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Transactional Memory (TM) is receiving attention as a way of expressing parallelism for programming multi-core systems. As a parallel programming model
it is able to avoid the complexity of conventional locking. TM can enable multi-core hardware that dispenses with conventional bus-based cache coherence,
resulting in simpler and more extensible systems. This is increasingly important as we move into the many-core era. Within TM, however, the processes of
conflict detection and committing still require synchronisation and the broadcast of data. By increasing the granularity of when synchronisation is required,
the demands on communication are reduced. Software implementations of TM have taken advantage of the fact that the object structure of data can be
employed to further raise the level at which interference is observed. The contribution of this paper is the first hardware TM approach where the object
structure is recognised and harnessed. This leads to novel commit and conflict detection mechanisms, and also to an elegant solution to the virtualization
of version management, without the need for additional software TM support. A first implementation of the proposed hardware TM system is simulated. The
initial evaluation is conducted with three benchmarks derived from the STAMP suite and a transactional version of Lee’s routing algorithm.

1. INTRODUCTION

Fundamental limits in integrated circuit technology are bringing
about the acceptance that multi-core and, in the future, many-
core processors will be commonplace [12, 5, 15]. If general
purpose applications are required to exhibit high performance
on such processors, it will be necessary to develop new, easy to
use, parallel programming techniques. Transactional Memory
(TM) is one such programming technique.

TM is an approach to parallel programming where a transac-
tional parallel thread is assumed to execute independently and
atomically, with respect to other transactional parallel threads. A
thread does not, however, commit any changes it makes to global
state until it is verified that no other global state changes have
occurred, while it was executing, which might have invalidated
its computation. An invalidated transaction must be aborted and
restarted to perform the correct computation. The belief is that
this provides a way of constructing parallel programs that is
simpler and less error prone than existing approaches such as
locking. Additionally, unlike lock based programs, transactional
sections of a program can be composed. Parallel libraries can be
envisaged whose contents can be utilised without any need for
knowledge of the internals of the code.

There are two major functions required to implement transac-
tions on top of a multi-threaded multi-core system. The first is
the ability to handle both committed and uncommitted data while
a transaction is executing (memory versioning). The second is
the detection of interference between transactions (conflict de-
tection) and the control of which threads are allowed to commit
their state and which threads need to be aborted and restarted.
This is based on an observation of the intersection between the
read and write sets of concurrent transactions.

Transactional computation, particularly in the database world,
has been around for some time. Recent interest has centred on
using transactions as a more general computational model and,
in this environment, the degree of transactional interference is
likely to be significantly greater than that encountered in database
applications. Implementations of transactional systems are pos-
sible using a software layer on top of a conventional multi-core
system, and a number of different proposals have been published
[16, 8, 9, 4]. However, given the greater degree of interference,
many believe that some hardware support for the required func-
tionality is going to be necessary. Indeed the first commercial
processors to support Transactional Memory, Azul’s Vega [6]
and Sun’s ROCK [17], include such hardware.
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One way to provide memory versioning and conflict detec-
tion, in hardware, is to extend existing cache coherence pro-
tocols. Memory writes can be held in a local cache and only
updated to main memory when it is known that a transaction
is being allowed to commit. In addition, the normal snoop-
ing mechanism can be used to observe writes that interfere
with data in a cache that is currently being used by another
transaction. Proposals that use this approach differ in many
details, but they share two weaknesses. The first is that any
cache will have a limited size compared to the possible data set
of any computation, and mechanisms must be devised to cope
with cache overflows. The majority of current hardware TM
(HTM) proposals assume that the data set of individual transac-
tions will be sufficiently small that it will be possible to handle
this by software without too great an impact on performance.
The second weakness is that bus snooping is not extensible be-
yond a relatively small number of cores. Any mechanism that
requires effectively instantaneous global observation of mem-
ory operations is not going to be practicable in the many-core
era.

1.1 Addressing the weaknesses

In recognition of the extensibility problem, the TCC approaches
[7, 3] have proposed mechanisms that do not rely on conventional
cache coherence. In its simplest form, TCC uses a core with local
buffers to accumulate a transaction’s writes. When a transaction
commits, it broadcasts all its writes to all other cores in a single
packet transmission. These cores must then check if any of the
writes conflict with their data, aborting and restart if necessary. If
they do not need to abort, they can use the contents of a broadcast
packet to perform a coherence operation. The implementation
can broadcast either both addresses and values of all updated
store locations or addresses alone, allowing either an update or
an invalidate protocol.

Because there is no need to arbitrate for communication of
individual memory updates and the packet communication is
uni-directional, the TCC approach should be more latency tol-
erant and thus permit implementations using a more extensible
communication mechanism than a global bus. However, pub-
lished evaluations so far have assumed a bus structure and ob-
served that, in any case, the approach is still not scalable to a
large numbers of cores [7]. A more recently published version
of TCC [3] describes a way of overcoming this by using a di-
rectory based scheme similar to that employed by distributed
shared memory systems. A number of distributed directories
are employed, each tracking the usage of cache lines in a mem-
ory that is physically local to a core but globally addressable.
Any request to cache a local copy of a line must access the
directory and register its activity. Commits must go via the
directory that is then responsible for sending appropriate mes-
sages to any sharers to perform the correct action on conflict.
This approach, by avoiding global broadcast, is very effective
in reducing the communication traffic but comes at the cost of
both additional complexity and latency in servicing memory re-
quests.

LogTM [14, 23] is a proposal for a HTM that uses a dif-
ferent approach to memory versioning. Instead of buffering

new versions of data written by a transaction, they are updated
directly to memory. A log is kept of replaced old values so
that the original state of memory can be restored if the commit
fails.

The motivation for this is twofold. Firstly, the assumption is
that a transaction is more likely to succeed than fail, therefore
it should be more efficient to assume that the new data values
will be written and the old values discarded. Using the log min-
imises the action needed on commit. The second advantage is
concerned with the problem of limited sized buffers. Because
the new values are written directly to memory, there is no limit
to the size of a transaction’s write set. The old values can be
stored as address-value pairs in a linear buffer of arbitrary length
and do not need to be accessed again unless the transaction is
aborted, whereupon they will be scanned by software and rein-
stated.

A possible limitation of LogTM is that it assumes that aborts
are infrequent and that the expensive operation of undoing con-
flicting memory operations will not be invoked often. A further
limitation is that the log approach can only be used with early
conflict detection, leading to the need to address live-lock and/or
deadlock problems.

We are particularly interested in TM as a programming model
rather than simply a replacement for locks. The important dif-
ference is that a truly transactional program may manipulate
large amounts of transactional data, have transactions that run
for long periods and create significant amounts of conflict. We
recently proposed a real transactional application, which imple-
ments Lee’s routing algorithm [19], and exhibits all of these
properties. In these circumstances, at least one of the assump-
tions, on which most transactional proposals are based, is vio-
lated.

We therefore propose the first object-aware hardware transac-
tional memory system (OHTM) that recognises the object struc-
ture at the hardware level. Its most obvious advantage is an
elegant solution to the problem of space virtualization without
the need for additional software TM support. Recognising the
object structure also leads to novel hardware commit and conflict
detection mechanisms.

The remaining sections are organised as follows. Section 2
describes the basis of the hardware support for objects. This is
similar to paged virtual memory using virtually addressed caches
and translation buffers between virtual and real addresses. The
description of the proposed hardware also introduces the virtu-
alization mechanism that provides support for object versioning
and conflict detection mechanism between transactions at the
object and sub-object level.

Having described the hardware version management and con-
flict detection mechanism, Section 3 presents how this comes
together during transactional execution. Note that the proposed
hardware facilitates the execution of object-based programs,
which constitutes a large majority of newly developed appli-
cations, but the hardware does not preclude the execution of
classic programming languages, such as C or Fortran. Section 4
discusses some extensions that are needed to provide more com-
plete support for transactional memory, but are not evaluated as
part of this study. Section 5 explains the methodology used in
order to evaluate OHTM and section 6 presents the evaluation
of the complete HTM system. Finally the paper is summarised
in Section 7.
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Figure 1 Hardware support for object addressing.

2. TRANSACTIONAL MEMORY AND AN
OBJECT-AWARE APPROACH

In this section we explore an approach that recognises the struc-
ture of objects at the hardware level and how this approach is
employed in order to devise version management and conflict
detection mechanism in OHTM. The structure of data within
objects makes it possible to implement lazy versioning without
the problem of overflow. In addition, information about changes
to fields within an object can potentially be communicated in a
more concise form leading to lower communication bandwidth.

2.1 Object caching

Schemes have been proposed to provide direct hardware support
for Object-Oriented (OO) languages [20, 18, 21]. The motiva-
tion of these proposals was to ease the problems of memory
management and garbage collection.

If an object is referred to by the core via an Object Identi-
fier (OID) and field offset, which is translated using an Object
Translation Table (OTT) that maps OIDs to memory addresses,
then the relocation of objects during garbage collection becomes
much simpler. It is necessary only to update a single entry in
the OTT rather than all reference containing fields. This indirect
object representation, although used in early implementations of
OO languages, has generally been abandoned to avoid the inef-
ficiency of an extra load during object accesses, but at the cost
of an increase in garbage collection complexity.

Figure 1 shows an outline of such a scheme. The inefficiency
of an indirect representation can be reduced by the provision of
an ‘Object Cache’. The addresses issued by the core and the
tags stored in the cache are viewed as an OID and field offset
(although the cache tag may contain a subset of the offset if
multiple fields are stored per cache line). Cache hits on OIDs
can clearly access the field data directly. However, on a cache
miss, it is necessary to access memory via the OTT incurring
the penalty of two memory accesses. This latter inefficiency
can largely be removed by the provision of a Translation Buffer
that caches recently used translation table entries. The OID to
memory address mappings can be accessed directly as shown in
Figure 2 removing the need for translation via the OTT.

It should be clear that this approach is very similar to hard-
ware support of paged virtual memory using a virtually addressed

Figure 2 Caching object to address translations in a Translation Buffer allows
direct access to recently used translations, reducing the requirements to access
the OTT.

cache and a TLB. However, the optimum page size will be dif-
ferent and it is necessary to handle both small and large objects.

2.2 Object size

It is necessary to define a basic size for the objects manipulated by
the system. Size of the objects may have an effect on the overall
performance depending on the applications [11]. Although it
would be possible to use multiple sizes, we currently use only
one. Statistics from OO programs suggest that the average object
size is of the order of hundreds of bytes [21]; currently we use a
basic object size of 128 bytes.

If an object is smaller then 128 bytes then we will waste virtual
object identifier space. However, this does not result in a waste
of real address space as appropriate sized units are allocated and
manipulated. If an object is larger then 128 bytes, we simply
allocate contiguous OIDs although only first will contain an ob-
ject header. This allows normal access to indexed objects, such
as arrays, although the physical memory allocated does not need
to be contiguous and the 128 bytes objects will appear separate
for the purpose of transactional operation.

2.3 Version management

The support for indirection can be adapted to provide additional
support for transactional objects. The basic mechanism involves
keeping a reference in the local translation both to the currently
committed version of the object and to a temporary version where
transactional state can be buffered. an outline of this scheme is
shown in Figure 3.

Assume the object cache and the Transaction Translation
Buffer (TTB) are empty at the start of a transaction. Reads
of object fields occur via normal translation to the committed
object, the translation is cached in the TTB and the field data
is cached in the object cache. If a write occurs to the field of
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Figure 3 An additional pointer within the TTB allows transactional updates to
seamlessly occur in isolation.

an object in the object cache, then the object cache line that
contains the field is updated without any further action. If the
object cache overflows during the transaction and the modified
field now needs to be written back, then this write back triggers a
generate clone event. The modified field cannot be written back
to the committed object while the transaction is in progress as
this will make the transaction’s modifications visible to all the
other transactions, thus violating the isolation property. In order
to maintain isolation it is necessary to allocate memory space to
hold transaction’s modified data. A generate clone event gener-
ates a clone (Object A*) by copying actual object into the clone
space and the address of this clone space is returned and entered
into the TTB as the clone pointer (Ptr A*). The evicted object
field can now be written to the clone object. Any future reads and
writes to that object will be made using the local object pointer.

The TTB lines can also keep maps of read set (MRd) and write
set (MWr) within the object as shown is Figure 4. The TTB here
is an extention of the TTB shown in figure 3, as it contains two
additional fields: read and write bitmaps. These can be single bit
per field of the object or can represent multiple consecutive fields
within the object. In OHTM, a single bit of read/write bitmap
represents 32 bytes (object cache line size) and the size of the
bitmaps is 4 bits. As a result the read/write bitmaps can cover
basic object size of 128 bytes. Larger object will span multiple
TTB lines. The use of bitmaps can reduce the probability of false
conflicts between transactions.

Figure 5 show a simple example of version management in
OHTM using read/write bitmaps. Lets assume that at the start
of the transaction the object cache and the transaction translation
buffer are empty and that the size of the object (Object A) used
is less then 128 bytes. For clarity many of the hardware details
are not shown in this example. This section only explains the
version management mechanism of OHTM using objects. The
details of the complete transaction system and its working is
explained in the later sections.

In step 1, transaction (T1) loads object A, with OID oA. As oA
is not present in T1’s TTB, the TTB requests for the translation
to physical address, pA. Upon receiving the translation the OID,

Figure 4 An additional clone pointer along with read and write bitmaps within
the TTB.

oA and the physical address pA are installed in the TTB. T1
subsequently sends a read message to a field of object A. On
completion of load message read bitmap is set in the TTB to
indicate which 32 byte portion of the object A has been read by
the transaction.

In step 2, T1 writes to the same field of the object A and this
time the write bitmap of the TTB entry is updated.

In step 3, the object cache overflows and the modified field now
needs to be written back which triggers generate clone event. A
clone space is allocated in the memory (Object A*) and the mod-
ified line is written to that clone. Note that generate clone event
is different when using read/write bitmaps as compared to gener-
ate clone event without using the bitmaps. In case of read/write
bitmaps, the clone event does not copy the entire committed ob-
ject to the newly allocated clone space. The generate clone event
only allocates space for the object and writes back only the mod-
ified object cache line into that allocated space. Once created the
physical address, pA’ of the clone is installed in the TTB. At this
point if T1 generates a load instruction for the object A’s field
that had overflowed from the object cache, the decision whether
to read the field from the original object or the copy can be made
from a simple observation of write bitmaps.

The description of the more detailed system wide mechanism
for dealing with commits and transactional conflicts will be ex-
plained later. However, at this point it is worth observing that,
in order to commit an object, three steps are required.

1. Any field in the write set of the transaction must be written
from the cache to the object copy (Object A*).

2. Any unmodified fields should be copied into the object copy
(Object A*) from the committed object (Object A). Note
that this step is required in case of read/write bitmaps only,
where the generate clone event only allocates space to the
clone object and does not copy the entire original object into
the clone space. In cases where the original object is copied
into the clone space during the generate clone event, this
phase is no required. Different configurations of generate
clone event and their use will be explained later.
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Figure 5 Simple Memory Versioning Example: refer to Section 2.3 for a detailed narrative.

3. The pointer in the memory based OTT (Ptr A) must be
replaced by the pointer to the copy (Ptr A*). It is worth
noting here that, for a single object, this can readily be
achieved as an atomic action as it is a single write operation.

2.4 Conflict detection

It is obviously necessary to detect overlaps between the write sets
and the read sets of transactions to detect conflicts. OHTM im-
plements lazy conflict detection as this is more compatible with
our aim to support a highly extensible communication structure.
There are two ways in which OHTM detect conflict between
transactions: conflict at object level and conflict at sub-object
level.

At object level the conflict is detected between transactions by
detecting overlaps between read and write set at the OID level.
When a transaction wants to commit, it broadcasts all the OIDs
of the objects it has written to (the write set of a transaction)
to all the other transactions. Observing transactions compare

their read sets (the OIDs of the objects they have read from)
with the write set of the broadcasting transaction. Any overlap
will cause an abort and restart in the observing transaction. The
conflict in this case is detected at the object level. Any con-
current transactions that read and write to that same object are
conflicting.

One of the issues with object level conflict detection is the
increases in the chances of transactions being aborted due to
false conflicts. In order to address this issue read/write bitmaps
are introduced in OHTM to be able to detect conflicts at sub-
object level. At sub-object level conflicts between transactions
is detecting by detecting overlaps between the read and write
bitmaps of the conflicting transactions. In this case, the commit-
ting transaction broadcasts all the OIDs along with their write
bitmaps to all the other transactions. Observing transactions then
compare their read sets, which includes the OIDs along with their
read bitmaps with the write set of the broadcasting transaction.
With the introduction of bitmaps we can detect conflicts between
transactions at the cache line level (32 bytes) rather then at the
object level (128 bytes), thus reducing the possibility of false
conflicts.
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Figure 6 The basic system structure of an object-aware HTM. The T-Unit pro-
vides functionality associated with translation, cloning and committing of ob-
jects.

3. DESIGN OF COMPLETE OHTM

This section describes hardware structure of OHTM together
with the details of how transaction execution takes place using
novel object-aware transactional protocols.

3.1 Hardware outline

Figure 6 and 7 show the basic structure of a multi-core OHTM
with a single level2(L2) cache and a memory unit. We will later
discuss the routes to extensibility. The cores are connected to a
conventionally addressed L2 cache via a bus, and through that to
memory. In an extended scheme this can be replaced by a more
general on-chip network as we do not assume support for bus
based cache coherence. There are two components that warrant
special attention: the transaction translation buffer (TTB), and
the translation-unit (T-Unit).

3.2 Transaction translation buffer

In essence the TTB fulfils a similar role to that of a TLB: it caches
a number of recent translations, in this case from OID to physical
addresses. The TTB is located alongside the L1 object cache
and is accessed when object cache lookup misses. To service a
cache miss a physical address must be generated and sent on to
the memory hierarchy. Either a translation is present in the TTB
in which case the object cache request is forwarded immediately
using the translation or a translation must be requested from the
T-Unit, which will in turn request the OTT if it also contains no
valid translation. The TTB also holds translations from OID to
physical address of clone objects. Additionally the TTB can hold
read and write bitmaps to reduce the number of false conflicts
by allowing conflict resolution at a sub-object level.

3.3 Translation-unit (T-unit)

The T-Unit is a global resource in the same way as L2 cache is a
global resource and is shared by all cores. T-Unit is essentially

Figure 7 The detailed structure of an object-aware HTM.

a large cache for translations of OIDs to physical addresses,
reducing the number of translations that need to be fetched from
memory controller or via a software interrupt routine. The T-
Unit however does not contain clone translations, as clones are
private and unique to each transaction until they are committed.

3.4 Object-aware HTM protocol outline

In this section we describe in detail, the HTM protocol and the
commit phase in OHTM. Prior to committing, the transactions
run in isolation as described in section 2.3. When a transaction
is ready to commit it follows a 6 phase commit protocol.

• Phase 1: Flush When a transaction starts the commit pro-
cess, it first flushes any modified lines from its object-cache
into the allocated clone space. Note that at this time, the
commit has not completed and there is no need to prevent
other transactions from making progress. The clone space
is private to a transaction so this process will neither abort
another transaction nor will it effect consistency, as no other
transaction will read from these unique clones addresses.

• Phase 2: Lock T-Unit Once the modified data has been
flushed from the cache, a request is made to lock the T-Unit.
Once T-Unit is locked, it is no longer accessible by other
transactions attempting to fetch the translation. Any such
request will receive a retry response. Although a locked
T-Unit cannot be accessed by other transactions, it should
be noted that this does not prevent access to L2 cache or
to the memory, which can occur from a transactions using
their locally cached translation in their private TTB.
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Once a transaction reaches this phase, it can no longer be
aborted. After a transaction acquires the T-Unit lock, it is
guaranteed to complete sucesfully.

• Phase 3: Complete Partial Objects If OHTM is using
bitmaps within the TTB to reduce false conflict between
transactions, then at this stage all the incomplete clone ob-
jects created during the generate clone event must be com-
pleted. This involves committing transaction copying any
unmodified fields from the current committed objects into
the transactions copy object. If software wished to reduce
the time spent copying unmodified fields, it can prefetch
the fields prior to transaction commit using conventional
loads. However, locking of the T-unit without prefetching
is believed to be an efficient solution for single memory
unit configuration. Prefetching would increase an object’s
read set and the associated risk of aborting due to a con-
flict.

If the protocol is resolving conflicts at the OID granularity
then the clone is created with a complete copy of the
original object and the commit process in that case does
not include this phase.

• Phase 4: Broadcast During this phase all modified
objects (OID, optionally bitmaps and new translations)
are broadcasted to all the other cores in the system. If a
separately running transaction’s read set is violated during
this phase it needs to abort and restart.

Conflict detection can take place at the object level which
will require broadcasting of OID only or at the sub-object
level which will require broadcasting OID along with write
bitmaps.

• Phase 5: Update Translations Having successfully in-
formed all the other transactions of the modifications that
will be made, the new translations are installed in the T-
Unit. At this stage the new translations become visible to
other transactions. Updating the translations in the T-Unit
is not atomic but it is safe, as T-Unit is locked and is not
accessible to other transactions. As a result the transla-
tion updates seem to be atomic to the rest of the transac-
tions.

It should be noted that phase 3,4 and 5 can be combined
and the protocol will still function correctly. After phase
2 the transaction cannot be aborted and therefore we can
combine some of the later phases if it gives us performance
advantages.

• Phase 6: Clear Readset The final phase clears the
read/write sets of the transactions in the TTB. The TTB
can now hold the read/write set of new transactions that
may start on this core. Unlock message is sent to the T-
Unit so that it can be accessed by all the other transac-
tions.

3.5 Simple commit example

Figure 8 show a simple example of two transactions, T1 and
T2. T1 commits successfully while T2 is aborted and sub-
sequently restarts. In this example we assume that at the

start of the transactions the object caches and the TTBs are
empty, and that violations are resolved at the object level
detected by conflicting object identifiers (OID). For clarity
the object caches and the L2 cache is omitted from the fig-
ures.

In step 1, T1 generates a load instruction (address containing
OID and offset) for a field in an object A and accesses object
cache for the data. As object cache is empty, a cache miss will
occur which will trigger access to TTB in order to load physi-
cal address of the object. As oA is not present in T1’s TTB, an
access to T-Unit is required that will look up the OTT and pro-
vide the corresponding physical address. The T-Unit returns the
translation to a physical address, pA, which is installed inside the
T1’s TTB. T1 subsequently sends a message to the relevant L2
cache to load the data using physical address pA. Concurrently
T2 loads object oB and its physical address pB is installed into
its TTB.

In step 2, T1 speculatively stores to oA. Assuming the data is
present in the object cache, the store instruction will update the
field in the object cache without any further action. Note that the
data is within the cache, so a store will not trigger the generate
clone event. Concurrently T2 loads object oA, following same
procedure as other loads.

In step 3, T1’s object cache overflows and needs to write
back the modified data of oA. In order to maintain isola-
tion, this write back will trigger the generate clone event.
We will assume that the clones are generated by an intelli-
gent memory controller by copying actual object oA into a
clone space oA’. Once created the physical address, pA’, of
the clone is returned, via T-unit to T1 and installed inside its
TTB.

In step 4, T1 begins the commit phase, which we donate as
com[1-6]. We will assume T2 is significantly longer than T1
and continues transactional execution. T1 enters the first phase
of commit (com1), flush, and writes back the modified lines in
its object cache to the clone object oA’ (physical address pA’)
into the L2 cache. T1 then enters com2, lock T-Unit, and sends
a lock message to T-Unit. T-Unit locks itself and returns a suc-
cess message to T1. At this point T1 is immune to aborts and
is guaranteed to complete successfully. Note that at this time
any transaction requiring a translation for any object from the
T-Unit will be blocked, however those holding the translation
in their TTBs can continue. The access to L2 cache and the
memory is not blocked and can be accessed by all the transac-
tions. In this example we skip com3, complete partial objects,
as we have no work to do to complete our clones. In com4,
broadcast, T1 sends a series of messages containing OID (op-
tionally although not here sub-object bitmaps and new transla-
tions) of all its modified objects to all the other transactions.
On receiving this message T2 compares the broadcasted OID
with the OID in its read set: the OIDs in the TTB marked as
read. One comparing the OIDs T2 detects conflict, aborts and
restarts.

In com5 T1 sends a series of messages each containing an
OID and the clone translation to the T-Unit. Upon receiving the
message T-Unit installs the new translation. Finally in com6
T1 sends unlock message to the T-Unit and clears the read
and write set in its TTB and object cache. T1 has then com-
pleted the transaction and can continue from the next instruc-
tion.
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Figure 8 Simple Commit Example: refer to Section 3.5 for a detailed narrative.

4. OTHER DESIGN ISSUES AND
OPTIMISATIONS

Similar to the earlier versions of other HTM systems [14, 3, 7],
in this initial implementation of the object-aware HTM we do
not allow transaction suspension, migration or context switches,
however, in this section we discuss details of how these concepts
can be achieved.

4.1 Self validation

The OO structure makes it relatively straightforward for a trans-
action to validate itself at any point. Its TTB holds information
on the objects in its read set and the address of the object in
memory. If a transaction queries the T-Unit, it can compare its
view of the address of the object with that stored in the OTT. If
they are different then the object has been committed since the
transaction started and it should be aborted. However, this is
detecting conflict at the object level and cannot easily be opti-
mised with bitmaps to refine the granularity to check at the field
level, as in a broadcast scheme, to avoid false sharing. For this
reason, we regard the broadcast scheme as the primary conflict
detection mechanism. However, there may be circumstances
where self validation is useful. For example, when transactions

are suspended and later resumed. An object level validation
on resumption invoked by the runtime environment can ensure
correct operation but at the cost of an increased possibility of
aborting. Several alternatives are available to avoid pitfalls with
real addresses allocated to objects ‘wrapping around’ ranging
from simple, abort transactions upon transaction commit gener-
ating wrap around, to more elaborate ones involving extra bits
of ‘version number’ combined with addresses.

4.2 Transaction suspension and migration

Any practical transactional scheme will need to deal with the
possibility that the transactional thread can be suspended in mid
execution. In addition, it is almost certainly desirable in a multi-
core system to allow threads to migrate across physical resources,
e.g. to suspend on one core and resume on another. It is always
possible to abort and restart but this is likely to severely hinder
forward progress in a system with long running transactions. The
saving of transactional state and subsequent resumption can be a
problem for HTM systems. However, in an object-aware HTM
scheme, it is always possible to flush the data to object copies at
any point. As long as we maintain the TTB state, the transaction
can be restarted. As discussed above, it may be necessary for
the transaction to validate itself before proceeding.
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4.3 TTB overflow

As well as overflows in the data cache, it is also possible that the
TTB may overflow. Although the TTB can be relatively large
and slow, as it is only accessed on a cache miss in a similar
manner to virtual cache TLBs [2], overflows will still occur. As
the TTB is the place that holds information local to an executing
transaction, this is a potential problem. Specifically, a TTB entry
holds the pointer to an object in memory, read and write maps
for the object and a pointer to a temporary object copy if a write
to the object has occurred.

Considering the function of an individual TTB entry, the
pointer to the object is held only as an optimisation to avoid
accessing the object table for each field access. This can be
fetched again, from the T-Unit, if needed in the future. The read
and write maps are optimisations that allow the granularity of
conflict to be observed at field level but can be discarded at the
expense of occasional false conflicts. However, the pointer to
an object copy must be remembered if a TTB entry is displaced
otherwise it will not be available either for future speculative ob-
ject writes or to replace the original object during commit. One
way to do this is to extend the TTB into memory using a hash
table or software routines. However, we must also consider the
content of the TTB as a whole. It contains, at object level, the
complete read and write set of the transaction. The complete
write set must be available to broadcast and the complete read
set must be available so that it can be compared against any other
broadcast write sets.

The simplest way to do this is to keep overflow bits associated
with each TTB line. These can be separated into read and write
overflows allowing a pessimistic approximation to the read and
write sets to be constructed. This is in fact a form of Bloom
filter [1] that can be integrated with the TTB structure. The
exact amount of information that needs to be kept depends on
the frequency of overflow. The evaluation of this mechanism is
beyond the scope of this paper.

5. METHODOLOGY

To evaluate our object-aware HTM system a prototype platform
has been developed, comprising an event-driven simulator and
an associated static Java compiler and runtime system. We ex-
ercise the hardware using applications derived from the STAMP
benchmark suite [13] and a transactional version of Lee’s routing
algorithm [19]; Lee-TM.

5.1 Simulation platform and java runtime

As in related HTM studies [13, 14], we use an event driven
simulation platform for the evaluation purposes. In order to
implement OHTM, an object-aware memory architecture was
first simulated by modifying the JAMSIM simulator [22, 10].
The simulator was further extended to implement object trans-
actional memory. OHTM is simulated using a single-bus JA-
MAICA CMP with an object transactional memory model. Sin-
gle context JAMAICA cores are used with an IPC of 1 for all but
memory operations, observing that transactional performance is

essentially memory bound. Latency, bandwidth and contention
for shared resources is modelled at a cycle-level for all caches,
network and memory models within the simulator. Timing as-
sumptions and architectural configurations are listed in Table 1.

In addition to the simulation platform a static Java compiler
and runtime system has been implemented. The compiler is con-
ventional; Java source is compiled into Java byte-code, translated
into machine code and then linked into an executable alongside
the runtime system code. The static runtime system has been ex-
tended to support the T-Unit for allocation of objects. In the cur-
rent system objects are allocated in a reserved, high-addressed,
region of the address space.

Table 1 Simulation parameters.

Feature Description

L1 object cache 32KB, private, 4-way assoc., 32B line, 1-cycle access.
TTB 24KB, private, 4-way assoc., 12B lines, 1-cycle access.
Network 256-bit bus, split-transactions, pipelined, no coherence.
L2 cache 4MB, shared, 32-way assoc., 32B line, 16-cycle access.
T-Unit 4MB, shared, 32-way assoc., 12B lines, 16-cycle access.
Memory 100-200 cycle off-chip access.

5.2 Benchmark applications

We exercise our transactional system by executing three applica-
tions (Kmeans, Genome and Vacation) derived from the STAMP
benchmark suite, RBTree and Lee-TM. For the purposes of this
study the STAMP benchmarks have been implemented in Java
by converting C structs into Java objects, and inserting calls to
the runtime system in order to start, end and abort transactions.
It should be noted that no efforts have been made to change or
optimise the structures from the original C version. The out-
puts of the benchmarks are verified against the C counterparts.
When available the benchmark’s self verification test has also
been ported.

Table 2 presents the parameters used for the benchmarks. For
Kmeans andVacation we evaluate both high- and low-contention
versions. For Lee-TM we evaluate the transactional implemen-
tation Lee-TM and also Lee-TM-ER, an early-release implemen-
tation.

6. EVALUATION

In this section we will evaluate two configurations of OHTM.
One configuration involves detecting conflicts at object level,

Table 2 Parameters for the benchmarks.

Benchmark Parameters

RBTree -w 33%
Kmeans-Low -m40 -n20 -t0.05 -i random1000_12
Kmeans-High -m20 -n20 -t0.05 -i random1000_12
Genome -g256 -s32 -m16384
Vacation-Low -n2 -q10 -u80 -r65536 -t4096
Vacation-High -n4 -q10 -u80 -r65536 -t4096
Lee-TM-t 75×75×2 grid, 481 routes
Lee-TM-ter 75×75×2 grid, 481 routes
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where generate clone event makes complete copies of objects
during the clone phase and the broadcast phase involves broad-
casting OIDs only in order to detect conflict between transac-
tions. The second configuration involves detecting conflicts at
sub-object level, where transactions make partial copies of ob-
jects during the clone phase and complete those partial objects
during the commit phase. This configuration also requires broad-
casting of OIDs and the bitmaps to detected conflict between
transactions. Table 3 summarises these configurations.

Table 3 OHTM system configuration.

Copy,broadcast
configuration

Description

Object,Object (O-O) Complete object copied during clone, broad-
casts only include OID.

Sub-Object,
Sub-Object (S-S)

Partial object copied during clone, broadcasts
include OID+bitmap.

6.1 Transaction profiles

Understanding the performance of a TM system requires knowl-
edge of the selected applications used for evaluation. In Table
4 we present transaction profile statistics for the seven applica-
tions used. The transactions range in size from a few hundred to
a few hundred thousand instructions. Larger transactions help
to amortise the transaction start and commit overheads but also
generate larger read and write sets that must be isolated from
global state prior to committing. We include both the arithmetic
mean and coefficient of variance (COV)1 for read sets, write sets
and instructions per transaction. COV provides a comparison
of the variation in the transactions compared to the mean. For
Lee-TM in particular there is a significant variation in the length
of transactions and hence the size of the working sets. Lee-TM,
Lee-TM-ER and Vacation create significantly large working sets
that they overflow the 32KB L1 object cache.

6.2 Performance analysis

6.2.1 Speedups

The graphs in figures 9 and 10, present the speedups achieved
from execution of each benchmark on the OHTM when scaling
from 1 to 32 processors. In O-O configuration the maximum
speedups range from 6.97 times for Genome upto 23.39 times
for Kmeans-Low. For S-S configuration the maximum speedup
is achieved by Lee-TM-ER, 25.8 times, while Genome speedups
to 6.47 times. In both configurations, all applications scale to
16 processor cores (arithmetic mean speedup of 13.82 for O-O
configuration and 14.45 for S-S configuration), while Genome
and RBTree speedups begins to fall between 16 to 32 cores. One
result that is immediately noticeable from the graphs is that the
performance of Kmeans-High for 32 cores dramatically drops.
This is an artificial limit imposed by the application parameters.

1COV is calculated by dividing the standard deviation by the arithmetic mean,
and produces a dimensionless value that can be compared across distributions.
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On 32 cores, 32 concurrent transactions attempt insertion (mod-
ifications) into 20 clusters (shared objects) on each iteration, so
at least 12 transactions have to abort which negatively effects
the speedup of the benchmark. Lee-TM and Lee-TM-ER are
different from other transactional benchmarks as the ordering of
commits has an effect on the solution. The Lee benchmarks are
non-deterministic therefore changing the number of concurrent
threads by increasing the number of cores may result in different
solutions. It is therefore difficult to meaningfully compare the
speedups achieved by Lee-TM and Lee-TM-ER by increasing
the number of cores.

The scaling characteristics of the OHTM using STAMP
benchmarks are similar to those TM systems presented in [13];
i.e where the STAMP suite was introduced.

6.3 Execution time composition

Figures 11 and 12 show the execution time breakdown of all the
applications running on OHTM. The execution time is broken
down into four components that indicate how processor spend
their time. The first component is Idle+Wait cycles. Wait rep-
resents the time spent waiting at barriers and synchronisation
points while the idle time represents the time spent by the pro-
cessors waiting for other processors to finish their tasks. The
ideal time actually shows the work imbalance between proces-
sors running the benchmarks. The second component Commit, is
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Table 4 Transaction profile statistics for all benchmarks.

Application #Tx #Insts
Object readset/Tx Object writeset/Tx Inst/Tx Overflow

Mean COV Mean COV Mean COV Txs Lines

RBTree 64004 43464721 20.55 0.16 2.02 1.61 679.1 0.45 0 0

Kmeans-Low 6695 2210380 7.4 0.21 3.5 0.29 330.1 0.54 0 0
Kmeans-High 6695 2210380 7.4 0.21 3.5 0.29 330.1 0.54 0 0
Genome 9905 60965589 35.5 0.92 7.62 0.5O 6155 1.86 0 0
Vacation-Low 4099 98711006 141.86 0.23 80.7 0.23 24081.7 0.27 6 7.72
Vacation-High 4099 138694470 189.2 0.30 107 0.29 33836.2 0.34 55 106
Lee-TM-t 1447 540892284 118.5 2.85 78.8 3.08 373802.545 4.12 292 407365
Lee-TM-ter 1447 540897094 19.32 1.32 78.8 3.09 373805.87 4.12 293 407773
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Figure 11 Composition of execution time during transactional execution. (Object,Object)

the time spent by the transactions in the commit phase. The third
component Violations, is the execution time wasted by the trans-
actions that eventually abort. Finally, the fourth component, busy
cycles, refer to the time spent executing instructions of the com-
mitted transactions. A greater proportion of time busy is better.

Genome is the only benchmark with barriers, which result in
waiting cycles in the execution graphs. In O-O configuration
12.18% of the total execution time is spent waiting in barriers as
compared to 13% in barriers for S-S configuration using 32-core
simulations. Increase in the waiting cycles can result in reduction
in the overall performance of the benchmark. Apart from Lee-
TM-ER in S-S configuration, Genome also has higher number
of idle cycles as compared to other benchmarks (7.33% for O-O
and 6.6% for S-S configuration using 32-core simulation), which
indicates greater work imbalance in Genome, compared to other
benchmarks. These two components are one of the reasons why
Genome does not get greater speedups in the speedup graphs.

The cause of the drop off in performance of Kmeans-High
using 32 cores is clearly visible as the time spent in aborted
transactions increases, from approximately 1% at 16 cores upto
24% and 19% at 32 cores in both O-O and S-S configuration
respectively.

Lee-TM show a significant amount of violations, with aborted
transactions accounting for 25 to 82% of the total execution time
for both O-O and S-S configurations. These violations are due
to false conflicts within the readset when observed at the algo-
rithmic level ((as explained in [19])). Using ’early release’ [9]
mechanism reduces the read set of the transactions from average
read set of 118.5 to 19.32, which results in significant reduction
in the time wasted due to violations in S-S configuration. Using

S-S configuration the aborted transactions account for only 2 to
9% of the total execution time for 2 and 32 cores respectively.
Due to false conflicts between transactions using object level
conflict detection, the O-O configuration does not take advan-
tage of the early release mechanism and the percentage of time
spent during violations approximately remains the same.

A last interesting point is that average time per commit in-
creases as number of cores goes up. Especially the biggest jumps
are observed when going from 16 to 32 cores in Kmeans-High
and Vacations benchmarks, with a 2-4x increase. With increase
in the number of processors, T-Unit contention increases, as T-
Unit lock request in the commit phase of the transactions in
denied due to other committing transactions. Updating of the
object table which requires access to the memory and T-Unit
also take longer due to T-Unit contention which can also result
in the increase in total commit time.

6.4 Bus utilisation

Figure 13, 14 show the composition of bus traffic during exe-
cution. The general trend is that the amount of idle time on the
bus decreases as more cores are added. The majority of traffic
growth is associated with four request types: L1 request, TTB
request, Clone Request and L1 Flush. L1 request and L1 Flush
can be distributed in a more extensible system to avoid them
becoming a bottleneck. TTB request and Clone Request traffic
is an artifact of our current preliminary implementation, as any
requests to the T-Unit while locked triggers continual retries un-
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Figure 12 Composition of execution time during transactional execution. (Sub-Object,Sub-Object)
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Figure 13 Composition of Bus Traffic During Application Execution. (Object,Object)

til the T-Unit is unlocked. The retries can easily be eliminated
by using a back-off or queueing policy.

The remaining traffic generated in the system is associated
with broadcasting of OIDs and write sets. OID broadcast only
in case of O-O configuration and OID, bitmaps broadcast in
case of S-S configuration. The broadcast traffic on the bus is the
minimum amount of information that needs to be broadcast to
other processing cores to make them aware of potential conflicts.
OID broadcast accounts for less than 3% of the traffic even at
32 cores for both O-O and S-S configurations. As the object-
aware HTM only broadcasts OIDs rather then the cache lines,
the size of the data that needs to be broadcast in object-aware
HTM can be considerably smaller as compared to other HTM
systems when dealing with transactions involving large objects.
One example is Lee-TM where the number of OIDs broadcast
is less than 2.5 times the number of cache lines that need to be
broadcast. The maximum saving is bound by the basic object
size, 128 bytes in our evaluation.

The bus bandwidth requirement for Kmeans(H) and
Vacation(L-H) and RBTree is very high with 32 processors. In
case of RBTree the bus idle time is less then .7% for 16 cores and
less then .3% for 32cores for both O-O and S-S configuration.
This can result in high bus contention for RBTree benchmarks
and can result in degrading the overall performance of the bench-
mark. Thus one of the reasons for not getting greater speedups
in the RBTree can be the limitation of the hardware used to run
the benchmark rather then the characteristics of the benchmark
itself.

7. SUMMARY

One way to provide memory versioning and conflict detection
in HTM is to extend existing cache coherence protocols. The
majority of proposed HTMs following this approach have one
fundamental weakness, rooted on the assumption that the data
set of individual transactions will be sufficiently small that it will
be possible to handle overflows in software, without too great an
impact on performance.

This paper has described the first HTM where the object struc-
ture is recognised and harnessed to solve this weakness. Our
approach is very similar to hardware support of paged virtual
memory using a virtually addressed cache and a TLB. Objects
are accessed through OIDs and field offsets rather than memory
addresses. To avoid double indirection for each object access,
object caches and TTBs have been introduced. Furthermore the
TTB (similar to a TLB) together with T-Units allow overflows
from the object cache and enable a novel commit and conflict
detection mechanism. Both Lee-TM and Vacation benchmarks
have exhibited overflows that previously would have had to be
handled by software with an associated great impact on per-
formance. The initial evaluation has shown, through simulation,
that an object-aware HTM allows an elegant solution to the prob-
lem of cache overflow within a transaction. It has provided an
insight into the scalability characteristics of the object-aware
HTM. The broadcast of OIDs and write sets accounts for less
than 3% of bus bandwidth showing the potential of the proposed
object-aware HTM.
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