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Abstract

Transactional Memory (TM) is receiving attention as a
way of expressing parallelism for programming multi-core
systems. As a parallel programming model it is able to
avoid the complexity of conventional locking. TM can en-
able multi-core hardware that dispenses with conventional
bus-based cache coherence, resulting in simpler and more
extensible systems. This is increasingly important as we
move into the many-core era. Within TM, however, the
processes of conflict detection and committing still require
synchronization and the broadcast of data. By increasing
the granularity of when synchronization is required, the de-
mands on communication are reduced. Software implemen-
tations of TM have taken advantage of the fact that the ob-
ject structure of data can be employed to further raise the
level at which interference is observed. The contribution
of this paper is the first hardware TM approach where the
object structure is recognized and harnessed. This leads
to novel commit and conflict detection mechanisms, and
also to an elegant solution to the virtualization of version
management, without the need for additional software TM
support. A first implementation of the proposed hardware
TM system is simulated. The initial evaluation is conducted
with three benchmarks derived from the STAMP suite and a
transactional version of Lee’s routing algorithm.

1 Introduction

Fundamental limits in integrated circuit technology are
bringing about the acceptance that multi-core and, in the
future, many-core processors will be commonplace [12, 7,
15]. If general purpose applications are required to exhibit
high performance on such processors, it will be necessary
to develop new, easy to use, parallel programming tech-
niques. Transactional Memory (TM) is one such program-
ming technique.

TM is an approach to parallel programming where a
transactional parallel thread is assumed to execute indepen-
dently and atomically, with respect to other transactional

parallel threads. A thread does not, however, commit any
changes it makes to global state until it is verified that no
other global state changes have occurred, while it was ex-
ecuting, which might have invalidated its computation. An
invalidated transaction must be aborted and restarted to per-
form the correct computation. The belief is that this pro-
vides a way of constructing parallel programs that is sim-
pler and less error prone than existing approaches such as
locking. Additionally, unlike lock based programs, trans-
actional sections of a program can be composed. Parallel
libraries can be envisaged whose contents can be utilised
without any need for knowledge of the internals of the code.

There are two major functions required to implement
transactions on top of a multi-threaded multi-core system.
The first is the ability to handle both committed and un-
committed data while a transaction is executing (memory
versioning). The second is the detection of interference be-
tween transactions (conflict detection) and the control of
which threads are allowed to commit their state and which
threads need to be aborted and restarted. This is based on an
observation of the intersection between the read and write
sets of concurrent transactions.

Transactional computation, particularly in the database
world, has been around for some time. Recent interest has
centred on using transactions as a more general computa-
tional model and, in this environment, the degree of trans-
actional interference is likely to be significantly greater than
that encountered in database applications. Implementations
of transactional systems are possible using a software layer
on top of a conventional multi-core system, and a number
of different proposals have been published [16, 10, 11, 6].
However, given the greater degree of interference, many be-
lieve that some hardware support for the required function-
ality is going to be necessary. Indeed the first commercial
processors to support Transactional Memory, Azul’s Vega
[8] and Sun’s ROCK [17], include such hardware.

One way to provide memory versioning and conflict de-
tection, in hardware, is to extend existing cache coherence
protocols. Memory writes can be held in a local cache and
only updated to main memory when it is known that a trans-
action is being allowed to commit. In addition, the normal



snooping mechanism can be used to observe writes that in-
terfere with data in a cache that is currently being used by
another transaction. Proposals that use this approach differ
in many details, but they share two weaknesses. The first
is that any cache will have a limited size compared to the
possible data set of any computation, and mechanisms must
be devised to cope with cache overflows. The majority of
current hardware TM (HTM) proposals assume that the data
set of individual transactions will be sufficiently small that it
will be possible to handle this by software without too great
an impact on performance. The second weakness is that bus
snooping is not extensible beyond a relatively small number
of cores. Any mechanism that requires effectively instanta-
neous global observation of memory operations is not going
to be practicable in the many-core era.

1.1 Addressing the Weaknesses

In recognition of the extensibility problem, the TCC ap-
proaches [9, 5] have proposed mechanisms that do not rely
on conventional cache coherence. In its simplest form, TCC
uses a core with local buffers to accumulate a transaction’s
writes. When a transaction commits, it broadcasts all its
writes to all other cores in a single packet transmission.
These cores must then check if any of the writes conflict
with their data, aborting and restart if necessary. If they do
not need to abort, they can use the contents of a broadcast
packet to perform a coherence operation. The implemen-
tation can broadcast either both addresses and values of all
updated store locations or addresses alone, allowing either
an update or an invalidate protocol.

Because there is no need to arbitrate for communication
of individual memory updates and the packet communica-
tion is uni-directional, the TCC approach should be more
latency tolerant and thus permit implementations using a
more extensible communication mechanism than a global
bus. However, published evaluations so far have assumed a
bus structure and observed that, in any case, the approach
is still not scalable to a large numbers of cores [9]. A more
recently published version of TCC [5] describes a way of
overcoming this by using a directory based scheme similar
to that employed by distributed shared memory systems. A
number of distributed directories are employed, each track-
ing the usage of cache lines in a memory that is physically
local to a core but globally addressable. Any request to
cache a local copy of a line must access the directory and
register its activity. Commits must go via the directory that
is then responsible for sending appropriate messages to any
sharers to perform the correct action on conflict. This ap-
proach, by avoiding global broadcast, is very effective in
reducing the communication traffic but comes at the cost of
both additional complexity and latency in servicing mem-
ory requests.

LogTM [14, 22] is a proposal for a HTM that uses a dif-
ferent approach to memory versioning. Instead of buffering
new versions of data written by a transaction, they are up-
dated directly to memory. A log is kept of replaced old
values so that the original state of memory can be restored
if the commit fails.

The motivation for this is twofold. Firstly, the assump-
tion is that a transaction is more likely to succeed than fail,
therefore it should be more efficient to assume that the new
data values will be written and the old values discarded. Us-
ing the log minimizes the action needed on commit. The
second advantage is concerned with the problem of limited
sized buffers. Because the new values are written directly to
memory, there is no limit to the size of a transaction’s write
set. The old values can be stored as address-value pairs in
a linear buffer of arbitrary length and do not need to be ac-
cessed again unless the transaction is aborted, whereupon
they will be scanned by software and reinstated.

A possible limitation of LogTM is that it assumes that
aborts are infrequent and that the expensive operation of
undoing conflicting memory operations will not be invoked
often. A further limitation is that the log approach can only
be used with early conflict detection, leading to the need to
address livelock and/or deadlock problems.

We are particularly interested in TM as a programming
model rather than simply a replacement for locks. The
important difference is that a truly transactional program
may manipulate large amounts of transactional data, have
transactions that run for long periods and create significant
amounts of conflict. We recently proposed a real transac-
tional application, which implements Lee’s routing algo-
rithm [19, 2], and exhibits all of these properties. In these
circumstances, at least one of the assumptions, on which
most transactional proposals are based, is violated.

We therefore propose the first HTM system based on ob-
jects, with its most obvious advantage being an elegant solu-
tion to the problem of space virtualization without the need
for additional software TM support. Recognizing the object
structure also leads to novel hardware commit and conflict
detection mechanisms.

The remaining sections are organized as follows. Sec-
tion 2 describes the basis of the hardware support for ob-
jects. This is similar to paged virtual memory using virtu-
ally addressed caches and translation buffers between vir-
tual and real addresses. The description of the proposed
hardware also introduces the virtualization mechanism that
provides support for object versioning. Having described
the hardware version management, Section 3 presents how
this comes together during transactional execution (e.g. de-
tecting conflict between threads, how data is committed).
Note that the proposed hardware facilitates the execution of
object-based programs, which constitutes a large majority
of newly developed applications, but the hardware does not



Figure 1. Hardware support for object ad-
dressing.

preclude the execution of classic programming languages,
such as C or Fortran. Section 4 discusses some extensions
that are needed to provide more complete support for trans-
actional memory, but are not evaluated as part of this study.
Sections 5 and 6 report the first insights into the scalability
of our object-aware hardware TM system. Finally the paper
is summarized in Section 7.

2 An Object-Aware Approach

We explore an approach that recognizes the structure
of objects at the hardware level. The structure of data
within objects makes it possible to implement lazy version-
ing without the problem of overflow. In addition, informa-
tion about changes to fields within an object can potentially
be communicated in a more concise form leading to lower
communication bandwidth.

2.1 Object Caching

Schemes have been proposed to provide direct hardware
support for Object-Oriented (OO) languages [20, 18, 21].
The motivation of these proposals was to ease the problems
of memory management and garbage collection.

If an object is referred to by the core via an Object Iden-
tifier (OID) and field offset, which is translated using an
Object Translation Table (OTT) that maps OIDs to mem-
ory addresses, then the relocation of objects during garbage
collection becomes much simpler. It is necessary only to
update a single entry in the OTT rather than all reference
containing fields. This indirect object representation, al-
though used in early implementations of OO languages, has
generally been abandoned to avoid the inefficiency of an
extra load during object accesses, but at the cost of an in-
crease in garbage collection complexity. Figure 1 shows an
outline of such a scheme. The inefficiency of an indirect

Figure 2. Caching object to address transla-
tions in a Translation Buffer allows direct ac-
cess to recently used translations, reducing
the requirements to access the OTT.

representation can be reduced by the provision of an ‘Ob-
ject Cache’. The addresses issued by the core and the tags
stored in the cache are viewed as an OID and field offset
(although the cache tag may contain a subset of the offset
if multiple fields are stored per cache line). Cache hits on
OIDs can clearly access the field data directly. However,
on a cache miss, it is necessary to access memory via the
OTT incurring the penalty of two memory accesses. This
latter inefficiency can largely be removed by the provision
of a Translation Buffer that caches recently used translation
table entries. The OID to memory address mappings can be
accessed directly as shown in Figure 2 removing the need
for translation via the OTT.

It should be clear that this approach is very similar to
hardware support of paged virtual memory using a virtually
addressed cache and a TLB. However, the optimum page
size will be different and it is necessary to handle both small
and large objects.

2.2 Transactional Object Caching

The support for indirection can be adapted to provide ad-
ditional support for transactional objects. The basic mech-
anism involves keeping a reference in the local translation
both to the currently committed version of the object and
to a temporary version where transactional state can be
buffered. An outline of this scheme is shown in Figure 3.
Assume the object cache and the Transaction Translation
Buffer (TTB) are empty at the start of a transaction. The



Figure 3. An additional pointer within the TTB
allows transactional updates to seamlessly
occur in isolation.

TTB lines also keep maps of the read set (MRd) and write
set (MWr) of the copy. These can be single bits per field
of the object. Reads of object fields occur via the normal
translation to the committed object, copies are placed in the
cache and the reads noted in the read set map. If a write
occurs to the field of an object not yet written, an area of
memory is allocated (Object A*) into which modifications
of the original object (Object A) can be written. The address
of this copy space is returned and entered into the TTB as
the copy pointer (Ptr A*). On the first write a cache entry is
made and thus any future reads and writes to that field will
obtain the current local object cache value. A book-keeping
entry is also made in the write set.

If, during the execution of a transaction, it is necessary
to displace a modified object field from the cache, that field
is evicted from the cache and written back into the object
copy (Object A*) in memory. If there is now a subsequent
read from that field, the decision whether to read the origi-
nal object or the copy can be made from an observation of
MWr. By this simple mechanism, we are able to provide
direct hardware support for ‘virtualization’ of version infor-
mation. This results from the object-aware scheme because
we are dealing with objects of known size rather than arbi-
trary collections of store locations.

The next section will describe in more detail the system
wide mechanisms for dealing with commits and transac-
tional conflicts. However, at this point it is worth observing
that, in order to commit an object, three steps are required.

1. Any fields in the write set of the transaction must be
written from the cache to the object copy (Object A*).

Figure 4. The basic system structure of an
object-aware HTM. The T-Unit provides func-
tionality associated with translation, cloning
and committing of objects.

2. Any un-modified fields should be copied into the ob-
ject copy (Object A*) from the committed object (Ob-
ject A).

3. The pointer in the memory based OTT (Ptr A) must be
replaced by the pointer to the copy (Ptr A*). It is worth
noting here that, for a single object, this can readily
be achieved as an atomic action as it is a single write
operation.

There are a number of implementation possibilities for
an object-aware system that are described in the following
section.

3 An Object-Aware Hardware Transactional
Memory System

Section 2 described the basic functionality of an individ-
ual core and transactional object cache system. This section
considers the structure of a more complete system together
with details of how transactional execution occurs. Figure
4 shows the basic structure of a multi-core system with a
single Level 2 (L2) cache and memory unit. We will later
discuss routes to extensibility. The object-aware cores are
connected to a conventionally addressed L2 cache via a bus,
and through that to memory. In an extended scheme this can
be replaced by a more general on-chip network as we do not
assume support for bus based cache coherence. Associated
with the memory is a Translation Unit (T-Unit) that pro-
vides a number of functions associated with the translation
of object addresses, object cloning and committing.

The movement of functionality in the T-Unit, away from
the core and toward the memory system, is a deliberate ex-
ploitation of the principle of ‘intelligent memory’. This



becomes both feasible and sensible as we move to higher
levels of integration. It is beyond the scope of this paper
to consider how conventional virtual memory fits within the
overall system. For the purposes of this evaluation the mem-
ory address space is real.

In a full implementation we would expect to provide for
both object-aware and non-object-aware caching and mem-
ory access. However, to simplify the description we will
assume an ‘all transactions all of the time’ mode of opera-
tion, as in TCC [9].

3.1 Transactional Memory Access

An implementation in its simplest form assumes that a
core will flush its caches so that dirty objects are not present
at the start of a transaction. On accessing an object for the
first time, a cache miss will occur in both the object cache
and the TTB. An access to the T-unit is required that will
look up the OID in the OTT and provide the corresponding
memory address. An entry will be made into the TTB with
the read and write set bitmaps cleared. When an object is
modified the changes are made in the cache, and the write
set is updated accordingly. Should a modified line overflow
the object cache it is necessary to allocate memory space
to hold the transaction’s modified copy. This could be im-
plemented in software, but we assume the T-Unit provides
this function. A request is therefore sent to the T-Unit to
allocate space for a copy of the committed object, and the
evicted line is written to the allocated space. The copy ad-
dress is returned and stored in the TTB.

Store accesses will then continue during the transaction
with cache entries being made and cache overflows being
handled as described in Section 2.2.

3.2 Transaction Commit

Assume that the transaction completes without conflict.
The transaction first flushes any modified lines from its ob-
ject cache into the allocated copy space. Note that, at this
time, the commit has not completed and there is no need to
prevent other transactions making progress. Once the modi-
fied data has been flushed from the cache, a request is made
to lock the T-Unit. While the T-Unit remains locked a com-
mitting transaction copies any unmodified fields from the
current committed objects into the transaction’s copy ob-
jects, and then overwrites the pointers in the OTT. During
this procedure the T-Unit broadcasts the OID and the write
set of any modified objects.

Although a locked T-Unit cannot be accessed by other
cores, it should be noted that this does not prevent access to
the L2 cache or memory, which can occur from a core that
is using a locally cached translation. If software wished
to reduce the time spent copying unmodified fields, it can

prefetch the fields prior to transaction commit using con-
ventional loads. However, locking of the T-Unit without
prefetching is believed to be an efficient solution for a sin-
gle memory unit configuration. Prefetching would increase
an object’s read set and the associated risk of aborting due to
a conflict. A more complex distributed protocol is required
for extensible systems but a description is beyond the scope
of this paper.

3.3 Conflict Detection

It is obviously necessary to detect overlaps between the
write sets and read sets of transactions to detect transac-
tional conflict. We have chosen to implement lazy detec-
tion as this is more compatible with our aim to support a
highly extensible communication structure. It also avoids
problems of livelock.

When a transaction is ready to commit, it will write its
changes to its copy object and then attempt to lock the T-
Unit so that any unmodified fields can be copied from the
currently committed objects and the pointers to the trans-
action’s copy of objects can be installed in the OTT. At
this point it will broadcast messages containing OIDs and
the write sets of all changed objects. Observing cores (i.e.
cores executing a transaction that have received the broad-
cast message) must compare the read set of its OIDs in its
local TTB with the write set of any matching OIDs in the
broadcast message. Any overlap will cause an abort and
restart in the observing core.

The broadcast messages need only contain the OID and
the write set mask of the objects to be committed and thus
the bandwidth required should be far less than a scheme
that broadcasts all addresses that have been written to. In
our current implementation, the broadcast takes place to all
cores and bandwidth is therefore wasted if they do not re-
quire the information. An alternative would be to attach a
directory to the translation unit to keep track of object shar-
ing. It may also be possible to determine object sharing in
software to avoid unnecessary communication. We are ex-
ploring these alternatives.

3.4 Object and Cache Line Size

It is necessary to define a basic size for the objects ma-
nipulated by the system. Although it would be possible to
use multiple sizes, we currently use only one. Statistics
from OO programs suggest that the average object size is
of the order of hundreds of bytes [21]; currently we use a
basic object size of 128 bytes.

If an object is smaller than this then we will waste vir-
tual object identifier space. However, this does not result in
a waste of real address space as appropriate sized units are
allocated and manipulated. If an object is larger than 128



bytes we simply allocate contiguous OIDs although only
the first will contain an object header. This allows normal
access to indexed objects, such as arrays, although the phys-
ical memory allocated does not need to be contiguous and
the 128 byte objects will appear separate for the purpose of
transactional operation.

The object cache and system as described so far has as-
sumed that each field appears as a separate entry in the
cache. In practice, it is possible to use the common mech-
anism of allocating multiple entities to a cache line, saving
tag space at the expense of the possibility of false sharing.
This will appear in the transactional model as false conflict.
Currently we are using a 32 byte quantity that is regarded as
eight 32 bit fields. The read and write set maps in the TTB
are also held at a 32 byte unit level, and hence conflicts are
detected at the granularity of cache lines.

Clearly there are many options as to size and exact or-
ganization of objects, cache entries and maps. Extended
studies are required to determine optimum values.

4 Other Design Issues and Optimizations

Similar to the earlier versions of other HTM systems
[14, 5, 9], in this initial implementation of the object-aware
HTM we do not allow transaction suspension, migration or
context switches, however, in this section we discuss details
of how these concepts can be achieved.

4.1 Self Validation

The OO structure makes it relatively straightforward for
a transaction to validate itself at any point. Its TTB holds
information on the objects in its read set and the address of
the object in memory. If a transaction queries the T-Unit,
it can compare its view of the address of the object with
that stored in the OTT. If they are different then the ob-
ject has been committed since the transaction started and it
should be aborted. However, this is detecting conflict at the
object level and cannot easily be optimized with bitmaps
to refine the granularity to check at the field level, as in a
broadcast scheme, to avoid false sharing. For this reason,
we regard the broadcast scheme as the primary conflict de-
tection mechanism. However, there may be circumstances
where self validation is useful. For example, when transac-
tions are suspended and later resumed. An object level val-
idation on resumption invoked by the runtime environment
can ensure correct operation but at the cost of an increased
possibility of aborting. Several alternatives are available to
avoid pitfalls with real addresses allocated to objects ‘wrap-
ping around’ ranging from simple, abort transactions upon
transaction commit generating wrap around, to more elabo-
rate ones involving extra bits of ‘version number’ combined
with addresses.

4.2 Transaction Suspension and Migra-
tion

Any practical transactional scheme will need to deal
with the possibility that the transactional thread can be sus-
pended in mid execution. In addition, it is almost certainly
desirable in a multi-core system to allow threads to mi-
grate across physical resources, e.g. to suspend on one core
and resume on another. It is always possible to abort and
restart but this is likely to severely hinder forward progress
in a system with long running transactions. The saving
of transactional state and subsequent resumption can be a
problem for HTM systems. However, in an object-aware
HTM scheme, it is always possible to flush the data to ob-
ject copies at any point. As long as we maintain the TTB
state, the transaction can be restarted. As discussed above, it
may be necessary for the transaction to validate itself before
proceeding.

4.3 TTB Overflow

As well as overflows in the data cache, it is also possible
that the TTB may overflow. Although the TTB can be rela-
tively large and slow, as it is only accessed on a cache miss
in a similar manner to virtual cache TLBs [4], overflows
will still occur. As the TTB is the place that holds infor-
mation local to an executing transaction, this is a potential
problem. Specifically, a TTB entry holds the pointer to an
object in memory, read and write maps for the object and a
pointer to a temporary object copy if a write to the object
has occurred.

Considering the function of an individual TTB entry, the
pointer to the object is held only as an optimization to avoid
accessing the object table for each field access. This can be
fetched again, from the T-Unit, if needed in the future. The
read and write maps are optimizations that allow the gran-
ularity of conflict to be observed at field level but can be
discarded at the expense of occasional false conflicts. How-
ever, the pointer to an object copy must be remembered if
a TTB entry is displaced otherwise it will not be available
either for future speculative object writes or to replace the
original object during commit. One way to do this is to ex-
tend the TTB into memory using a hash table or software
routines. However, we must also consider the content of the
TTB as a whole. It contains, at object level, the complete
read and write set of the transaction. The complete write
set must be available to broadcast and the complete read set
must be available so that it can be compared against any
other broadcast write sets.

The simplest way to do this is to keep overflow bits asso-
ciated with each TTB line. These can be separated into read
and write overflows allowing a pessimistic approximation
to the read and write sets to be constructed. This is in fact a



Feature Description
L1 object cache 32KB, private, 4-way assoc., 32B line, 1-cycle access.
TTB 24KB, private, 4-way assoc., 12B lines, 1-cycle access.
Network 256-bit bus, split-transactions, pipelined, no coherence.
L2 cache 4MB, shared, 32-way assoc., 32B line, 16-cycle access.
T-Unit 4MB, shared, 32-way assoc., 12B lines, 16-cycle access.
Memory 100-200 cycle off-chip access.

Table 1. Simulation parameters.

Benchmark Parameters
Kmeans-Low -m40 -n20 -t0.05 -i random1000 12
Kmeans-High -m20 -n20 -t0.05 -i random1000 12
Genome -g256 -s16 -m16384
Vacation-Low -n4 -q10 -u80 -r65536 -t4096
Vacation-High -n8 -q10 -u80 -r65536 -t4096
Lee-TM-t 75×75×2 grid, 481 routes
Lee-TM-ter 75×75×2 grid, 481 routes

Table 2. Parameters for the benchmarks.

form of Bloom filter [3] that can be integrated with the TTB
structure. The exact amount of information that needs to be
kept depends on the frequency of overflow. The evaluation
of this mechanism is beyond the scope of this paper.

5 Methodology

To evaluate our object-aware HTM system a prototype
platform has been developed, comprising an event-driven
simulator and an associated static Java compiler and run-
time system. We exercise the hardware using applications
derived from the STAMP benchmark suite [13] and a trans-
actional version of Lee’s routing algorithm [19, 2]; Lee-TM.

5.1 Simulation Platform and Java Run-
time

As in related HTM studies [13, 14], we opt for an event
driven simulation platform with an IPC of 1 for all but mem-
ory operations, observing that transactional performance is
essentially memory bound. Latency, bandwidth and con-
tention for shared resources is modelled at a cycle-level for
all caches, network and memory models within the simu-
lator. Timing assumptions and architectural configurations
are listed in Table 1.

In addition to the simulation platform a static Java com-
piler and runtime system has been implemented. The com-
piler is conventional; Java source is compiled into Java byte-
code, translated into machine code and then linked into an
executable alongside the runtime system code. The static
runtime system has been extended to support the T-Unit for
allocation of objects. In the current system objects are al-
located in a reserved, high-addressed, region of the address
space.

5.2 Benchmark Applications

We exercise our transactional system by executing three
applications (Kmeans, Genome and Vacation) derived from
the STAMP benchmark suite and Lee-TM. For the purposes
of this study the STAMP benchmarks have been imple-
mented in Java by converting C structs into Java objects,
and inserting calls to the runtime system in order to start,
end and abort transactions. It should be noted that no ef-
forts have been made to change or optimize the structures
from the original C version. The outputs of the benchmarks
are verified against the C counterparts. When available the
benchmark’s self verification test has also been ported.

Table 2 presents the parameters used for the benchmarks.
For Kmeans and Vacation we evaluate both high- and low-
contention versions. For Lee-TM we evaluate the transac-
tional implementation Lee-TM-t and also Lee-TM-ter, an
early-release implementation.

6 Evaluation

This preliminary evaluation focuses on the scaling char-
acteristics of the object-aware HTM system to investigate
its feasibility.

6.1 Transaction Profiles

Understanding the performance of a TM system requires
knowledge of the selected applications used for evaluation.
In Table 3 we present transaction profile statistics for the
seven applications used. The transactions range in size
from a few hundred to a few hundred thousand instructions.
Larger transactions help to amortise the transaction start and
commit overheads but also generate larger read and write
sets that must be isolated from global state prior to commit-
ting. We include both the arithmetic mean and coefficient
of variance (COV)1 for read sets, write sets and instructions
per transaction. COV provides a comparison of the varia-
tion in the transactions compared to the mean. For Lee-TM
in particular there is a significant variation in the length of
transactions and hence the size of the working sets. Lee-
TM-t, Lee-TM-ter and Vacation create significantly large
working sets that they overflow the 32KB L1 object cache.

6.2 Performance Analysis

The graph, Figure 5, presents the speedups achieved
from execution of each benchmark on the object-aware
HTM system when scaling from 1 to 32 processors. The

1COV is calculated by dividing the standard deviation by the arithmetic
mean, and produces a dimensionless value that can be compared across
distributions.



Application #Tx #Insts Object readset/Tx Object writeset/Tx Inst/Tx Overflow
Mean COV Mean COV Mean COV Txs Lines

Kmeans-Low 6695 2210121 7.4 0.21 3.5 0.29 330.1 0.54 0 0
Kmeans-High 6695 2210110 7.4 0.21 3.5 0.29 330.1 0.54 0 0
Genome 6596 33859054 44.7 0.85 8.5 0.53 5133.3 1.39 0 0
Vacation-Low 4099 149656758 203.1 0.32 108.6 0.30 36510.6 0.35 176 224
Vacation-High 4099 149656758 266.8 0.40 146.0 0.37 39893.6 0.41 561 1068
Lee-TM-t 1447 540904041 117.5 2.87 78.8 3.07 373810.671 4.12 287 407255
Lee-TM-ter 1447 540908851 15.8 1.35 78.8 3.07 373813.995 4.12 291 407683

Table 3. Transaction profile statistics for all benchmarks.
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Figure 5. Speedups over sequential code for
the object-aware HTM system.

maximum speedups range from 6.33 times for Genome upto
23.01 times for Kmeans-Low. All applications scale to 16
processor cores (arithmetic mean speedup of 10.29), while
Genome speedup begins to tail-off between 8 and 16 cores.
One result that is immediately noticeable from the graph is
that the performance of Kmeans-High for 32 cores dramat-
ically drops. This is an artificial limit imposed by the appli-
cation parameters. On 32 cores, 32 concurrent transactions
attempt insertions (modifications) into 20 clusters (shared
objects) on each iteration, so at least 12 have to abort. Such
scenarios are ideal candidates for adaptive concurrency con-
trol [1].

The scaling characteristics of the object-aware HTM us-
ing STAMP benchmarks are similar to those TM systems
presented in [13]; i.e. where the STAMP suite was intro-
duced.

A breakdown of the total execution time is shown for
all benchmarks in Figure 6. This time is composed of
idle cycles (due to work imbalance), commit cycles (the
commit overhead), violations cycles (time spent executing
within aborted transactions) and finally busy cycles (the use-
ful committed work). A greater proporion of time busy is
better. The cause of the drop off in performance in Kmeans-

High is clearly visible as the number of busy cycles remains
constant from 16 to 32 cores but the time spent in aborted
transactions increases, from 1% at 16 cores upto 23% at 32
cores. Genome is the only benchmark to exhibit a signifi-
cant amount of work imbalance, 22% at 32 cores, an artifact
of the amount of barrier synchronization within the applica-
tion.

Lee-TM-t shows a significant amount of violations, with
aborted transactions accounting for 25 to 73% of the total
execution time for 2 and 32 cores respectively. These vi-
olations are due to false conflicts within the read set when
observed at the algorithmic level (as explained in [19]). One
of the phases of Lee-TM-t reads a large number of elements
into the read set, accounting for the high average of 117.5
objects, most of which are discarded during the immedi-
ate phase of the transaction. We use this observation in the
Lee-TM-ter version of the application to replace all those
reads that will be discarded with non-transactional reads,
essentially ‘early-release’ [11]. This algorithmic change re-
duces the average read set to 15.8 objects, and increases the
speedup at 32 cores from 12.67 to 20.95 times.

6.3 Advantages of Object-Aware HTM

One of the advantages of the object aware approach is
virtualization of version management. Lee-TM-t, Lee-TM-
ter and Vacation all overflow the 32KB L1 cache and it can
be assumed that the working set of some transactions will
always overflow the provided cache resources. As transac-
tions are allocated a separate copy of any object that they
modify, overflows of modified data from the object cache
are handled by line evictions as in a regular cache architec-
ture and similarly the impact on execution performance in
the common case is insignificant.

Figure 7 shows the composition of bus traffic during ex-
ecution. The general trend is that the amount of idle time
on the bus decreases as more cores are added. The major-
ity of traffic growth is associated with four request types:
L1 request, TTB request, Object allocation and L1 Flush.
L1 request and L1 Flush can be distributed in a more ex-
tensible system to avoid them becoming a bottleneck. TTB
request and Object allocation traffic is an artifact of our cur-
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rent preliminary implementation, as any requests to the T-
Unit while locked triggers continual retries until the T-Unit
is unlocked. The retries can easily be eliminated by using a
back-off or queueing policy.

The remaining traffic generated in the system is asso-
ciated with broadcasting of OIDs and write sets. The OID
broadcast traffic on the bus, which includes broadcast of the
OID and the writeset map, is the minimum amount of infor-
mation that needs to be broadcast to other processing cores
to make them aware of potential conflicts. OID broadcast
accounts for less than 5% of the traffic even at 32 cores. As
the object-aware HTM only bradcasts OIDs and the write-
set map rather then the cache lines, the size of the data that
needs to be broadcast in object-aware HTM can be consid-
erably smaller as compared to other HTM systems when
dealing with transactions involving large objects. One ex-

ample is Lee-TM where the number of OIDs broadcast is
less than 2.5 times the number of cache lines that need to
be broadcast. The maximum saving is bound by the basic
object size, 128 bytes in our evaluation.

7 Summary

One way to provide memory versioning and conflict de-
tection in HTM is to extend existing cache coherence pro-
tocols. The majority of proposed HTMs following this ap-
proach have one fundamental weakness, rooted on the as-
sumption that the data set of individual transactions will be
sufficiently small that it will be possible to handle overflows
in software, without too great an impact on performance.

This paper has described the first HTM where the object
structure is recognized and harnessed to solve this weak-



ness. Our approach is very similar to hardware support of
paged virtual memory using a virtually addressed cache and
a TLB. Objects are accessed through OIDs and field offsets
rather than memory addresses. To avoid double indirection
for each object access, object caches and TTBs have been
introduced. Furthermore the TTB (similar to a TLB) to-
gether with T-Units allow overflows from the object cache
and enable a novel commit and conflict detection mecha-
nism. Both Lee-TM and Vacation benchmarks have exhib-
ited overflows that previously would have had to be han-
dled by software with an associated great impact on perfor-
mance. The initial evaluation has shown, through simula-
tion, that an object-aware HTM allows an elegant solution
to the problem of cache overflow within a transaction. It
has provided an insight into the scalability characteristics
of the object-aware HTM. The broadcast of OIDs and write
sets accounts for less than 5% of bus bandwidth showing
the potential of the proposed object-aware HTM.
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