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Why Asynchronous Logic?
❑ Low power

 to be done

onent reusability

 at particular frequencies
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❍ Do nothing when there is nothing

❑ Modularity

❍ Added design freedom and comp

❑ Electromagnetic Interference (EMI)

❍ Clocks concentrate noise energy

❑ Security?

❍ Surprise the hackers

❑ Crazy idea

❍ Very few other people are were d
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How is it done?
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By handshaking …

❑ Message passing
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What’s hard about it?
Synchronous design allows:
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❑ Static design of logic

❑ Non-local interactions

❑ Big choice of design tools

❑ Slowing down the clock if timing error

Asynchronous logic works well only for local in

❑ Individual blocks of logic are straightfo

❍ Timing must be carefully accoun

❑ Simple pipelines are easy

❑ Interactions between ‘distant’ blocks h

❍ Many synchronous structures “im

❑ Lack of suitable design/verification too
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What have we done?
AMULET1 (1994)
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❑ ARM6 compatible processor (almost

❑ Feasibility study

❑ 1.0 µm 60 000 transistors

AMULET2e (1996)

❑ ARM7 compa

❑ Asynchronou

❑ 0.5 µm 450 0

AMULET3i (2000)

❑ ARM9 compatible processor

❑ Memory, DMA controller, bus, …

❑ 0.35 µm 800 000 transistors

❑ Commercial application
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AMULET2e EMC

ET3 product.
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AMULET3i
- an Asynchronous System-on-Chip
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AMULET3 Processor
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Process-level Parallelism
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Example: decode & execute stages

❑ Various threads – many invoked cond

❑ Skewed pipeline latches (to lower pow

❑ Variable stage delay (e.g. ‘stretching’

❑ Differing pipeline depths (extra buffer
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Reorder Buffer
The reorder buffer is a key feature of AMULET3.
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❑ It allows instructions to complete in a

❑ It resolves register dependencies.

❑ It allows register forwarding.

❑ It permits low-overhead memory man

❑ It supports exact page fault exception

All of 

Execute

Data memory
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Reorder Buffer
The insight is obvious – (with hindsight):

 time,
clusive

 filled in turn,
wanted)
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❑ Data can arrive down any path at any
providing their targets are mutually ex

❑ Read out waits for each register to be
then copies out the result (or not if un

❑ Copy out frees the register but does n

Reg. Reg. Reg.
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Memory system
8Kbytes of RAM is accessible via two ‘local’ buses

s a higher bandwidth

riteData

ataAdr

RWD

RDA

S
D

A

S
W

D

M
D

A

M
W

D

M
R

D

D A D

rget

DataDec/
Arbiter

Initiator
AMULET3i - an As
AMULET

group

❑ The RAM is ‘dual-port’ (at this level)

❑ The instruction bus is simpler so it ha
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Memory structure
The local RAM is divided into 1Kbyte sub-blocks

 from the ‘Ibuffers’
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❑ Unified RAM model

❑ Close to dual-port efficiency

Roughly half of instruction fetches are satisfied
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microprocessor
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MARBLE
❑ Centrally arbitrated, multi-channel, asynchronous on-chip bus

 for address and data
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❑ Separate, decoupled transfer phases

❑ Standard ‘master’ and ‘slave’ interfac

Supports: 8-, 16- and 32-bit transfers, bus lock

Synchronous brid
❑ A slave interface for clocked peripher

❑ Performs synchronisation in the usua

Supports: conventional clocked peripherals.

External bus interf
❑ Self-timed memory interface (softwar

❑ Usable as external test interface

Supports: 8-, 16- and 32-bit memories, SRAM
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DMAC – making models with Balsa
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❑ About 70 000 transistors

❑ Regular structures (i.e. register banks

❑ Control synthesised from Balsa descr

❑ Cheats slightly by letting a clock into 
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AMULET3i – Vital Statistics

ous subsystem)

eneric design rules)

se generic, ASIC rules.
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Transistor count

❑ AMULET3 – 113 000

❑ RAM (total) – 504 000

❑ DMA controller – 70 000

❑ EMI – 26 000

❑ Total – 800 000 (asynchron

Geometry

❑ 0.35µm, 3 layer metal (using ARM’s g

Area

❑ AMULET3i – ~25mm2

❑ AMULET3 – ~3mm2

Note: the local RAMs are relatively large in the
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System Performance (Measured)
❑ Peak Native MIPS 79 MIPS (96 in Thumb code)

IPS (ARM)

IPS (Thumb) (-30%)

 (simulation result)

ore

licon process information

stone MIPS)
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❑ 149 kDhrystones1/s – 85 Dhrystone M

❑ 108 kDhrystones/s – 62 Dhrystone M

❑ AMULET3i power average 130 mW

❍ 60% is within the processor core

❑ 660 MIPS/W for the system

❍ 1100 MIPS/W for the processor c

About 15% slower than expected – awaiting si

For comparison:

❑ 0.35µm ARM9 ⇒120 MHz, (133 Dhry
800 MIPS/W

1. Dhrystone 2.1 benchmark (normalised to VAX MIPS)
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Bus Speeds (Simulated)

0 cache’ hits or not.

05Mwords/s)

83Mwords/s)

77Mwords/s)

63Mwords/s)

 ‘hits’.

lute numbers may be lower.
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Local RAM bandwidths

Speed depends on bus and whether the ‘level

❑ Instruction bus ‘hit’ 9.5ns (1

❑ Instruction bus ‘miss’ 12ns (

❑ Data bus ‘hit’ 13ns (

❑ Data bus ‘miss’ 16ns (

In typical code >50% of instruction fetches are

MARBLE

❑ Total bandwidth – 85Mword/s

❑ For any one initiator – 55Mwords/s

Caveat: these are from simulations – the abso



ynchronous System-on-Chip – October 18th 2000 – 19

Comments
❑ AMULET3i is about 2x faster than AMULET2e

n normalised for the
0.5µm)

 memory bandwidth

re (CPU >100 MIPS)

 too soon!)

e limiting factor in
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(not yet known why)

etter than ARM9!
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❍ The speed-up is about 1.4x whe
different processes (0.35µm vs. 

❍ This is less than was expected

❑ The performance is heavily limited by

❍ There should be another 30% he

❍ (The designer moved continents

❑ The Thumb decompression logic is th
Thumb code

❍ Speed was not a design priority 

❑ Simulated performance not met

❍ MIPS -15%

❍ MIPS/W +35% – considerably b
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Conclusions

l’ designs
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Asynchronous logic:

❑ can be competitive with ‘conventiona

❑ has particular advantages with low-po

❍ think portable systems

❑ may be the only solution to some tas

❍ especially block interconnections

but

❑ designing big systems is a lot of work

❑ it’s hard to catch up with the big comp

www.cs.man.ac.uk/a
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