Profiling Transactional Memory Applications

Mohammad Ansari, Kim Jarvis, Christos Kotselidis, Mikeljan, Chris Kirkham and lan Watson
School of Computer Science, University of Manchester
Email:{ansari, kotselidis, jarvis, mikel, chris, watg@@cs.manchester.ac.uk

Abstract—Transactional Memory (TM) has become an active publications [11], [12], [13], [14], [15], [16]. The apphtions
research area as it promises to simplify the development of have been ported to a single TM implementation, the Java-
highly scalable parallel programs. Scalability is quickly becom- based Software TM (STM) called DSTM2 [17], which has

ing an essential software requirement as successive comnityd . - -
processors integrate ever larger numbers of cores. Non-trial been extended with a TM execution profiling framework.

TM applications to test TM implementations have only recenly ~Executing the non-trivial TM applications in a single TM
begun to emerge, but have been written in different programnng implementation allows an investigation of the relationvipetn

languages, using different TM implementations, making anbysis the profiling information gathered, and the performanceéef t

difficult. L
- i applications.
We ported the popular non-trivial TM applications from the PP

STAMP suite (Genome, KMeans, and Vacation), and Lee-TM This paper also repo.rts two new transactional metrics that
to DSTM2, a software TM implementation, and built into it have not been used in previous related work [18], [19]:
a framework to profile their execution. This paper investigges running percentage commit rate, and transaction execution
which profiling information is most relevant to understanding time histogram (defined in Section Il1).
the performance of these non-trivial TM applications usingup to g naper is organized as follows: Section Il introduces
8 processors. We report commonly used transactional exedon o
metrics and introduce two new metrics that can be used to profe the appl_lcatlons proflle_d in this paper. _Sectlon I exptal_n
TM applications. and motivates the metrics used to investigate the tramseadti
behavior of the applications. Section IV walks through the
. INTRODUCTION different performance figures and execution charactesisti
Transactional Memory (TM) [1], [2] is a promising con-Section V introduces related work, and Section VI concludes
current programming abstraction that makes it easier ttewrthe paper with observations of the recorded TM behavior.
scalable parallel programs. It aims to provide the scatgtuf
fine-grain locking, but with the programming ease of coarse-
grain locking. TM has seen a rise in research activity asRecently, several research groups have been working to-
the demand for scalable software increases in order to takards building non-trivial TM applications for thorough TM
advantage of future chip multiprocessors [3]. implementation analysis [6], [7], [8], [9]. Non-trivial TM
TM requires a programmer to mark code blocks that accessplications are important for TM research as they allow
shared data asansactions. Whenever a transaction executeperformance analysis of TM implementations in realistie-sc
a runtime system records the transaction’s data acces®es irarios.
a readset and awriteset. These sets are compared with the o
sets of other concurrently executing transactions for scé® Analyzed Applications
conflicts (write/write or read/write). If conflicting access are This paper analyzes STAMP version 0.9.5 applications
detected then one of the conflicting transactiorsbiwted and Genome, KMeans, and Vacation [6], and Lee-TM [7], [10].
restarted. Acontention manager [4], decides which transaction STAMP applications have been ported from C to Java, and
to abort. A transaction that completes execution of its codenverted from using TL2 [20], another STM, to DSTM2
block without being aborted cazommit its writeset. TM im- [17]. STAMP applications also required the implementation
plementations exist in a variety of flavors, including safter of additional utility classes in DSTM2: transactional irapl
based (STM), hardware-based (HTM), and hardware/softwanentations of a linked list, hash table, and hash map. Lee’s
hybrids (HyTM), and readers can refer to Larus and Rajwaputing algorithm, originally in Java and single-threadkds
[5] for details. been implemented using transactions in DSTM2, with the
Several non-trivial programs specifically designed forapar transactional version named Lee-TM. The remainder of this
lelization with TM have appeared recently [6], [7], [8], [#Jut section briefly describes each application.
have been written in different programming languages,gisin Genome is a gene sequencer that rebuilds a gene se-
different TM implementations, which has made it difficult tajuence from a large number of equal-length overlapping gene
profile them. segments. Each gene segment is an object consisting of a
This paper puts under the same umbrella, our TM profilingharacter string, a link to the start segment, next segment,
framework, the STAMP [6] applications Genome, Vacatioand end segment, and overlap length. The application ee®cut
and KMeans, and Lee-TM [7], [10]. These applications have three phases. The first phase removes duplicate segments
become popular amongst researchers, as evidenced in rebgnransactionally inserting them into a hash set. The s#con

Il. NON-TRIVIAL TM APPLICATIONS

phase attempts to link segments by matching overlappitrgnsaction writes its route, thus causing a read/writdlicon
string subsegments. If two segments are found to overlap tHeemoving grid cells from the readset during the breadth-firs
linking the two segments (by modifying the links in each gengearch eliminates such false-positive conflicts.
segment object, and setting the overlap length) and rergovin
them from the hash set is done transactionally, as multiple
gene segments may match and result in conflict. The matchingVe instrumented the DSTM2 STM to collect execution
is done in a for-loop that starts by searching for the largesata from the execution of the applications. We presentethos
overlap (length-1 characters, since duplicates were rechoynetrics commonly used to characterize applications in tde T
in the first phase), down to the smallest overlap (1 charactditerature, and introduce two new metrics not seen in the T™M
Thus, conflict is likely to rise as execution progressesesintiterature; the transaction execution time histograms ted
smaller overlaps will lead to more matches. In the third phadnstantaneous Commit Rate (ICR).
a single thread passes over the linked chain of segments t&peedupis presented to show how well the applications
output the rebuilt gene sequence. The execution of Genomedsle with increasing number of threads, and is a measure
completely parallel except for the third phase. of the effectiveness of the transactional execution of ghe a
KMeans clusters objects into a specified number of clusterglications. The speedup depends on characteristics oftheth
The application loads objects from an input file, and thempplication and the TM implementation. In this paper we keep
works in two alternating phases. One phase allocates sbjeitie TM implementation constant, and the metrics presemted i
to their nearest cluster (initially cluster centers areigmesl this paper are intended to characterize the applicatiorhatp
randomly). The other phase re-calculates cluster centesd us understand why linear speedup is not achieved. Note that
on the mean of the objects in each cluster. Execution repesgitigle thread execution times include transactional el
edly alternates between the two phases until two consecutii the results reported.
iterations generate, within a specified threshold, sintlaster In transactions (InTX) is the percentage of total time the
assignments. Assignment of an object to a cluster is doapplications spent executing transactions. For the agujsics
transactionally, thus parallelism is controlled by the fem studied, the remaining percentage of time is spent exegutin
of clusters. Execution consists of the parallel phase abgig serial code. A high InTX means an application spent most of
objects to clusters, and the serial phase checking thetigaria its time executing transactions, thus possibly stressiegiv
between the current assignment and the previous. implementation more than an application with low InTX.
Vacation simulates a travel booking database in which Wasted work shows the percentage of transaction execution
multiple threads transactionally book or cancel cars, laptetime spent executing transactions that subsequently edhort
and flights on behalf of customers. Threads can also exe-s calculated by dividing the total time spent in aborted
cute changes in the availability of cars, hotels, and flightsansactions by the time spent in all (committed and abdrted
transactionally. Each customer has a linked list holding hiransactions. High amounts of wasted work can be an indi-
reservations. The execution of Vacation is completelylfglra cator for poor contention management decision-making, low
but available parallelism is limited by the number of reda8 amounts of parallelism in the application.
in the database and the number of customers. Aborts per Commit (ApC) shows the mean aborted
Lee-TM is a circuit router that makes connections automaitransactions per committed transaction. ApC is not diyectl
ically between points. Routing is performed on a 3D grid thaelated to wasted work, but is an indicator for the same ssue
is implemented as a multidimensional array, and each armagntioned for wasted work. For example, high wasted work
element is called a grid cell. The application loads connast in combination with a low ApC (aborting a few long/large
(as pairs of spatial coordinates) from an input file, sorésrth transactions, and favoring many short/small transac)ioresy
into ascending length order (to reduce ‘spaghetti’ roytingndicate poor contention management decision-making, and
and then loads them into thread-local queues in a roundtrobtudying the application may lead to better contention man-
manner. Each thread then attempts to find a route from the fiagfement policies.
point to the second point of each connection by performing Abort histograms detail how the ApC is spread amongst
a breadth-first search, avoiding any grid cells occupied ltlye transactions; e.g. is the ApC due to a minority of transac
previous routings. If a route is found, backtracking lays thtions aborting many times before committing, or vice versa?
route by occupying grid cells. Concurrent routing requires Contention Management Time (CMT) measures the per-
writes to the grid to be performed transactionally. Lee-TMentage of time the mean committed transaction spends-n per
is fully parallel, with conflicts at concurrent read/write o forming contention management when conflicts are detected.
write/write accesses to a grid cell. A second version of Le& combination with wasted work and abort histogram data, it
TM has been implemented that uses early release [4]. Thaspossible to understand which contention manager may be
version removes grid cells from the readset during the ihreadmost effective for the profiled application.
first search. Two transactions may be routable in parallel, Transaction execution time histogramsshow the spread
i.e. the set of grid cells occupied by their routes does not execution times of committed transactions. This metric
overlap, but because of their spatial locality, the brediigh describes how homogeneous or heterogeneous is the amount
search of one transaction reads grid cells to which the sbcarf work contained in transactions for a given application.

IIl. ANALYZED METRICS

Configuration Name Application Configuration

Gen Genome gene length:16384, segment length:64,
number of segments:4194304

KMeansL KMeans low contention miglusters:40, maxlusters:40,
threshold:0.00001, inpufile:random1000012

KMeansH KMeans high contention midusters:20, maxclusters:20,
threshold:0.00001, inpufile:random1000012

VacL Vacation low contention relations:65536, 86 _relations queried:90,
queries per_transaction:4, numbeof_transactions:1024768

VacH Vacation high contention as above, butdf relations queried:10,
queries per_transactions:8

Lee-TM-t Lee w/o early release earlelease:false, inpufile:mainboard.txt

Lee-TM-ter Lee with early release earlglease:true, inpufile:mainboard.txt

TABLE |

APPLICATION PARAMETERS USED TO GATHER EXECUTION CHARACTERITICS.

Instantaneous Commit Rate (ICR)graphs show the pro- IV. PROFILING RESULTS
portion of committed transactions at sample points durirey t All experiments are performed on a 4 x dual-core 2.2GHz

execution of the application. ICR includes only complefes, Opteron-based (i.e. an 8-core NUMA shared memory) ma-
committed or aborted, transactions, and does not inclutiieeacchine with openSUSE 10.1, 16GB RAM, and using Sun Java
transactions. Low ICR is indicative of wasted work. 1.6.0 64-bit. The default configuration of DSTM2 is used:

Readset & writeset sizes are a measure of the memorys_hadow atomic factory, visible readers, and eager conflict
boundedness of committed transactions in an applicatioey T detection [17]. _ _ _
can be used for selecting buffer or cache sizes for Hardwaref@ble I shows the configurations executed for each applica-
TM (HTM) implementations [5]. Data from non-trivial TM tion. STAMP applications are executed using the parameters
applications gives higher confidence that the hardware wi#'ggested in the guidance notes supplied with the suite. Lee
not overflow for a large proportion of transactions. In thigM is executed using the default dataset (a real circuithwit
work a writeset is always a subset of its corresponding rtaddnd without early release [4]. Each experiment is repeated
because all applications first read data before writing ofioer tWenty times and the mean results presented.
applications, these sets may only overlap, or be distinct. ~All popular contention managers [21], [22], [23] have been

used, but only results with thariority manager are presented

Readset-to-writeset ratio (RStoWS)yhows the mean num- as it generally gives some of the best execution times irethes
ber of reads that lead to a write in a committed transactiomenchmarks. The priority manager aborts younger tramseti
Execution usually involves reading a number of data elemengthose with a later start time). Execution time is measureohf
performing computation, and writing a result to a data el@methe point where multiple threads start executing traneasti

. . . o the point where they stop executing transactions, thus

\.ertes—to—wrlteset. ratio captures the_ mean nqmber OtIexcluding any setup time (e.g. of application data strasur

writes to a transactional data element in a committed tranaﬁ;.d any shutdown time (e.g. of validating results, repgrtin

action. Multiple writes indicate further refinement in th%etrics) We begin by presenting the speedup results, and

app||ca_t|on_, Wh‘?” using a STM, 'S possible since only tt}g aid readability the discussion of each metric has been
last write is valid, and all other writes add runtime SySterHemarcated

monitoring overhead. The data for this metric is omitted for
the applications studied as they do not exhibit multipletegri
to a transactional data element. Fig. la illustrates the speedup of each of the target applica
) tions in the DSTM2 STM. Each application is executed with
Reads—to—r(_aadset ratiocaptures _the mean n_umber of reaqi 2, 4, and 8 threads. Speedup for STAMP applications Gen
to a Fransactlonql data element in a committed transactigfhq vac are similar to published results [6], but speedup for
Reading transactionally shared data incurs extra costsaankmeans is significantly lower. Note that we are using ported
high RtoRS ratio, when using a STM, indicates the need {Rsjons of these applications (to Java/DSTM2), and using a
study the implementation and remove multiple reads to tgerent hardware platform than used in the publishedltesu
same transactional data element. For compilers, it derig gjiow direct comparison on our hardware platform, Fig.
an upper limit of how many read operations can be optimizeg, jjjystrates the speedup of the original (i.e. C/TL2) Gen,

away by not recording them again and again. For brevity thig,c and KMeans applications, and also shows that KMeans
data is omitted as only Lee-TM was found to have a high ratigneequp is significantly lower than published results.
and this information is also visible in the RStoWS ratio data

because none of the applications performed multiple wtdes
a transactional data element. Fig. 2a shows InTX results. Readers are reminded transac-

4.00 T T 4.00 T T
eR=10) e I <10] it
B.00 - e 300 | -]
,, I .1thread _| H 1thread
g 280 O 2thread g 250l L] -2 thread
F- RS I I W 4thread | 3 W 4thread
@ 2.00 D W 8thread
a L e .
150 T BN BN R @
150 - Rl o)
1.00---
100 g (e cmCmar W
0.50---
0.00 0501 BN g S I
} - - = =
7] 7] ! I 5 3
5 § £ £ s £ 0.00 5 I 2
| [= c c
= = © | o 5 IS
X X g [} o))
g g g
(a) Speedup of the applications with DSTM2. (b) Speedup of unmodified C code with TL2.
Fig. 1. Speedup of ported code in DSTM2, and original codeli@.T
100 100 T T T T
g so---| WMo - : - e B BO e]
= [l 1thread = [1thread
= [2thread = [2thread
° LM W 4thread B] W 4 thread
= 60 [l 8thread =
o o
£ o Mol Z
Q Q
© ©
& &
20
0 — o
1 2
=]
= =
P
3 8
-
(a) Execution time spent in transactions (InTX). (b) Wasted work (time in aborted transactions).
100.00; T T T T
B BO.00[e
= = [l 1thread
E = [2thread
° W 4thread
3 £ 8000 B thread |
E o
by)
£ & 000k e
8 £ 40.00
< 4
&
20.00[- =77t gy
0.00 0.00 L - - L
T % B I 3 I 3 G % 2 I 8 k> 3
0] < S = T 3 I 0] < S S T e 3
@ i i = > > 3 o in Z > >
- T S ¢ & 0
X J § X g E
(c) Mean Aborts per Commit (ApC). (d) Proportion of time spent in contention management (CMT)

Fig. 2. InTX, wasted work, ApC, and CMT results.

tional execution in these applications is parallel exesytand falling, and thus representing a smaller proportion of titalt

non-transactional execution is serial execution. Gen; e execution time.

ter, and Vac have an InTX of over 95%, and Lee-TM-t has an

InTx of 85% at 8 threads. KMeans spends much less time in

transactions as its serial phase occupies 55% to 75% of totalig. 2b shows wasted work results. Gen and Vac have

execution time. Gen, KMeans, and Lee-TM-t show decreasili§le wasted work (less than 10%). KMeans and Lee-TM-

amounts of InTX as the number of threads increase. t have large amounts of wasted work, e.g. on 8 threads
KMeans' alternating serial phase accounts for its serifilé wasted work is between 35% to 70%. Applications with

execution time, which limits its speedup. The increasir{@rge.amounts of wasted work may be suitable candidates for

proportion of serial execution as the number of threads ris€Udying contention management.

seen in some applications, is due to the parallel executimnt KMeans speedup is limited by the significant sequential

phase seen in Fig. 2a, and large amounts of wasted work. Leenflicts. KMeans’ even spread of aborts in the range 1-49
TM-t has more wasted work than Vac, but scales similarlguggests that the large amounts of wasted work is not due to
Lee-TM-ter has more wasted work than Vac and Gen, batfew transactions aborting a large number of times, buerath
scales higher than both. This shows that poor scalability ca large number of transactions aborting a similar number of
have its root in wasted work (KMeans), but significant wastetimes. Lee-TM-ter reduces the number of aborts compared to
work may not prevent scalability (Lee-TM). Lee-TM-t, showing that early release is effective in redgci
false conflicts. VacH and Vacl's similar abort distribution
suggesting that the low and high contention configuratioas (

Fig. 2¢ shows ApC results. KMeans has the highest Apthe recommended parameters) are not different enough & hav
followed by Lee-TM, Gen, and finally Vac. KMeansH has ag, impact up to 8 threads.

ApC four times higher than Lee-TM-t, but 30% less wasted
work. This suggests Lee-TM-t aborts large/long transastio

as it has fewer aborts, yet large amounts of time spent in therig. 4 illustrates the transaction execution time histogra
aborted transactions. Gen and Vac exhibit a similar trend fi®etric for each of the target app”cations. KMeans transast
KMeans and Lee-TM, respectively. are predominantly of short duration with 97% completing
within 0.1ms. The number of KMeans transactions completing

: . .- within iven interval r xponentially. n an
Fig. 2d shows CMT results. CMT is negligible for Gen t a gve terval decreases exponentially. Gen and

ac transactions have similar profiles with the majority of
- 0
Lee-TM, and Vac. At 8 threads KMeansH has 20% CN”ﬁansactions completing within 1ms. Lee-TM transactiores a

$r':/i|:ailgssl_urg?izinlgOZ;ncC;:eMlT(’-:tel?$tMI-_t(a(|:;1TsMr1-;talfhZz rilm?]s;ggn%f longer duration with a minimum execution time of 5ms.
.The number of Lee-TM transactions completing within a given
KMeansL, and thus should have half as much CMT. From F'ﬁiterval decreases logarithmically
4, Lee-TM-t's mean transaction execution time is far greate , e . ,
than KMeans'. Since the priority contention manager exesut Ve classify KMeans as having the least variance in execu-
deterministically, i.e. always in a very similar amount ioi¢, ton time and Lee-TM as having the most variance in execution
the CMT represents a smaller proportion of the transactidfi’é- The profile of each application appears independent of
time in Lee-TM-t. the number of processors, and independent of low contention
and high contention configuration parameters. The source of
variance in transaction execution times can be deduced from
Fig. 3 presents abort histograms. Single thread executigie applications’ descriptions in Section II-A. KMeanstka
results (i.e., no possible aborts) show that Gen and Vaa#secof variance is due to all transactions executing the same
approximately 1 million transactions, KMeans approxiratecode block with different input data. Gen and Vac have more
250,000 transactions, and Lee-TM more than 1500 transgariance since they execute a selection of code blocks as
tions. In all cases the abort distribution rises with the bem transactions, The logarithmic distribution of executiimes
of threads, although the least impact of this is seen in Vaer Lee-TM corresponds to the distribution of circuit lehgt
Gen shows a unique trend amongst the TM applications; a femthin the input file. Thus, we can conclude that the executio
transactions take 100+ or 1000+ aborts, even with 2 threagiie metric represents a characteristic of the applicatiimer
(i.e. when the probability of conflict is naturally low), lm#& than the execution environment.
committing. This leads to Gen’s abort histograms forming a u
shape when using 2 or 4 threads, which is levelled at 8 threads
KMeans shows a more even spread of aborts in the range 1-4§ig. 5 illustrates the ICR for each of the target applicagion
compared to the other applications. Lee-TM-ter signifiyantThe graph for Gen shows a pronounced dip in the commit rate
reduces the number of aborts compared to Lee-TM-t. VadBpresenting a point in the execution of the applicationmae
and VacL show little difference in abort distributions. large proportion of the wasted work occurs. The commit réte o
The large number of transactions executed suggests therE&f1 is insensitive to the number of threads. KMeans exhabits
ample parallelism available, and the poor scalability ofee Cconstant commit rate, i.e. a fixed proportion of work is weste
in some experiments is not due to a lack of parallel workdroughout the execution of the application. The commi rat
The abort distribution rising with the number of threads i8f KMeans is lower when more threads are used, and up to
a characteristic of the applications: conflicts are indreps 60% of work is wasted when 8 threads are used. Lee-TM
as more transactions are executed in parallel. We Specu@ggibits a continual reduction in the commit rate over time,
Gen's u-shape is due to conflict in inserting elements in@d the commit rate is lower when more threads are used.
hash maps because Gen’s result in Fig. 5 has a short ph¥ae exhibits a high commit rate that continues to rise during
where aborts become significant, which we believe is relatfte execution of the application. The commit rate of Vac is
to the u-shape, and that phase occurs during the insertionisfensitive to the number of threads.
gene segments in to hash maps in preparation for iterativeThe graph for Lee-TM is less smooth than the others
substring matching. Although the same scenario occurs &t the sample rate is low relative to the execution time of
8 threads, the u-shape is masked by a natural rise in otkech transaction. The commit rate of Lee-TM decreases as

Ej

= 10000000 - W o

S 1000000F g U o1

5 100000F - W2

& 10000V b} }-----4083

3 s { O 4-9
= 1000 g @ 10-19
5 L2 A | (R 3 W 20-49
5 N0 R - -3 W 50-99
2 1B m | ﬂl ---3 @ 100-999
2 ot | I]\ I 4 [J 1000+

1 2 4 8

Number of threads

(a) Gen
g B
by 10000005 70 Cw/ 100000 F TH 0
_§ 100000 -4k F E ; 5 100000 --f----- 5 E ;
31 N - © A P .
g 100005 103 § 10000: 10 3
g 1000 --f----- = [4-9 = 1000 --f----- 2 [4-9
= 100F---f----- 4 W 10-19 = 1008) 1 W 10-19
5 N 1 W 20-49 = 2 W 20-49
5 10F 1M 5099 o 10F 7 M 50-99
-g 1 <+ [100-999 <© 1) 7 [0 100-999
5 t ! il 1] E ok ! 1 O 1000+
z 1 2 4 8 z 1 2 4 8
Number of threads Number of threads
(b) KMeansH (c) KMeansL
=))
o o
‘é’ 10000F 1M 0 ‘é’ 10000F 1M 0
S C oy R s .1 O1 S L oy x. . w1 O1
-§ 1000F sl Q 1000¢F 1@ 2
2 aoof b f 408 £ wob |kl 400
= . .1 W 10-19 E S R | . Mr..... .1 1 10-19
- 10 H 2049 5 10 1 W 20-49
5 [1l 50-99 3 [RN (|| NN (|| N ||| R Il 50-99
-g r 1 [100-999 g [J 100-999
S L 1 [1000+ 5 0 L l l | 1 [] 1000+
z 1 2 4 8 z 1 2 4 8
Number of threads Number of threads
(d) Lee-TM-t (e) Lee-TM-ter
=) =)
o o
% 10000000 Tl 0 % 10000000
.5 1000000 g~ """p°" v v 01 5 1000000 --g----"g-- "1
= 100000~k |2 s] 100000 -f-----f------- -
& 100008 bk 0 s & 100005}
g 1000F |- fh e Q4o 8 1000}
= i 1 I 10-19 = i
5 100F - M 2049 5 100F -}
3 0§ 4 W 509 3 108-f-----
g 1 < [100-999 -g 1-F-
= ok | [] 1000+ S ot |
z 1 2 4 8 z 1 2 4
Number of threads Number of threads
(f) VacH (9) VacL

Fig. 3. Abort histograms for each non-trivial TM applicatioEach bar represents the number of transactions thateabargiven number of times before
actually committing. Note y-axis is log scale.

Number of Transactions (log)

1000000F
100000k - -
10000F - -
1000F - -
100F -
10F -
1F--

=)
s
< 100000
§ 100000
g 10000
é 1000
E 100
o 10
3 1
=
=}
=2

T T T T T

2 4 8

Number of threads

(b) KMeansH

EOEEEOOEON

el d ol il

)

S

< 1000
c £
S F
g 100
n £
2 3
= 10F
“6 N
o) 3
o £
E L
=}

b4

2 4 8

Number of threads

(d) Lee-TM-t

S
o
< 100000
S 100000
g 10000
[%2]
§ 1000
= 100
° 10
3 1
€
p=
P4

Fig. 4. Transaction execution time histograms for each migial TM application. The color of each bar represents mgeof elapsed execution times in

T T T T T T T T

Nu

2 4 8

mber of threads
(f) VacH

MY Y Y T T T Y

EOEEEO0ONOE

EO00OEEEOONON

1 2 4 8

Number of threads
(a) Gen

OmOm

EOOmEEC

0.0-0.01
0.01-0.1
0.1-1.0
1.0-5.0
5.0-10.0
10.0-20.0
20.0-50.0
50.0-100.0

10000.0+

100.0-1000.0
1000.0-10000.0

0.0-0.01
0.01-0.1
0.1-1.0
1.0-5.0
5.0-10.0
10.0-20.0
20.0-50.0
50.0-100.0
100.0-1000.0

1000000F
100000F
10000F
1000F
100F -
10F -

1000.0-10000.0
10000.0+

Number of Transactions (log)

1f--

2 4 8

Number of threads

(c) KMeansL

0.0-0.01
0.01-0.1
0.1-1.0
1.0-5.0
5.0-10.0
10.0-20.0
20.0-50.0
50.0-100.0
100.0-1000.0
1000.0-10000.0
10000.0+

1000¢
100

10k

Number of Transactions (log)

1 2

4 8

Number of threads

(e) Lee-TM-ter

PTRTTTTY R SRTTIT MATSRRTT MARRTT

EOEEEOOEON

0.0-0.01
0.01-0.1
0.1-1.0
1.0-5.0
5.0-10.0
10.0-20.0
20.0-50.0
50.0-100.0
100.0-1000.0
1000.0-10000.0
10000.0+

Number of Transactions (log)

1000000F
100000F - -
10000F -
1000 - -
100F -~
10F -

2 4 8

Number of threads

(g) VacL

milliseconds. The vertical axis represents the humberaofstctions completing within the time range.

EO0OEEEOOECON

0.0-0.01
0.01-0.1
0.1-1.0
1.0-5.0
5.0-10.0
10.0-20.0
20.0-50.0
50.0-100.0
100.0-1000.0
1000.0-10000.0
10000.0+

0.0-0.01
0.01-0.1
0.1-1.0
1.0-5.0
5.0-10.0
10.0-20.0
20.0-50.0
50.0-100.0
100.0-1000.0
1000.0-10000.0
10000.0+

0.0-0.01
0.01-0.1
0.1-1.0
1.0-5.0
5.0-10.0
10.0-20.0
20.0-50.0
50.0-100.0
100.0-1000.0
1000.0-10000.0
10000.0+

100 =—
— 80
S5
Q
5 60 E
14 Y
E 40t i
£
3
20 + E
0
Time
(a) Gen
100 100 100
2 thread 2 thread ——) 2 thread ——
4 thread - 4 thread - | 4 thread -
= 80r 8thread - 1 =~ 80r 8 thread - 1 = 80 N[IN|)\ 8thread -
& - & & -
2 Py
£ 6ot 8 £ 60t . g 60
o 14 o 4
E 40t : € 40t : E 40
e £ B R IS
o o o .
o DO b i o 20 } 1 o 20 +
0 0 0
Time Time Time
(b) KMeansH (c) KMeansL (d) Lee-TM-t
100 100 100 — —
) 2 thread —— 2 thread ——
: 4 thread ———— 4 thread -
=~ 80} =~ 80r 8 thread 1 =~ 80r 8 thread 1
s) s
]
g 607 g 60r 1 £ 60t |
14 o 14
E 40t € 40} . E 40t g
£ IS £
o o o
© 2} i © 20} 19 2} :
0 f 0 0
Time Time Time
(e) Lee-TM-ter (f) VacH (9) VacL
Fig. 5. Instantaneous commit rate (ICR) graphs. In our expeits we sampled at 5 second intervals. The commit rate ,fbm@d 8 threads are plotted.

When one thread is used the commit rate is always 100% as d@henso conflicts and thus no aborted transactions.

execution progresses since the circuit becomes more cohwdeadset size for Lee-TM-t. The readset and writeset siza is a
leaving less space for routing new connections, and thus ihdicator of the cost of validating concurrent transacti@s
number of conflicts increases. Both Vac and Gen have a hitfie sets must be compared. The execution costs associdied wi
commit rate which is insensitive to the number of concurremtlidation are a characteristic of the execution enviromtne
threads.

We observe that there is great variation in the ICR metric V& can see in Fig. 1a that Gen exhibits a larger speedup
for each target application. The profile of some applicationfVith additional threads than Vac, despite Fig. 2b showireg th
changes in time and altering the number of threads impafl§ amount of wasted work in both Gen and Vac is low and
each application differently. The ICR metric is an impottar{”d?pe”dent of the number of threads, and Fig. 4 showing that
characteristic of the application and its sensitivity tce thih€ir transaction execution times are similar. The exeouti
concurrent execution environment. cost associated with the validation of transactions in \@ac i
greater than that of validating a transaction in Gen as the
readset and writesets are larger. The differing scalgbdlit
Table Il illustrates the mean readset and writeset size @en and Vac can be accounted for by their differing readset
committing transactions for each of the target applicaionand writeset sizes. The effect of early release on Lee-TM is
There is great variation in the readset and writeset sizesmake the readset size of Lee-TM-ter independent of the
of the target applications. The readset and writeset sizenismber of threads. The smaller readset and writeset size of
independent of the number of threads, except in the caseof Liee-TM-ter has a significant effect on its scalability when

Application Readset Writeset

1 thread [2 threads] 4 threads| 8 threads]| 1 thread| 2 threads]| 4 threads[8 threads
Gen 8 8 8 8 7 7 7 7
KMeansH 152 152 152 152 152 152 152 152
KMeansL 157 156 156 156 157 156 156 156
Lee-TM-t 243231 196590 162015 130081 423 421 422 421
Lee-TM-ter 427 425 426 427 423 421 422 423
VacH 168 166 165 165 30 30 30 30
VacL 77 75 74 72 20 20 21 20

TABLE I

MEAN READSET AND WRITESET SIZE OF COMMITTED TRANSACTIONSN BYTES.

1000 The non-trivial TM applications used in this work have been

—] investigated in their respective publications. Gen, KMg#n
R T | I W tread KMeansL, VacH and VacL [6] were used to show the scalabil-
W 4thread] ity of a new hybrid (hardware/software) TM implementation,

Il 8thread

10 and the metrics presented included the mean number of

instructions, read and write barriers per transaction, ied
percentage of time spent executing transactions. Our wask h
analyzed further characteristics of these TM applications
Lee’s routing algorithm [7] was described as a suitable
non-trivial TM application, and its study of aborts led to
the use of early release. Early release showed dramatically
improved scalability. However the evaluation was perfaime
Fig. 6. Ratio of readset to writeset (RStows). in an abstracted TM environment. This paper has presented a
range of execution characteristics for Lee-TM-t and Lee-TM
ter, as well as performance figures from executing on DSTM2.
Scottet al. [9] developed another non-trivial TM application
based on Delaunay triangulation. We were not able to build a
fair port of the application for DSTM2 as their implementati
Finally, Fig. 6 presents RStoWS ratios. Gen and KMeamses features specific to the Solaris operating system.
have a 1-to-1 ratio. Lee-TM-t has a very high ratio, but Lee- Finally, Guerraouiet al. [8] developed another non-trivial
TM-ter has a 1-to-1 ratio. Lee-TM-ter’s lower ratio compdire TM application called STMBench7. Dragojevie al. [24]
to Lee-TM-t highlights the benefit of early-release, andveho performed an investigation and found DSTM2 (and other
the expansion phase was increasing the ratio by a ratio $fM implementations) unable to execute STMBench7: due
hundreds. VacH has a slightly higher ratio than VacL de significant memory overheads in the case of DSTM2.
expected from the configuration parameters.

Ratio Readset/Writeset (log scale)

Gen
KMeansH
KMeansL

Lee-TM-t
Lee-TM-ter
VacH

VacL

compared to Lee-TM-t.

VI. CONCLUSIONS

V. RELATED WORK This paper has investigated profiling, and its relation ® th

Chung et al. [19] presented the most comprehensi\/@erformance, of several popular non-trivial TM applicato
study looking at 35 different TM benchmarks ranging fron® TAMP applications Genome, KMeans, and Vacation, and
mainly scientific computing (JavaGrande, SPLASH-2, NAd.ee-TM. To achieve this, we have developed a new TM
and SPECOmp)’ to commercial workloads (DaCAPO’ arﬂloflhng framework a.nd pOI’ted the app|icati0nS to a common
SPECjbb). These TM benchmarks were generated f0||owi§d'M system. Two new metrics that have not been presented in
a direct translation from the original parallel benchmarkéie TM literature were introduced: transaction executioret
The performance evaluation provided a wealth of data witHstograms and instantaneous commit rate (ICR). A summary
respect to size of transactions, readset and writeset, siZdfsthe most relevant findings follows.
nested transaction depth, and so on. However, they have nat Poor scalability can have its root in wasted work (as

evaluated the non-trivial TM applications studied in thégpr, shown by KMeans), but significant wasted work may not
nor have they generated the execution characteristicstezpo prevent scalability (as shown by Lee-TM).
here. o Readset and writeset size can be a good indicator of

Perfumoet al. [18] perform execution characterizations of application scalability in the absence of wasted work.
Haskell TM benchmarks, but does not present the same range Transaction execution time histogram analysis led to
of metrics shown in this work, nor study any of the non-trivia the discovery that KMeans has the most homogeneous
TM applications considered in this paper. transaction execution times, Genome and Vacation have

medium variance in transaction execution times, and Leg9]
TM has the most heterogeneous transaction execution
times.

« KMeans executes hundreds of thousands of transactions,
but its scalability is limited due to a large amount of timéL0l
spent executing serial code, and a large amount of wasted
work.

o Lee-TM shows the potential all-round benefits of earlg1
release, by increasing scalability, and reducing wast &]
work, contention time, ApC, and readset size.

« Lee-TM has the highest probability of overflowing HTM
resources, and accordingly stress HyTM systems due[{Q]
its large readset and writeset.

« Vacation has little wasted work, low ApC, negligible
CMT, and a high ICR, but its scalability up to 8 threads
is at best around 1.5, and data on readset and writegeat
sizes revealed this may be due to the application’s cost
of transaction validation.

« Instantaneous commit rate (ICR) graphs revealed that
Genome has a phase of execution where available pafH
lelism drops dramatically, Lee-TM has a decaying ICR,
and KMeans distributes its wasted work evenly over its
total execution.

e ICR graphs also showed that Genome and Vacatiorglss]
commit rates are independent of the number of threads
up to 8 threads, whereas KMeans and Lee-TM’s commif]
rate drops as the number of threads increases.

o From a contention management point of view the ICR7]
graphs revealed KMeans and Lee-TM exhibit the most
complex behavior.

Michael L. Scott, Michael F. Spear, Luke Dalessandral ®irendra J.
Marathe. Delaunay triangulation with transactions andriéa. In
IISVC ’07: Proceedings of the 2007 IEEE International Symposium
on Workload Characterization, pages 107-113. IEEE Computer Society
Press, September 2007.

Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mlik.ujan, Chris
Kirkham, and lan Watson. Lee-TM: A non-trivial benchmark faans-
actional memory. IHCA3PP ’'08: Proceedings of the 7th International
Conference on Algorithms and Architectures for Parallel Processing.
LNCS, Springer, June 2008.

Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mlik.ujan, Chris
Kirkham, and lan Watson. Investigating software transaeti memory
on clusters. InIWJPDC '08: 10th International Workshop on Java
and Components for Parallelism, Distribution and Concurrency. IEEE
Computer Society Press, April 2008.

Pascal Felber, Christof Fetzer, and Torvald Riegel. ndyic perfor-
mance tuning of word-based software transactional menioripPoPP
'08: Proceedings of the 13th ACM SGPLAN Symposium on Principles
and Practice of Paralld Programming, pages 237-246. ACM Press,
February 2008.

Maurice Herlihy and Eric Koskinen. Transactional bing: a method-
ology for highly-concurrent transactional objects. RPoPP '08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 207-216. ACM Press, February
2008.

Christoph von Praun, Rajesh Bordawekar, and Calin &ascModeling
optimistic concurrency using quantitative dependencelyaisa In
PPoPP '08: Proceedings of the 13th ACM S GPLAN Symposium on
Principles and Practice of Parallel Programming, pages 185-196. ACM
Press, February 2008.

Torvald Riegel and Diogo Becker de Brum. Making objbased STM
practical in unmanaged environments. TRANSACT '08: Third ACM
S GPLAN Workshop on Transactional Computing, February 2008.
Maurice Herlihy and Eric Koskinen. Checkpoints and tdmmations
instead of nested transactions. TIRANSACT ’'08: Third ACM S GPLAN
Workshop on Transactional Computing, February 2008.

Maurice Herlihy, Victor Luchangco, and Mark Moir. A flite frame-
work for implementing software transactional memory. OOPSLA
'06: Proceedings of the 21st Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 253-262.
ACM Press, October 2006.

Cristian Perfumo, Nehir Sonmez, Adrian Cristal, Osntarsal, Mateo
Valero, and Tim Harris. Dissecting transactional exeaigiin Haskell.
In TRANSACT ’07: Second ACM SIGPLAN Workshop on Transactional

18
REFERENCES (18]

(1]

(2]

Maurice Herlihy and J. Eliot B. Moss. Transactional meyndArchi-
tectural support for lock-free data structures.|8CA '93: Proceedings
of the 20th Annual International Symposium on Computer Architecture,
pages 289-300, May 1993.

Nir Shavit and Dan Touitou. Software transactional meynén PODC
'95: Proceedings of the 14th Annual ACM Symposium on Principles of

[19]

Computing, August 2007.

JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Austen Meldion
Brian D. Carlstrom, Christos Kozyrakis, and Kunle Olukaturfhe

common case transactional behavior of multithreaded progr In

HPCA '06: Proceedings of the 12th International Symposium on High

Performance Computer Architecture, pages 266—277, February 2006.

Distributed Computing, pages 204-213. ACM Press, August 1995. [20] Dave Dice, Ori Shalev, and Nir Shavit. Transactionakiag II. In DISC
[3] Richard McDougall. Extreme software scalin§CM Queue, 3(7):36— '06: Proceedings of the 20th International Symposium on Distributed
46, 2005. Computing. LNCS, Springer, September 2006.
[4] Maurice Herlihy, Victor Luchangco, Mark Moir, and Witim N. Scherer [21] William Scherer lll and Michael L. Scott. Contention nagement in

(5]
(6]

(7]

(8]

Ill. Software transactional memory for dynamic-sized dsttactures. In
PODC ’'03: Proceedings of the 22nd Annual Symposium on Principles
of Distributed Computing, pages 92-101. ACM Press, July 2003.
James R. Larus and Ravi Rajwalransactional Memory. Morgan and
Claypool, 2006.

Chi Cao Minh, Martin Trautmann, JaeWoong Chung, AustesDidnald,
Nathan Bronson, Jared Casper, Christos Kozyrakis, andekDhlkotun.
An effective hybrid transactional memory system with sgrasolation
guarantees. IhSCA '07: Proceedings of the 34th Annual International

Symposium on Computer Architecture, pages 69-80. ACM Press, June[24

2007.

lan Watson, Chris Kirkham, and Mikel Lujan. A study ofransactional
parallel routing algorithm. InPACT ’'07: Proceedings of the 16th
International Conference on Parallel Architectures and Compilation

Techniques, pages 388-400. IEEE Computer Society Press, September

2007.

Rachid Guerraoui, Michat Kapatka, and Jan Vitek. STMBen
A benchmark for software transactional memory. HaroSys '07:
Proceedings of the 2nd European Systems Conference, pages 315-324.
ACM Press, March 2007.

[22]

(23]

dynamic software transactional memory. @8IP '04: Workshop on
Concurrency and Synchronization in Java Programs, July 2004.
Rachid Guerraoui, Maurice Herlihy, and Bastian Pochofoward a
theory of transactional contention managersP@DC ' 05: Proceedings
of the 24th Annual Symposium on Principles of Distributed Computing,
pages 258-264. ACM Press, July 2005.

William Scherer 1ll and Michael L. Scott. Advanced cention
management for dynamic software transactional memorQBC ' 05:
Proceedings of the 24th Annual Symposium on Principles of Distributed
Computing, pages 240-248. ACM Press, July 2005.

] Aleksandar Dragojevic, Rachid Guerraoui, and Michalplka. Divid-

ing transactional memories by zero. TRANSACT '08: Third ACM
S GPLAN Workshop on Transactional Computing, February 2008.

