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Abstract—In Transactional Memory (TM), contention man-  of eight well-known CMs using Lee’s routing algorithm [7],
agement is the process of selecting which transaction should[g], and a port of the STAMP benchmark suite [9]. Our
be aborted when a data access conflict arises. In this paper, investigation reveals several interesting results.

the performance of published contention managers (CMs) is re- . . .
investigated usingcomplex benchmarks recently published in the The most important result is that Polka, the pUbl'Shed best-
literature. performing CM, suffers severe performance degradatiomwhe
Our results redefine the CM performance hierarchy. Greedy even a moderate (22%) proportion of executed transactions
and Priority are found to give the best performance overall. Polka abort. This trend extends to other delay-based CMs investi-
is still competitive, but by no means best performing as previously gated. Overall, Greedy and Priority provide the best perfor

published, and in some cases degrading performance by orders
of magnitude. In the worst example, execution of a benchmark mance, although Greedy offers stronger progress guasantee

completes in 6.5 seconds with Priority, yet fails to complete even ~ The paper is organised as _f0”0WS3 Section Il describes
after 20 minutes with Polka. Analysis of the benchmark found the CMs, and Section Il describes the complex benchmarks

it aborted only 22% of all transactions, spread consistently over ysed in the evaluation. Section IV presents the evaluatind,
the duration of its execution. Section V further investigates the effect of changing Pslka

More generally, all delay-based CMs, which pause a transaction . . .
for some finite duration upon conflict, are found to be unsuitable parameters on its performance. Section VI describes telate

for the evaluated benchmarks with even moderate amounts of WOrk, and Section VIl summarises the paper.
contention. This has significant implications, given that TM is
primarily aimed at easing concurrent programming for main- Il. CMs

stream software development, where applications are unlikely to A CM is invoked by a transaction (thealling transaction)
be highly optimised to reduce aborts. when it finds itself in conflict with another transaction (the
opponent transaction). The CM decides which transaction
should be aborted, although delay-based CMs wait for a finite
Transactional Memory (TM) [1], [2] promises to easeamount of time to give the opponent transaction a chance to
concurrent programming effort in comparison to fine-graicommit. The CMs investigated are: Aggressive, Polite échll
locking, yet still provide similar scalability and perfoamce. Backoff in this paper), Eruption, Karma, and Kindergarten
TM has seen a rise in research activity as it became cléssm [3], Polka from [4], Greedy from [5], and Priority, a
that scalable software would be essential to take advamtbgenew variant of Timestamp [3]. Of these, the following are
future multi-core technology. delay-based CMs: Backoff, Eruption, Karma, and Polka. Brie
In TM, code blocks that access shared data are defimrgescriptions of each CM follow.
as transactions, similar to how they are guarded by locksBackoff gives the opponent transaction exponentially increas-
in traditional explicit concurrent programming. However, ing amounts of time (delay) to commit, for a fixed number of
contrast to locks, a TM runtime manages conflicting datterations, before aborting it. Default parameters [3]nimum
accesses between the code blocks, and the developer is frdgdy of 24ns, maximum delay o2%°ns, and 22 iterations.
from the responsibility of orchestrating lock acquisitiand Aggressive always aborts the opponent transaction immedi-
release. The TM runtime logs all read and write accesses &iely.
each transaction, and compares them to detect conflicts KArma assigns a transaction dynamic priority equal to the
contention manager (CM) is invoked when two transactionsnumber of reads performed by it. Karma gives the opponent
have conflicting accesses, aaborts one of the transactions. transaction, for a dynamic number of iterations, a fixed amhou
A transactioncommits if it completes executing its code blockof time delay per iteration to commit. If the opponent trans-
and is not aborted due to conflicts, making its writes to sharaction has not completed after all the iterations of delay, i
data globally visible. is aborted. The delay given is 1000ns per iteration, and the
Several CMs have been published [3], [4], [5], [6] that offenumber of iterations is equal to the opponent’s priority usin
a variety of algorithms for selecting the victim transactiothe caller’s priority.
to abort. Since their publication in 2004-5, the CMs havEruption, like Karma, assigns dynamic priorities to transac-
not been re-evaluated in the light of new, complex, TNions based on the number of reads. Conflicting transactions
benchmarks. In this paper, we investigate the performaneéh lower priorities add their priority to their opponent,

I. INTRODUCTION



increasing the opponent’s priority, to allow the opponemt tsearch of the grid from the first point, avoiding any grid sell
‘erupt’ through any conflicts it has, or may have, to complesccupied by previous connections. If a route is found, ‘back
tion. tracking’ writes the route onto the grid. Transaction-lohse
Kindergarten follows a toy sharing analogy, and makes trangeouting requires backtracking to be performed transaatign
actions abort themselves when they conflict with a trangactiAn early release [11] variant (Lee-TM-ter) removes data
the first time, but alternates to aborting the opponent i§it from the transaction’s read set during the breadth-firsicbea
encountered in a conflict a second time, and so on. which reduces false-positive conflicts. Execution is cately
Polka combines Karma and Backoff by extending Karmaarallel, and the amount of parallelism is controlled by the
to give the opponent transaction exponentially increasimgnount of overlap in the connections attempted. The input
amounts of time delay to commit, before aborting the oppdile used has 1506 connections, i.e. transactions to commit,
nent transaction. The delay parameters used are identicahtany of which are quite long, which increases contention and
Backoff’s. Additionally, if a conflicting object is being agl transaction execution time.
by several transactions, Polka will immediately abort dll o b) KMeans: groups a large pool of objects into a spec-
them if the calling transaction wishes to write to the cotifiig ified number of clusters in two alternating phases. A pdralle
object. phase transactionally assigns objects to their nearestecju
Greedy aborts an opponent transaction if it is younger cand a serial phase re-calculates cluster centres basedeon th
sleeping, otherwise it waits for the opponent indefinitelg.( mean of the objects in each cluster (initial cluster cenames
if the opponent is older, and not sleeping). A waiting, arandom). Execution continues until two consecutive iferat
suspended (e.g. during I/O) transaction is marked as ‘#lgep generate similar cluster assignments within a specifiegstir
Priority aborts the younger of the conflicting transactionsld. The input files supply a large number of objects to clyste
immediately. Priority can lead to a transaction never catpl and thus transactions to execute, but parallelism is clbedro
ing if it conflicts with an older transaction that has a faulby the distribution of objects to the randomised clustettresn
that prevents it from completing. Greedy provides strongé&urthermore, randomised cluster centres result in coredidke
progress guarantees than Priority by not allowing suchexecution time variance, as observed in Section IV, Figure 1
situation if the faulty transaction is suspended. Transactions are extremely short since they only readerust
centres and assign objects to the closest one.

c) Vacation: is a travel booking database simulation that

Results are obtained on a 4x dual-core (8 core) Opterhas operations to book or cancel cars, hotels, and flights
2.4GHz system with 16GB RAM, openSUSE 10.1, andn behalf of customers transactionally, and must update the
Sun Java 1.6 64-bit with the parametersXms1024m customer’s linked list of reservations as necessary. Tsrea
- Xmx14000m DSTM2 [10], a software TM implementation,can also modify the availability of cars, hotels, and flights
is used to evaluate the CMs. Past research in contention ma@ansactionally. The input parameters lead to low conventi
agement has also used DSTM2, its variants, or predecessfus.the hardware used, and transactions are short since they
In this paper, DSTM2 is set to its default configuration ofipdate the simulated database and customers’ linked lists.
eager validation, visible reads, and visible writes.

The benchmarks used are Lee’s routing algorithm [7], and
KMeans and Vacation from the STAMP benchmark suite Each benchmark configuration is executed using each CM,
(version 0.9.5) [9]. All the benchmarks have been ported 8nd using 1, 2, 4, and 8 threads. Each unique combination
DSTM2. STAMP’s Genome benchmark has been investigatexdf, benchmark configuration, CM, and threads is called an
but is not presented as it generates very few conflicts on teperiment. Each experiment is automatically terminafest a
hardware used in the experiments, and its results give B0 minutes, and when this occurs the associated CM is deemed
greater insight than the results from Vacation. As shown itoo poor’ for the given experiment, and we say the CM has
Table I, eight benchmark configurations are used, with aganfgiled the experiment. Results are averaged over eight runs of
of transactional conflict rates (contention) are used is thtach experiment, except the failed experiments, whichware r
evaluation. The parameters used for each benchmark are thaisly three times to reduce doubt.
suggested by their respective providers, except KMeansidS a Figure 1 and Table Il show the execution time results.
KMeansLS, which we created for quick experiments. Belowingle thread results are presented to give an idea of egacut
the benchmarks are briefly described, and in particular théime variance for the benchmarks, as obviously there is no
concurrency characteristics are mentioned with respetiido contention or non-determinism when using a single thread,
inputs detailed in Table I. and thus execution times should be almost identical. This is

a) Lee'srouting algorithm: is a circuit routing algorithm true for all benchmarks except KMeans, where the randomised
that automatically connects pairs of points in parallethauit initial cluster centres have a significant impact on executi
overlapping any existing connections. The applicatiord$éoatime. For performance comparisons, only the multi-threlade
pairs of points from an input file (measured execution timesults are of interest, and less so with KMeans due to tige lar
excludes parsing of the input file). Threads attempt to findvariances observed in it, although KMeans is still impadrtan
route between a pair of points by performing a breadth-firdtie to the failures seen.

Ill. PLATFORM & B ENCHMARKS

IV. INITIAL EVALUATION
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Configuration Name  Application Configuration

KMeansL KMeans low contention clusters:40, thresholdOQL,
input_file:random5000012
KMeansH KMeans high contention  clusters:20, threshdd@@01,
input_file:random5000012
KMeansLS KMeans low contention clusters:40, threshodD01,
with small data set inpufile:random1000012
KMeansHS KMeans high contention  clusters:20, threshd@@L,
with small data set inpufile:random1000012
VacL Vacation low contention relations:65536,

percentof_relations queried:90,
gueriesper_transaction:4,
number of_transactions:4194304
VacH Vacation high contention  relations:65536,
percentof_relations queried:10,
gueriesper_transaction:8,
number of_transactions:4194304

Lee-TM-ter Lee low contention earlyelease:true, file:mainboard
Lee-TM-t Lee high contention earlyelease:false, file:mainboard
TABLE |

PARAMETERS USED FOR EACH BENCHMARK CONFIGURATION USED IN THEVALUATION .
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Fig. 2.  Sample observed transaction commit percentages (tisen@riority CM). VacL has far more commits (i.e., less contamtithan Lee-TM-t or
KMeansL

The results are mixed, with different CMs showing com4 threads has at least a 78% commit rate (using Priority
petitive performance with different benchmarks, reflegtinCM, not theoretical best commit rate), but Polka fails to
the varying contention and execution characteristics @f tlkomplete. Polka manages to complete execution with Lee-TM-
benchmarks. For instance, Polka shows good performance as there are only 1506 routes to connect transactionaity, a
VacH and VaclL, but Kindergarten does not, and the oppostteus the number of transactions executed is much fewer than
is true in Lee-TM-t and Lee-TM-ter, especially as the numb&Means, which typically executes millions of transactiolrs
of threads increase. In general, a high consistency of goktleansHS and KMeansLS, which typically take less than
performance is only seen with Greedy and Priority. Averagé seconds to complete with the well-performing CMs, Polka
either over all threads, or only over 2-8 threads, the perfdrils to complete in 20 minutes.

mance difference between them is less than 0.6%. Critically, wherever Polka fails, Karma also always fabst
Polka is the published best CM [4], in the past producinBackoff does not also always fail. As mentioned earlierkRol
best or near-best execution times for all benchmarks witombines Karma and Backoff. The difference between the first
which it has been executed. For VacH and VacL this tsvo and the latter is the number of delay intervals: Backoff
certainly the case, but this benchmark results in low cohas a fixed number of 22, whereas the other two calculate it
tention on the hardware used. Strikingly, Polka is one of tltynamically. By deduction, the average number of iteration
worst in Lee-TM-t, and consistently joint worst in KMeansHn Polka and Karma must have been larger than 22. We also
and KMeansL. KMeans experiments, and Lee-TM-t exhibitote that Eruption similarly fails in KMeans experimentsda
large amounts of contention that increase with the numbgerforms poorly in Lee-TM-t. This suggests that delay-base
of threads, as shown in Figure 2. Worryingly, KMeansL dEMs in general are not suitable for applications that exhibi



<= 110% of best execution time

<= 125% of best execution time

> 125% of best execution time, ard 20 minutes
> 20 minutes (DNF)

Aggressive  Backoff Eruption Greedy Karma Kindergarten  Rolk Priority

Benchmark  Thread CM

2
KmeansH 4
8
2
KmeansL 4
8
2
KmeansHS 4
8
2
KmeansLS 4
8
2 361 290
Lee-TM-t 4 322 276 326
8 314 370 311
2 232 230 231 254
Lee-TM-ter 4 147 143 145 145
8 116 122 104 - 98
2 1S 371 366 366 368 366 371 363
VacH 4 297 306 294 286 294 328 293 288
8 304 296 302 292 291
2 405 404 398 389 404 407 396 392
VacL 4 73 382 367 357 368 815 364 358
8 459 386 364 416 371 442 384 387

TABLE Il
EXECUTION TIMES (IN SECONDS. BOLD INDICATES BEST TIME FOR AN EXPERIMENT(I.E., A ROW).

non-negligible amounts of contention. This is significantly higher than the published minimum alu
Finally, KMeans experiments with 2 threads deserve fuef 2*ns (by using aLOG_M N_BACKOFF of 4), but testing
ther attention because in these Polka completes executin other x86/Linux platforms similarly gave us minimum
with a competitive execution time, and Karma does noaccuracies much higher thafns, and never less than 2500ns.
The difference between Polka and Karma are a) that Polkhus we set OG_M N_BACKOFF to 11, to give a calculated
aborts a set of reading transactions immediately if theéngall minimum delay of2'! nanoseconds = 2048 nanosecordg
transaction wishes to write, and b) the amounts of time delayicroseconds, but which of course rounds up to the minimum
per iteration. Although the first point may explain Polka'system accuracy. Since the original values were based on
higher performance, the second point calls into questien tBPARC/Solaris, Polka potentially needs parameter raxguni
choice of parameters used for Polka, and, more generaftyy every new hardware platform used.
whether they were to blame for the poor performance observed-or LOG_MAX_BACKOFF we select a range of values based
in other experiments above. We investigate this furtheh& ton approximatelyhalf the average committed transaction

next section. execution time for each benchmark. The observed values are
, shown in Table Il . We select OG_MAX BACKOFF values
V. INVESTIGATION OF POLKA’S PARAMETERS of 13 (=8 microseconds), 16565 microseconds), 19528

Polka has two tuning parametetsDG_M N_BACKOFF and microseconds), and 28134 milliseconds). The results of the
LOG_MAX_BACKOFF, which bound the exponential delay.executions are shown in Figure 3, again averaged over eight
Polka calculates delay for an iteration @& nanoseconds runs for all experiments, except failed experiments, wiaigd
where n starts atLOG_M N_BACKOFF, and increments by again only run three times.
one every iteration up thOG_MAX_ BACKCOFF. A spin loop There is minimal effect of changing the parameters in VacL
that calls Java'Syst em nanoTi ne() is used to determine and VacH, as these have low contention, which leads to the
if the required delay time has passed. In this section, V@V being invoked rarely. For the remaining experiments,
investigate the performance effect of altering Polka'sapar different parameters give the best performance improvémen
eters. Schereet al. [4] do not suggest a method by whichover the default parameters. Although the improvements are
the parameters should be calculated so we use the schafight, this suggests per-application parameter tuning be
explained below. necessary. However, the important results have not changed

Through empirical evaluation we determined the minimurand Polka continues to give extremely poor performance in
timing accuracy of our system to be 360000 nanoseconds. all KMeans experiments with 4 or more threads, irrespective
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Fig. 3. Execution times witht1 standard deviation for Greedy, Priority, and Polka withesal/minimum and maximum delay parameters. Lower is better.



KMeans* Lee-TM* Vac* finding of our investigation suggests Polka, the estabiishe

1 thread 12 264288 126 best-performing CM, and in general all delay-based CMs,
2 threads 19 330592 167 itable for th luated benchmarks that exhikit
T Throads 515 380276265 are unsuitable for the evaluated benchmarks that exhibit ev
8 threads 422 524702 537 moderate amounts of aborting transactions. Although we do
not quantify what is meant by ‘moderate’, in one benchmark
TABLE III o 4 ds with ¢ 789
AVERAGE COMMITTED TRANSACTION EXECUTION TIME FOR EACH Priority executed in 6.5 seconds with an average of 78%

BENCHMARK, IN MICROSECONDS BOTH HIGH AND LOW CONTENTIONs  Of transactions committing (i.e., 22% aborting), whilstikzo
NOT SHOWN AS EXECUTION TIMES IN THE SAME ORDER OF MAGNITUDE falled to Complete executlng the benchmark In 20 mlnutes
FOR EXPONENTIAL DELAY CALCULATION. . . . . .
(after which time the execution was terminated). This resul
has wider implications given that TM is strongly aimed at
easing concurrent programming for mainstream software de-

of the wide range of tuning parameters used. This strength&fglopment, where execution is unlikely to be highly optietis
our original hypothesis: delay-based contention managem#0 reduce aborts in the general case.
may be unsuitable for applications with appreciable am®unt Polka has two tuning parameters, and investigating a range
of aborting transactions. of values concluded there was no benefit in tuning them to im-
prove the extremely poor results seen in KMeans experiments
although tuning led to a degree of performance improvenment i
Guerraoui et al. [5] developed the Greedy CM, whickhe remaining results. However, different parameters igeal/
has provable progress properties, and their evaluatiowestho better performance for different applications, suggestine
Greedy performed on par with Polka. Our results confirmeed for application-specific tuning. Furthermore, thedniee
their findings. Scherer and Scott [4] evaluated Polka usixg se-evaluate the parameters for every hardware platforrd use
benchmarks in nine benchmark configurations. Three benatrs also highlighted. Conversely, Greedy and Priority have
marks added, removed, and queried elements in a set, pagameters.
fourth implemented a concurrent stack, the fifth a ‘torture
test’ that updated all values in an array per transactiod, an
the sixth an LFU cache simulator. Clearly their benchmarks
exhibited contention to provide variation in execution dim _ _ _ _ _
betwieen CMs, and they found Polka to be a consistent toj) {f2urce Hethy ane 3, €t & ose Tiensectong) mematory
performer, often by large margins over other CMs. Their  of the 20th Annual International Symposium on Computer Architecture,
investigation differs from ours in one critical way. All the  pages 289-300, May 1993. '
CMs they investigated are delay-based, except Kindemarte”) il S 3 o0 Tsiow, Sotere rescione) neminfope
and they did not include Greedy or Priority, as neither had pigributed Computing, pages 204-213. ACM Press, August 1995.
been published. Our investigation found all delay-basedsCM[3] william Scherer Ill and Michael L. Scott. Contention maement in
and Kindergarten performed poorly compared to Greedy and dynamic software transactional memory. GSJP "04: Workshop on
Priority in benchmarks with appreciable amounts of aborts Coneurrency and ynchronization in Java Programs, July 2004.
. ] " * [4] William Scherer Il and Michael L. Scott. Advanced conti®n
Our previous work in adaptive concurrency control [12], = management for dynamic software transactional memorQBC ’ 05:
which dynamica”y Changes the number of transactions exe- Proceedings of the 24th Annual Symposium on Principles of Distributed

. : . . Computing, pages 240-248. ACM Press, July 2005.
cuting simultaneously with respect to the measured traiosac Rachid Guerraoui, Maurice Herlihy, and Bastian Pochofoward a

commit rate, resulted in applications’ performance at any  theory of transactional contention managersP@DC ' 05: Proceedings
number of initial threads being similar to best-case siljie of the 24th Annual Symposium on Trinciples of Distributed Computing,

; ; ; pages 258-264. ACM Press, July 2005.
aSSIgne(.j number of threads, for a gl.ven CM Our adaptlv%] Rachid Guerraoui, Maurice Herlihy, Michal Kapalka, arhstian
mechanism would haV? h_ad a dramat|c.posmve effe_C.t on the' pochon.  Robust contention management in software transattio
performance of Polka in its failed experiments. Additidyal memory. INSCOOL ' 05: Workshop on Synchronization and Concurrency
our work in reducing repeat conflicts [13] showed Polka's_ N Object-Criented Languages, October 2005.

f id be i di licati that h.b.[(7] lan Watson, Chris Kirkham, and Mikel Lap. A study of a transactional
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