (equal to the difference in the number of read accesses performed
by the two transactions). The parameters for Polka are based on the defaults [9].
Priority immediately aborts the younger of the two transactions based on their
timestamps.

Steal-on-abort should be most effective with Aggressive and Priority, as they
immediately make a call to abort the victim transaction. Conversely, steal-on-
abort should be less effective with Polka, as it chooses to give the victim trans-
action a grace period before aborting it. In scenarios with high contention, Ag-
gressive and Polka are more likely to cause transactions to temporarily livelock

1 Reviewer’s note: The SHCMP paper also used a red-black tree benchmark. This
has been omitted to make space for further analysis of steal-on-abort’s results with
linked list and STAMP-vacation.
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as they always choose to abort the opponent transaction. Priority will not live-
lock transactions since it is always selects the same transaction to abort (the
one with the younger timestamp). Aggressive and Polka abort the opponent to
provide non-blocking progress guarantees by preventing a transaction becoming
indefinitely blocked behind a zombie opponent transaction. Priority does not
provide such a guarantee.

6.4 Throughput
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Fig. 4. Throughput results. Higher is better.

Figure 4 shows the transaction throughput results for List and Vacation.
Looking at the Normal results (i.e., without steal-on-abort), the Aggressive CM
gives the worst performance in both benchmarks, as the high contention sce-
narios cause the transactions to livelock due to Aggressive’s policy to abort the
opponent. The Polka CM fares better due to its grace period allowing opponents
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to commit, but the policy to abort the opponent still causes transactions to
livelock. Priority gives the best performance in both benchmarks, as it does not
necessarily always abort the opponent, and thus avoids transactions livelocking.

Looking at the steal-on-abort results (i.e., both Steal-Tail and Steal-Head),
Aggressive and Polka benefit significantly, while Priority sees no benefit of using
steal-on-abort, with performance degrading slightly at eight threads in List.
As explained earlier, Aggressive and Polka may livelock conflicting transactions
through repeated conflict and abort. This raises the number of repeat conflicts
that occur, which results in better throughput with steal-on-abort. Since Priority
does not suffer from such livelock, it has fewer repeat conflicts, and thus benefits
less from steal-on-abort. However, as mentioned earlier, there is a trade off in
using Priority: it provides weaker non-blocking progress guarantee compared to
Aggressive and Polka.

Drilling down further, Aggressive sees Steal-Tail give higher performance
than Steal-Head in both List and Vacation. Steal-Head’s large standard devia-
tions in List with Aggressive, and both Steal-Head’s and Steal-Tail’s in Vacation
at eight threads, are due to (data not shown here) execution either completing
in a short duration, or approximately 5 times greater duration than the short
duration. Comparing profiling data from the high and low throughput runs re-
veals that the low throughput runs are caused by the throughput falling almost
instantaneously early in the execution, and then failing to recover. Although the
reason for the drop in throughput is not known, it indicates an opportunity to
improve steal-on-abort to avoid, or resolve, the condition that caused the drop
in throughput, and achieve high throughput with greater consistency.

Polka sees Steal-Head give marginally higher performance than Steal-Tail in
List, and at eight threads in Vacation, in contrast to the results with Aggressive.
This contrast suggests that the steal-on-abort strategies are not only more suited
for certain application traits, but also the CM used. It is also worth noting that
Steal-Head improves Polka’s performance such that it is within 3% of Priority’s
performance. Thus, it is possible to have both the performance of Priority, and
the non-blocking progress guarantee of Polka.

6.5 Wasted Work

The transactional metric wasted work [10] is the proportion of execution time
spent in executing aborted transactions, and is useful in measuring the cost of
aborted transactions in terms of computing resources. It is used here to see if
steal-on-abort reduces this cost.

Figure 5 shows wasted work results. No transactional aborts occur in sin-
gle thread execution since there are no other concurrent transactions to cause
conflicts, and thus all single thread execution results have no wasted work. The
results show the benchmarks’ high contention parameters result in Aggressive
and Polka spending nearly all of their execution time in aborted transactions
(except List with Polka). This supports the suggestion that transactions are
livelocked. There is negligible impact on wasted work of using steal-on-abort
with Priority, which suggests a lack of repeat conflicts.
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Fig. 5. Proportion of total execution time spent in aborted transactions (wasted work).
Lower is better.
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With Aggressive, Steal-Tail reduces wasted work by larger margins than
Steal-Head in both benchmarks. Steal-Tail reduces wasted work by 30% to 70%
in List, and 15% to 80% in Vacation. With Polka, Steal-Head reduces wasted by
a slightly larger margin than Steal-Tail in both benchmarks. Steal-Head reduces
wasted work by 57% to 87% in List, although the reduction decreases with the
number of threads, and 95% to 99% in Vacation. These results reflect the trends
seen in the throughput results seen earlier. Also, we mentioned earlier that steal-
on-abort improves Polka’s performance to within 3% of Priority’s, and this is
reflected in the similarity in wasted work between Polka with steal-on-abort, and
Priority.

6.6 Aborts per Commit (APC)
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Fig. 6. APC results. Lower is better.

The aborts per commit ratio (APC) is the number of aborts divided by the
number of commits. It is another indicator of the efficiency with which computing
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resources are utilised, but it is not as useful as wasted work because it ignores
the durations of the aborted and committed transactions. We investigate it here
because steal-on-abort should reduce APC in benchmarks that exhibit repeat
conflicts.

Figure 6-presents APC results. Using Aggressive, on average steal-on-abort
has a low APC compared to Normal, but Normal exhibits significant variance in
APC between runs of the same benchmark configuration. Polka’s results paint
a similar picture, except that the APC is significantly lower, and consistently
falls as the number of threads increases. Polka’s lower APC is due to the grace
time that Polka offers an opponent transaction, which delays the call to perform
an abort, and thus reduces the total number of aborts. Given the performance
improvements of steal-on-abort for Aggressive and Polka, it is plausible that the
high APC value with Normal is due to a large number of repeat conflicts.

Priority has a very low APC compared to Aggressive and Polka, attributable
to the lack of livelock. Steal-on-abort reduces APC compared to Normal, but this
does not correlate with the wasted work or throughput results shown in earlier
sections. This implies that, on average, transactions make greater progress with
steal-on-abort than Normal, but still get aborted eventually.

6.7 Repeat Conflicts
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This section examines the amount of time spent in repeat conflicts. Figure
7 shows histograms of the distribution of time spent in aborted transactions
(wasted work) for a given number of conflicts with a particular transaction. As
an example, consider transaction T1 aborts seven times before committing, thus
it has seven lots of wasted work. Four aborts occur through conflict with trans-
action T2, two with T3, and one with T4. The time wasted in the executions
of T1 that conflicted with, and were aborted by, T2 are added to column ’4’,
the two lots associated with T3 are added to column ’2’, and the one lot associ-
ated with T4 is added to column ’1’. For brevity, only the eight thread results
are discussed, although better performance improvements were observed with
fewer threads. Furthermore, results with Aggressive are not presented as there
is significant variance in the repeat conflict results from one run to another.

Since steal-on-abort should target repeat conflicts it should reduce the amount
of time in all but the first column. For Polka, this is confirmed by the results:
Steal-Tail reduces time in the remaining columns (repeat conflicts) by 99% in
List, and 99% in Vacation. Furthermore, the results show that repeat conflicts
represent a significant proportion of the total wasted work: 65% in List, and 96%
in Vacation. Thus, steal-on-abort is highly effective at reducing the number of
repeat conflicts, even they occur in large proportions. In contrast, for Priority
the number of repeat conflicts is quite low, which confirms previous suspicions,
and explains why steal-on-abort did not improve performance with Priority as
significantly as with Aggressive and Polka. Also, although there are differences
in repeat conflict distribution results between Normal and steal-on-abort for
Priority, recall that the difference in wasted work between them was minimal.

This raises the obvious question of whether steal-on-abort could benefit ap-
plications that use Priority since, so far, repeat conflicts have arisen due to the
policies of Aggressive and Polka livelocking conflicting transactions. The answer
is yes, steal-on-abort could benefit applications that use Priority. Recall Priority
aborts transactions that are younger. Thus, a younger transaction can repeatedly
conflict and abort against an older transaction. The longer the older transaction
remains active, the more repeat conflicts and aborts possible. In such a case,
steal-on-abort may improve performance with Priority when the aborted trans-
action is stolen, and then replaced with a new transaction from the work queue,
which may or may not commit, and thus improve performance. This strategy
was not useful in these benchmarks as they were configured to have generally
high contention, and thus all transactions, including the new transaction from
the work queue, had a high likelihood of conflicting with some other transaction,
and the lower likelihood of a repeat conflict became insignificant.

It is worth noting that steal-on-abort increases single conflict (non-repeat)
wasted work in most cases. In Polka this is because repeat conflicts are being
reduced to single conflicts so their wasted work is allocated to the single conflict
column. However, the increase in single conflict wasted work is less than the
decrease in repeat conflict wasted work because steal-on-abort prevents repeat
conflicts from occurring, which leads to the reduction in wasted work shown
earlier. In Priority the increase in single conflict wasted work is also due to
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steal-on-abort attempting a new transaction on abort, whereas Priority may
attempt the same transaction repeatedly (if it is younger than its opponent).

6.8 Steal-on-abort Overhead

Steal-on-abort consists of two short operations, and we have not tried to measure
the overhead of these directly as the overhead of the measurement code is likely to
distort the results. Thus, we attempt to measure the overhead of steal-on-abort
indirectly. The first source of overhead is performing the steal operation. Figure
8 shows average committed transaction durations for each benchmark, which
includes the overhead of the steal operation. Only results for Polka are shown,
as its high number aborts suggests steal-on-abort is invoked a large number of
times. Taking the standard deviations into account, generally the overhead of
stealing transactions seems negligible. Furthermore, the transactions in Vacation
are significantly shorter than those in List, yet stealing transactions does not add
noticeable overhead.

The reductions in average committed transaction durations with steal-on-
abort are due to Polka’s policy. Polka causes transactions to wait for their op-
ponents, which increases the average time it takes to execute a transaction that
eventually commits if it encounters conflicts. Since steal-on-abort reduced the
amount of time spent in repeat conflicts, it should also have reduced the total
number of conflicts, which in turn should have reduced the average committed
transaction’s duration.
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Fig. 8. Average Committed Transaction Duration (microseconds). Lower is better.

The other major source of steal-on-abort overhead is due to moving transac-
tions in the stolenDeque to the mainDeque after the local transaction commits.
The in-transaction metric (InTx), which is the proportion of execution time spent
in executing transactions, is used to measure this overhead. For the benchmarks
used in this evaluation there are two major sources of out-of-transaction execu-
tion: work stealing, and moving transactions between deques after a transaction
commits. Since Normal execution also utilises work stealing, the difference be-
tween Normal and steal-on-abort execution should approximately represent the
cost of moving jobs between the deques.
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Fig. 9. Proportion of total execution time spent within transactions. Higher is better.

Figure 9 shows the InTx results, again only with Polka. It identifies that
there is negligible overhead in moving jobs between deques and work stealing in
List. However, in Vacation the overhead becomes visible, with most strategies
observing an overhead of 3%. This equates to an average overhead of moving
jobs of 2.8 microseconds per transaction. However, this cost is related to the
number of jobs moved between deques, and with Steal-Tail this averages to 2.2
jobs per transaction.

7 Related Work

Limited research has been carried out in transaction re-ordering for improving
TM performance. Bai et al. [11] introduced a key-based approach that colocates
transactions based on their calculated keys. Although their approach improves
performance, it requires an application-specific formula to calculate keys for
transactions. Furthermore, performance is based on the effectiveness of the for-
mula, and it may be difficult to generate such formulae for some applications.
In contrast, our approach does not require any application-specific information.

Dolev et al. recently published work similar to steal-on-abort called CAR-
STM [12], which also attempts to reorder transactions to minimise repeat con-
flicts. CAR-STM uses a thread pool with multiple work queues to execute trans-
actions. Application threads submit transactional jobs to the thread pool, and
then suspend until the transaction is committed by one of the thread pool’s
worker threads (i.e., use synchronous job execution). CAR-STM consists of two
parts: collision avoidance, and collision resolution.

Collision avoidance is an interface to support (optional) application-supplied
conflict prediction routines. If supplied, these routines are used to queue transac-
tions that are likely to conflict into the same work queue, rather than using round
robin distribution. This concept is a simpler version of the adaptive key-based
scheduler of Bai et al. [11] described above.

Collision resolution is similar to steal-on-abort; transactions that conflict
are queued behind one another. CAR-STM also describes the per-thread and
per-transaction steal queues. However they do not explore the design space as
thoroughly; they do not attempt to support existing contention management
policies, and they do not investigate stealing strategies such as releasing stolen
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transactional jobs to the head or tail of a work queue. Furthermore, CAR-STM
supports only synchronous job execution, and does not support work stealing,
thus threads can be left idle, which reduces its performance potential. The thread
pool implementation described in this paper recognises that not all scenarios
require the application thread to wait for the transaction to complete, and allows
asynchronous job execution, which can improve performance by increasing the
number of jobs available for execution through work stealing, and by reducing the
synchronisation overhead between application threads and thread pool worker
threads.

8 Summary

This paper has presented an evaluation of a new runtime approach, called steal-
on-abort, that dynamically re-orders transactions with the aim of reducing the
number of aborted transactions caused by repeat conflicts. Steal-on-abort re-
quires no application specific information or offline pre-processing. Two different
steal-on-abort strategies were introduced that differed in either executing stolen
transactions immediately, or executing them last.

Steal-on-abort was evaluated against two widely used benchmarks in TM:
a sorted linked list microbenchmark, and STAMP-vacation, a non-trivial TM
benchmark. Performance improvements were observed when using the Aggres-
sive and Polka CM policies, and Polka is the published best CM. Further analysis
showed steal-on-abort improved their performance by eliminating repeat con-
flicts, and also showed that steal-on-abort is highly effective at removing repeat
conflicts, even when they occur in significant proportions.

However, no benefit was observed with the Priority CM policy, and Priority
provided the best non-steal-on-abort performance in the benchmarks used. Pri-
ority’s policy provides weaker non-blocking progress guarantees than Aggressive
and Polka, which allowed it to avoid livelocks they encountered. This reduced
the number of repeat conflicts with Priority, and thus also the benefit of steal-
on-abort. This introduces a trade off when selecting CM policies: high perfor-
mance and weaker progress guarantees, or vice versa. However, steal-on-abort
eliminated this trade off as it improved Polka’s performance to within 3% of
Priority’s performance, and combined high performance, and superior progress
guarantees.
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