
Steal-on-abort: Dynamic Transaction Reordering to
Reduce Conflicts in Transactional Memory

Mohammad Ansari
University of Manchester
ansari@cs.man.ac.uk

Mikel Luján
University of Manchester
mikel@cs.man.ac.uk

Christos Kotselidis
University of Manchester

kotselidis@cs.man.ac.uk

Kim Jarvis
University of Manchester
jarvis@cs.man.ac.uk

Chris Kirkham
University of Manchester
chris@cs.man.ac.uk

Ian Watson
University of Manchester

watson@cs.man.ac.uk

ABSTRACT
In Transactional Memory (TM) if any two concurrently ex-
ecuting transactions perform conflicting data accesses, one
of them is aborted. The transaction to be aborted is usu-
ally selected by some form of contention manager. Aborted
transactions waste computing resources, and reduce perfor-
mance. Ideally, concurrent execution of transactions would
be ordered to minimize aborts, but such an ordering is often
either complex, or unfeasible, to obtain.

This paper presents introduces a new technique called steal-

on-abort, which aims to improve transaction ordering at run-
time. When a transaction is aborted, it is typically restarted
immediately. However, due to close temporal locality, the
immediately restarted transaction may repeat its conflict
with the same transaction that aborted it the first time,
leading to another aborted transaction. In steal-on-abort,
the aborted transaction is stolen by the non-aborted trans-
action, and queued behind it, thus preventing the two trans-
actions from conflicting again.

Steal-on-abort operates at runtime, and requires no application-
specific information or offline pre-processing. In this pa-
per, steal-on-abort is considered for eager-validation TM
systems, and evaluated using a sorted linked list, red-black
tree, and STAMP-vacation with different contention man-
agers. The evaluation reveals a range of improvements in
throughput performance, and in the transactional metrics
wasted work, and aborts-per-commit (APC).

1. INTRODUCTION
Recent progress in multi-core processor architectures, cou-
pled with challenges in advancing uniprocessor designs, has
led to mainstream processor manufacturers adopting multi-
core designs. Modest projections suggest hundred-core pro-
cessors to be common within a decade. Although multi-core
has re-invigorated the processor manufacturing industry, it

has led to an important change in software development.

The execution time of software has improved on successive
generations of uniprocessors. However, on future multi-core
processors this ‘free’ improvement will not materialize un-
less the software is multi-threaded, i.e., parallelized, and
thus able to take advantage of the increasing number of
cores. Furthermore, given the number of cores predicted
in future processors, software will need to be parallelized to
non-trivial levels.

Parallel (or concurrent) programming, using explicit locking

to ensure safe access to shared data, has been the domain
of experts, and is well-known for being challenging to build
robust and correct software. Typical problems include data
races, deadlock, livelock, priority inversion, and convoying.
Parallel applications also usually take longer to build, and
correcting defects is complicated by the difficulty in repro-
ducing errors. However, the move to multi-cores requires
adoption of parallel programming by the majority of pro-
grammers, not just experts, and thus simplifying it has be-
come an important challenge.

Transactional Memory (TM) is a new parallel programming
model that seeks to reduce programming effort, while main-
taining or improving execution performance, compared to
explicit locking. TM research has surged due to the need
to simplify parallel programming. In TM, programmers are
required to mark those blocks of code that access shared
data as transactions, and safe access to shared data by con-
currently executing transactions is ensured implicitly (i.e.,
invisibly to the programmer) by a TM system. The TM
system compares each transaction’s data accesses against all
other transactions for conflicts, also known as conflict detec-

tion or validation. If conflicting data accesses are detected
between any two transactions, one of them is aborted, and
usually restarted immediately. Selecting the transaction to
abort, or conflict resolution, is based upon a policy, some-
times referred to as a contention management policy. If a
transaction completes execution without aborting, then it
commits, which makes its changes to shared data visible to
the whole program.

In order to achieve good scalability on multi-core architec-
tures, it is important that the number of aborted transac-
tions is kept to a minimum. Aborted transactions reduce
performance, reduce scalability, and waste computing re-

sources. Furthermore, certain (update-in-place) TM imple-
mentations require extra computing resources to roll back
the program to a consistent state. The order in which trans-
actions are executed concurrently can affect the number of
aborts that occur, and given complete information a priori
it may be possible to determine an optimal order (or sched-
ule) that minimizes the number of aborts. However, in prac-
tice this is difficult to achieve because complete information
is not available for many programs, e.g., due to dynamic
transaction creation, or impractical to obtain. Additionally,
even if complete information is available, the search space
for computing the optimal order of transactions is likely to
be infeasibly large.

This paper presents an initial design space exploration of
a novel technique called steal-on-abort, which aims to im-
prove transaction ordering at runtime. When a transaction
is aborted, it is typically restarted immediately. However,
due to the close temporal locality, the immediately restarted
transaction may repeat its conflict with the original trans-
action, leading to another aborted transaction. Steal-on-
abort targets such a scenario: the transaction that is aborted
is not restarted, but instead ‘stolen’ by the non-aborted
transaction, and queued behind it, thus preventing the two
transactions from conflicting again. Steal-on-abort requires
no application-specific information or offline pre-processing,
and it is considered for eager validation TM systems in this
paper.

Steal-on-abort is implemented in DSTM2 [1], a Software TM
(STM) implementation, that has been modified to employ
random work stealing [2] to execute transactions. Steal-on-
abort is evaluated with different contention managers us-
ing two widely used benchmarks in TM (sorted linked list
[3], and red-black tree [3]), and a non-trivial benchmark
(STAMP-vacation [4]). The evaluation reveals hundred-fold
performance improvements for some contention managers,
while negligible performance difference for others.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces steal-on-abort, the strategies developed,
its implementation in DSTM2, and related work. Section
3 evaluates steal-on-abort, presenting results for execution
time, and transactional execution metrics [5] wasted work,
and aborts-per-commit (APC). Finally, Section 4 completes
the paper with a summary and overview of future work.

2. STEAL-ON-ABORT
In all TM implementations, a data access conflict between
two transactions requires conflict resolution to abort one of
them. In most TM implementations, the aborted transac-
tion is immediately restarted. However, we observed that
the restarted transaction often conflicts with the same trans-
action again, and gets aborted again, which we refer to as
a repeat conflict. In general it is difficult to predict the first
conflict between any two transactions, but once a conflict
between two transactions is observed, it is logical not to ex-
ecute them concurrently again (or, at least, not to execute
them concurrently unless the repeat conflict is avoided).

Steal-on-abort does not restart the aborted transaction im-
mediately; it ‘gives’ the aborted transaction to the oppo-
nent transaction, and a new transaction is started in place

Figure 1: DSTM2 is modified to implement per-

thread deques that store transactional jobs. Threads

take jobs from the head of their own deque.

of the aborted transaction. This strategy aims to reduce the
amount of temporally local aborts, and similar to a greedy
search algorithm, expects that minimizing temporally local
aborts will minimize the global number of aborts, and thus
improve execution performance and efficiency of TM.

Steal-on-abort relies on removing repeat conflicts between
pairs of transactions to improve performance. A repeat con-
flict occurs when an aborted transaction conflicts for a sec-
ond time with a transaction that is still active. The more
repeat conflicts that occur in an application, the more effec-
tive steal-on-abort is likely to be. In applications that have
a high number of unique aborts, i.e., few of them are repeat
conflicts, steal-on-abort may not improve results.

Finally, steal-on-abort reorders transactional jobs, and de-
pending on the strategy (for examples, see below), the re-
ordering may be significant. It is beyond the scope of this
paper to provide a complete analysis of the impact of this
reordering on fairness and responsiveness.

The remainder of this section details the concrete imple-
mentation of random work stealing, and steal-on-abort in
DSTM2, and then goes on to explain the two design vari-
ants of steal-on-abort evaluated in this paper.

2.1 Implementation in DSTM2
DSTM2, like most other STM implementations [6, 7, 8], cre-
ates a number of threads that concurrently execute trans-
actions. In order to implement steal-on-abort, we imple-
mented random work stealing [2] in DSTM2, because once
a thread’s transaction is stolen (on abort), it must obtain
another transaction to execute.

Figure 2: If a thread deque is empty, it steals work

from the tail of another, randomly selected, thread’s

deque.

2.1.1 Adding Random Work Stealing to DSTM2
A java.util.concurrent.LinkedBlockingDeque, which is
a thread-safe double-ended queue (deque), was added to
each thread, and named mainDeque, as shown in Figure 1.
The deque allows LIFO and FIFO operations, and is used
to store transactional jobs. A transactional job is simply an
object that holds parameters needed to execute a transac-
tion. In the benchmarks used in this paper, these parameters
were generated randomly. Threads execute transactions by
removing a job from the head of their deque, placing it in
the thread variable currentJob and executing the transac-
tional code block using the parameters stored in the job.
The benchmarks used in this paper were modified to load
jobs onto each thread’s mainDeque in a round-robin manner
during benchmark initialization, which is excluded from the
execution times reported in the evaluation in Section 3.

Figure 2 illustrates work stealing in action. Work stealing
is implemented with the method workSteal(), which first
attempts to retrieve a job from the head of the thread’s own
deque, and if that is empty, attempts to steal a job from
the tail of another randomly selected thread’s deque. In
any one call to workSteal() the threads from which theft
has already been attempted are recorded so that random
selection is performed only over the remaining threads. If
a job is returned by the call, then it is stored in the thread
variable currentJob, and not in any deque.

2.1.2 Steal-on-abort Operation
To implement steal-on-abort, a second private deque, named
stolenDeque, is added to each thread to hold jobs stolen by
the transaction currently executing on a thread. Once a
transaction completes executing (i.e., commits or aborts),
the jobs in the stolenDeque are moved to the mainDeque.

The second deque is necessary to hide stolen jobs other-
wise they may be taken and executed concurrently by other
threads that have no jobs, while the current transaction is
still active, thus re-introducing the possibility of a repeat
conflict.

Figure 3 illustrates steal-on-abort in action. Steal-on-abort
is explained from the perspectives of the victim thread (the
one from which the aborted transaction is stolen) and the
stealing thread. Each thread has an additional flag, called
stolen. If a victim thread detects its transaction has been
aborted, it waits for its stolen flag to be set, and then calls
workSteal() to obtain a new job if its mainDeque is empty,
storing it in currentJob, and then clears the stolen flag.
The victim thread must wait on the stolen flag, otherwise
access to the variable currentJob would be unsafe.

The stealing thread operates as follows. In DSTM2, a trans-
action is aborted by using Compare-And-Swap (CAS) to
change its status flag from ACTIVE to ABORTED. If the steal-
ing thread’s call to abort the victim thread’s transaction
in this manner is successful, it proceeds to steal the victim
thread’s job that is stored in its currentJob variable. After
the job is taken, the victim thread’s stolen flag is set.

2.2 Steal-on-abort Strategies
Two steal-on-abort strategies that differ in when they choose
to re-execute a stolen job are described and evaluated. When
an aborted job is stolen, and subsequently moved from the
stolenDeque to the mainDeque, it can either be placed at
the head of the mainDeque, or the tail.

Steal-Tail. If jobs are placed at the tail, the thread will ex-
ecute the stolen jobs last, although the job may be executed
earlier by another thread due to work stealing. As an exam-
ple, the round-robin allocation of jobs means jobs that were
created close in time will likely be executed close in time.
For benchmarks with a close relationship between a job’s
creation time and its data accesses, executing a stolen job
right after the current job may lead to conflicts with other
transactions, therefore placing stolen jobs at the tail of the
deque may reduce conflicts.

Steal-Head. If jobs are placed at the head, the thread will
execute the stolen jobs first. For benchmarks that do not
show the temporal locality described above, placing jobs at
the head of the deque may take advantage of cache local-
ity to improve performance. For example, data accessed by
transaction A, which aborts and steals transaction B’s job,
is likely to have at least one data element (the data element
that caused a conflict between the two transactions), in the
processor’s local cache.

2.3 Related Work
Limited research has been carried out in transaction re-
ordering for improving TM performance. Bai et al. [9]
introduced a key-based approach that colocates transactions
based on their calculated keys. Although their approach im-
proves performance, it requires an application-specific for-
mula to calculate keys for transactions. Furthemore, per-

Figure 3: Steal-on-abort in action. Thread A is executing a transaction based on Job 2, and Thread B is

executing a transaction based on Job 6. In step 1, thread A’s transaction conflicts with, and aborts, Thread

B’s transaction. In step 2, thread A steals thread B’s job, and places it in its own stolenDeque. In step 3,

after thread A finishes stealing, thread B gets a new job, and starts executing it immediately.

formance is based on the effectiveness of the formula, and
it may be difficult to generate such formulas for some ap-
plications. In contrast, our approach does not require any
application-specific information.

3. EVALUATION
The experiments will test whether steal-on-abort provides
performance improvements, and whether it reduces the wasted
work and APC. In this section, Normal execution refers to
execution without steal-on-abort, Steal-Head refers to steal-
on-abort execution where stolen jobs are moved to the head
of the mainDeque, and Steal-Tail refers to execution where
stolen jobs are moved to the tail. All execution schemes
utilize random work stealing as explained previously.

3.1 Platform
The platform used to execute benchmarks is a 4 x dual-core
(8-core) Opteron 880 2.4GHz system with 16GB RAM, run-
ning openSUSE 10.1, and using Sun Hotspot Java VM 1.6
64-bit with the flags -Xms4096m -Xmx14000m. Benchmarks
are executed using DSTM2 set to using the shadow factory,
and eager validation. Benchmarks are executed with 1, 2, 4,
and 8 threads, each run is repeated 6 times. Mean results
are reported with ±1 standard deviation error bars.

3.2 Benchmarks
The benchmarks used to evaluate steal-on-abort are linked
list [3], red-black tree [3], and STAMP-vacation [4]. Here-
after, they are referred to as List, RBTree, and Vacation, re-
spectively. List and RBTree microbenchmarks transaction-

ally insert or remove random numbers into a sorted linked
list or tree, respectively. Vacation is a benchmark from the
STAMP suite (version 0.9.5) ported to DSTM2 that sim-
ulates a travel booking database with three tables to hold
bookings for flights, hotels, and cars. Each transaction sim-
ulates a customer making several bookings, and thus several
modifications to the database. The number of threads used
represents the number of concurrent customers.

Evaluating steal-on-abort requires the benchmarks to gen-
erate large amounts of transactional conflicts. Below, their
execution configurations to produce high contention scenar-
ios are described.

List and RBTree are configured to perform 20,000 randomly
selected insert and delete transactions with equal probabil-
ity. Additionally, after executing its code block, each trans-
action waits for a short delay, which is randomly selected
using a Gaussian distribution with a standard deviation of
1.0, and a mean duration of 3.2ms. The execution time of
the average committed transaction in List is 4ms, and in
RBTree is 0.2ms, before the delays were added. The de-
lays are used to simulate transactions that perform extra
computation while accessing the data structures. This also
increases the number of repeat conflicts.

To induce high contention in Vacation, it is configured to
build a database of 128 relations per table, and execute
1,024,768 transactions, each of which performs 50 modifi-
cations to the database.

3.3 Contention Managers
Aggressive [3], Polka [10], and Priority contention managers
(CMs) are used to provide coverage of published CM poli-
cies. Aggressive always aborts the opponent transaction.
Polka gives the opponent transaction time to commit before
aborting it. Polka waits exponentially increasing amounts
of time for a dynamic number of iterations (equal to the dif-
ference in the number of read accesses performed by the two
transactions). The parameters for Polka are based on the de-
faults [10]. Priority immediately aborts the younger of the
two transactions based on their timestamps. Without steal-
on-abort, Priority gives the best performance, followed by
Polka, and finally Aggressive gives the poorest performance
with the high contention configurations used (see below).

3.4 Performance

Normal
Steal−Tail
Steal−Head

 0

 20

 40

 60

 80

 100

 120

1 2 4 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

List − Aggressive

Normal
Steal−Tail
Steal−Head

 0

 50

 100

 150

 200

 250

1 2 4 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

List − Polka

Normal
Steal−Tail
Steal−Head

 0

 50

 100

 150

 200

 250

1 2 4 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

List − Priority

Figure 4: List throughput. Higher is better.

Figure 4 shows the transaction throughput results for List.
The Aggressive CM, which gives the poorest performance
benefits significantly with steal-on-abort. Steal-Tail gives a
422 times improvement at 4 threads, 99 times improvement
at 8 threads, while Steal-Head gives 36 times and 16 times
respectively. Using Polka the benefit is less pronounced, but
still significant with both steal-on-abort strategies giving an
8 times improvement at 4 threads, and 1.6 times improve-
ment at 8 threads. Priority, the best performing CM in these
results, sees no benefit of using steal-on-abort, and perfor-
mance actually degrades slightly at 8 threads.

Steal-Head improves Polka’s performance such that it is
close (within 3%) to the performance of Priority, the best
performing CM. Steal-on-abort strategies also give Polka
improving performance over single thread execution as the

Normal
Steal−Tail
Steal−Head

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

RBTree − Aggressive

Normal
Steal−Tail
Steal−Head

 0
 20
 40
 60
 80

 100
 120
 140
 160

1 2 4 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

RBTree − Polka

Normal
Steal−Tail
Steal−Head

 0

 50

 100

 150

 200

 250

1 2 4 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

RBTree − Priority

Figure 5: RBTree throughput. Higher is better.

number of threads is increased. Furthermore, neither strat-
egy is a clear winner, with Steal-Tail giving significantly
better performance improvements using the Aggressive, and
Steal-Head performing better with Polka and Priority. Fi-
nally, the large standard deviations in List with Aggressive
are due to (data not shown here) Steal-Head execution ei-
ther completing in either a short duration, or approximately
5 times greater duration than the short duration. This sug-
gests that Steal-Head can be further improved to consis-
tently execute in the shorter duration.

Figure 5 shows the throughput results for RBTree. Aggres-
sive again achieves significant performance improvements
with steal-on-abort: Steal-Tail gives a 344 times improve-
ment at 4 threads, and 1159 times improvement at 8 threads,
while Steal-Head gives a 7 times and 144 times improve-
ment respectively. Using Polka, again the benefit is less
pronounced, but significant, with steal-on-abort strategies
giving approximately 9 times improvement at 4 threads, and
1.6 times improvement at 8 threads. Finally, Priority again
sees no benefit of using steal-on-abort.

The performance results with RBTree show many similar
characteristics to those seen with List: e.g. Aggressive achieves
significant improvements, Polka’s improvements are near iden-
tical, and Priority sees no improvement. However, with RB-
Tree steal-on-abort is not able to improve Polka’s perfor-
mance enough to match that of Priority’s, and Steal-Head’s
large standard deviations now extend to Polka for the same
reason described earlier. Finally, the performance improve-
ments as more threads are added do not increase as seen in
List.

Normal
Steal−Tail
Steal−Head

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

1 2 4 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

Vacation − Aggressive

Normal
Steal−Tail
Steal−Head

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

1 2 4 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

Vacation − Polka

Normal
Steal−Tail
Steal−Head

 0
 2,000
 4,000
 6,000
 8,000

 10,000
 12,000
 14,000
 16,000

1 2 4 8

T
ra

ns
ac

tio
ns

/s
ec

on
d

Threads

Vacation − Priority

Figure 6: Vacation throughput. Higher is better.

Figure 6 shows the throughput results for Vacation. Aggres-
sive achieves 192 times improvement with 4 threads, and 133
times improvement at 8 threads when using Steal-Tail. With
Steal-Head, this falls to 21 times and 93 times respectively.
Polka improves by 88 times and 8 times with both steal-on-
abort strategies, respectively, and Priority does not benefit.

In this benchmark the improvements seen with Aggressive
are less salient than seen in List and RBTree, and as the
number of threads increases Aggressive also exhibits lower
improvements than in RBTree. Conversely, Polka improves
by larger margins than seen previously, and steal-on-abort
again improves Polka’s performance to bring it close to that
of Priority, as seen in List.

Performance results have shown that Steal-Tail performs
better with Aggressive, but Steal-Head performs better with
Polka, and neither improve Priority’s performance. The
results also showed that the steal-on-abort strategies gave
varying degrees of improvements depending on the appli-
cation used. Steal-Head suffered from inconsistent perfor-
mance improvements that lead to large standard deviations,
and thus raises opportunities for further refinement.

3.5 Wasted Work
The transactional metric wasted work is the proportion of
execution time spent in executing aborted transactions, and
is useful in measuring the cost of aborted transactions in
terms of computing resources, and it is used here to see
if steal-on-abort reduces this cost. Wasted work execution
times are normalized to Normal execution’s wasted work
time for each number of threads in each benchmark (hence

Normal
Steal−Tail
Steal−Head

 0
 20
 40
 60
 80

 100
 120
 140
 160

1 2 4 8T
im

e
in

 a
bo

rt
ed

 tr
an

sa
ct

io
ns

 (
s.

)

Threads

List − Aggressive

Normal
Steal−Tail
Steal−Head

 0
 20
 40
 60
 80

 100
 120
 140
 160

1 2 4 8T
im

e
in

 a
bo

rt
ed

 tr
an

sa
ct

io
ns

 (
s.

)

Threads

List − Polka

Normal
Steal−Tail
Steal−Head

 0

 10

 20

 30

 40

 50

 60

1 2 4 8T
im

e
in

 a
bo

rt
ed

 tr
an

sa
ct

io
ns

 (
s.

)

Threads

List − Priority

Figure 7: Wasted work in List. Lower is better.

Normal wasted work is always 1.0). No transactional aborts
occur in single thread execution since there is no other con-
current transaction to conflict with, and thus single thread
execution has zero wasted work.

Figures 7-9 show wasted work results. With Aggressive,
in all benchmarks Steal-Tail reduces wasted work by larger
margins than Steal-Head, which corresponds to the improved
performance seen earlier. Steal-Tail reduces wasted work by
30% to 70% in List, 30% to 50% in RBTree, and 15% to
80% in Vacation.

With Polka, Steal-Head improves by a slightly larger margin
in all benchmarks. Steal-Head reduces wasted work by 57%
to 87% in List, 4% to 56% in RBTree, and 95% to 99%
in Vacation. Although the average wasted work increases
slightly in RBTree at 8 threads, it is within the standard
deviation error, and thus a non-result.

Finally, steal-on-abort gives mixed wasted work results for
Priority. In List the wasted work reduces by 25% at 2
threads, but increases by 22% in RBTree with Steal-Tail,
and at 8 threads wasted work increases in List by 10% for
both steal-on-abort strategies. At 4 threads the results for
both List and RBTree show steal-on-abort to reduce wasted
work. However, in Vacation wasted work falls by 15-30%,
gradually as the number of threads increases.

Normal
Steal−Tail
Steal−Head

 0
 20
 40
 60
 80

 100
 120
 140
 160

1 2 4 8T
im

e
in

 a
bo

rt
ed

 tr
an

sa
ct

io
ns

 (
s.

)

Threads

RBTree − Aggressive

Normal
Steal−Tail
Steal−Head

 0
 20
 40
 60
 80

 100
 120
 140
 160

1 2 4 8T
im

e
in

 a
bo

rt
ed

 tr
an

sa
ct

io
ns

 (
s.

)

Threads

RBTree − Polka

Normal
Steal−Tail
Steal−Head

 0

 10

 20

 30

 40

 50

 60

1 2 4 8T
im

e
in

 a
bo

rt
ed

 tr
an

sa
ct

io
ns

 (
s.

)

Threads

RBTree − Priority

Figure 8: Wasted work in RBTree. Lower is better.

3.6 Aborts per Commit (APC)
The aborts per commit ratio (APC) is the number of aborts
divided by the number of commits. It is another indicator of
the efficiency with which computing resources are utilized,
but it is less significant than wasted work because it ignores
the execution durations of the aborted and committed trans-
actions. We investigate it here because steal-on-abort should
reduce APC in benchmarks that exhibit repeat conflicts.

Figures 10-12 present APC results. Using Aggressive, for
all benchmarks at 2 threads there is little difference in APC
between steal-on-abort and Normal execution. At 4 and 8
threads, however, steal-on-abort results in a negligible APC
compared to Normal execution. Given the performance im-
provements of steal-on-abort for Aggressive, it is plausible
that the high APC value is due to a large number of repeat
conflicts. Also, again Steal-Tail is the better performer for
Aggressive.

Execution with Polka for all benchmarks exhibits a high
APC value when the number of threads is low that decreases
as the number of threads increases. This may seem counter-
intuitive: if increasing the number of threads leads to more
conflict (due to the high contention parameters used), then
APC should increase with the number of threads, not de-
crease. However, Polka’s CM policy is to yield for a period

Normal
Steal−Tail
Steal−Head

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

1 2 4 8T
im

e
in

 a
bo

rt
ed

 tr
an

sa
ct

io
ns

 (
s.

)

Threads

Vacation − Aggressive

Normal
Steal−Tail
Steal−Head

 0
 20
 40
 60
 80

 100
 120
 140
 160

1 2 4 8T
im

e
in

 a
bo

rt
ed

 tr
an

sa
ct

io
ns

 (
s.

)

Threads

Vacation − Polka

Normal
Steal−Tail
Steal−Head

 0

 1

 2

 3

 4

 5

 6

1 2 4 8T
im

e
in

 a
bo

rt
ed

 tr
an

sa
ct

io
ns

 (
s.

)

Threads

Vacation − Priority

Figure 9: Wasted work in Vacation. Lower is better.

of time before aborting a conflicting transaction. The yield
period is dynamic, and related to the number of reads per-
formed by the opposing transaction. For Normal execution
in high contention situations, increasing numbers of trans-
actions are likely to be yielding (due to conflict) when exe-
cuting with increasing numbers of threads. This will lead to
an increase in wasted work time, but a reduction in APC,
and a reduction in performance, both of which have already
been observed earlier.

Finally, steal-on-abort reduces APC for List and Vacation
using Priority. For RBTree Steal-Tail always has a higher
APC ratio than Normal execution, and Steal-Head has a
similar or slightly lower APC ratio. Although the APC ra-
tios are higher, they do not consistently correlate to a higher
wasted work, or performance degradation.

4. SUMMARY AND FUTURE WORK
This paper has presented an evaluation of a new runtime
approach, called steal-on-abort, that dynamically re-orders
transactions with the aim of reducing the number of aborted
transactions. Steal-on-abort requires no application specific
information or offline pre-processing. Two different steal-on-
abort strategies were introduced that differed in either ex-
ecuting stolen transactions immediately, or executing them
last.

Normal
Steal−Tail
Steal−Head

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

1 2 4 8

A
P

C

Threads

List − Aggressive

Normal
Steal−Tail
Steal−Head

 0

 20

 40

 60

 80

 100

 120

1 2 4 8

A
P

C

Threads

List − Polka

Normal
Steal−Tail
Steal−Head

 0

 5

 10

 15

 20

 25

1 2 4 8

A
P

C

Threads

List − Priority

Figure 10: APC in List. Lower is better.

Steal-on-abort was evaluated against two widely used bench-
marks in TM, sorted linked list and red-black tree, and one
non-trivial benchmark, STAMP-vacation. Using the Ag-
gressive CM, performance results were typically improving
in the range of 100 times, and significant improvements in
transactional metrics was also observed. With Polka, consis-
tent performance improvements were observed, and in two
benchmarks these lead Polka to be competitive with the best
CM: Priority. Finally, Priority did not benefit from steal-
on-abort in terms of performance, but in several cases its
transactional metrics results improved.

The steal-on-abort evaluation presented early findings, and
the design space has not been fully explored, however, we
have found the observed improvements encouraging, and
plan to continue our investigation. For future work, we hope
to implement and evaluate other more steal-on-abort strate-
gies, as well as refine those presented. Examples of new
strategies under consideration include: not moving stolen
jobs in the stolenDeque to the mainDeque when the current
transaction completes executing, marking certain transac-
tions as not stealable, and stealing blocks of transactions.

5. REFERENCES
[1] Maurice Herlihy, Victor Luchangco, and Mark Moir. A

flexible framework for implementing software
transactional memory. In OOPSLA ’06: Proceedings

of the 21st Annual Conference on Object-Oriented

Programming Systems, Languages, and Applications,
pages 253–262. ACM Press, October 2006.

[2] Robert D. Blumofe, Christopher F. Joerg, Bradley C.
Kuszmaul, Charles E. Leiserson, Keith H. Randall,

Normal
Steal−Tail
Steal−Head

 0

 5,000

 10,000

 15,000

 20,000

 25,000

1 2 4 8

A
P

C

Threads

RBTree − Aggressive

Normal
Steal−Tail
Steal−Head

 0

 20

 40

 60

 80

 100

 120

1 2 4 8

A
P

C

Threads

RBTree − Polka

Normal
Steal−Tail
Steal−Head

 0

 50

 100

 150

 200

 250

1 2 4 8

A
P

C
Threads

RBTree − Priority

Figure 11: APC in RBTree. Lower is better.

and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. Journal of Parallel and Distributed

Computing, 37(1):55–69, 1996.

[3] Maurice Herlihy, Victor Luchangco, Mark Moir, and
William N. Scherer III. Software transactional
memory for dynamic-sized data structures. In PODC

’03: Proceedings of the 22nd Annual Symposium on

Principles of Distributed Computing, pages 92–101.
ACM Press, July 2003.

[4] Chi Cao Minh, Martin Trautmann, JaeWoong Chung,
Austen McDonald, Nathan Bronson, Jared Casper,
Christos Kozyrakis, and Kunle Olukotun. An effective
hybrid transactional memory system with strong
isolation guarantees. In ISCA ’07: Proceedings of the

34th Annual International Symposium on Computer

Architecture, pages 69–80. ACM Press, June 2007.

[5] Cristian Perfumo, Nehir Sonmez, Adrian Cristal,
Osman Unsal, Mateo Valero, and Tim Harris.
Dissecting transactional executions in Haskell. In
TRANSACT ’07: Second ACM SIGPLAN Workshop

on Transactional Computing, August 2007.

[6] Virendra Marathe, Michael Spear, Christopher Herio,
Athul Acharya, David Eisenstat, William Scherer III,
and Michael Scott. Lowering the overhead of software
transactional memory. In TRANSACT ’06: First

ACM SIGPLAN Workshop on Transactional

Computing, June 2006.

[7] Dave Dice, Ori Shalev, and Nir Shavit. Transactional
locking II. In DISC ’06: Proceedings of the 20th

International Symposium on Distributed Computing.
LNCS, Springer, September 2006.

Normal
Steal−Tail
Steal−Head

 0
 2,000
 4,000
 6,000
 8,000

 10,000
 12,000
 14,000
 16,000
 18,000

1 2 4 8

A
P

C

Threads

Vacation − Aggressive

Normal
Steal−Tail
Steal−Head

 0

 200

 400

 600

 800

 1,000

 1,200

1 2 4 8

A
P

C

Threads

Vacation − Polka

Normal
Steal−Tail
Steal−Head

 0
 0
 1
 2
 2
 2
 3
 4
 4
 4

1 2 4 8

A
P

C

Threads

Vacation − Priority

Figure 12: APC in Vacation. Lower is better.

[8] Pascal Felber, Christof Fetzer, and Torvald Riegel.
Dynamic performance tuning of word-based software
transactional memory. In PPoPP ’08: Proceedings of

the 13th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, pages 237–246.
ACM Press, February 2008.

[9] T. Bai, X. Shen, C. Zhang, W.N. Scherer, C. Ding,
and M.L. Scott. A key-based adaptive transactional
memory executor. In IPDPS ’07: Proceedings of the

21st International Parallel and Distributed Processing

Symposium. IEEE Computer Society Press, March
2007.

[10] William Scherer III and Michael Scott. Advanced
contention management for dynamic software
transactional memory. In PODC ’05: Proceedings of

the 24th Annual Symposium on Principles of

Distributed Computing, pages 240–248. ACM Press,
July 2005.

