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Abstract

m-of-n codes can be used for carrying data over self-
timed on-chip interconnect links. Such codes can be chosen
to have low redundancy, but the costs of encoding/decoding
data is high. The key to enabling the cost-effective use of
m-of-n codes is to find a suitable mapping of the binary data
to the code.

This paper presents a new method for selecting suitable
mappings through the decomposition of the complex
m-of-n code into anincompletem-of-n code constructed
from groups of smaller, simpler m-of-n and 1-of-n codes.

The circuits used both for completion detection and for
encoding/decoding such incomplete codes show reduced
logic size and delay compared to their full m-of-n counter-
parts. The improvements mean that the incomplete m-of-n
codes become attractive for use in on-chip interconnects
and network-on-chip designs.

1. Introduction

Quasi-Delay Insensitive (QDI) logic [7] is an attractive
asynchronous design style for many reasons, but especially
for the simple timing closure and analysis that it allows.
There is growing interest in using self-timed or delay-
insensitive (DI) approaches for system-level interconnect,
with the ITRS roadmap [13] suggesting this will become
the prevalent approach.

There are many possible DI data encodings, but very few
of these are practical for CMOS logic design. Dual-rail
encoding, a 1-of-2 code, has been the dominant style to
date, but recently there has been interest in 1-of-4 signal-
ling[1,3,4] which uses half the number of signal transitions
to convey two bits of data with signalling activity on just
one wire.

Beyond 1-of-4, one-hot 1-of-n codes are significantly
more expensive than a dual-rail encoding, e.g. the 3-bits of
data that can be carried in a 1-of-8 code requires only 6
wires in dual-rail, 4-bits requires a 1-of-16 code, but only 8
wires in dual-rail. Other more complex codes which offer

better efficiency have been proposed for use in specia
applications, predominantly involving chip-to-chip com
munication [6].

2. Long-distance, on-chip connectivity

The issue of long distance on-chip communication
becoming more significant as CMOS feature sizes shri
and the relative costs of wire delays and logic dela
changes. One of the consequences is that longer conn
tions are now often broken into multiple segments sep
rated by buffers to repower the signal, as in figure 1, th
minimizing the propagation latency. For improved through
put, the buffers can be replaced by latches.

Typically a point-to-point interconnect as illustrated in
figure 1 will be many bits wide, requiring multiple self-
timed code-groups as illustrated in figure 2 to carry the da
word to give DI operation. At every pipeline latch repeate
stage (two shown), each of the g groups has to be comp
tion-detected on the latch outputs, and then a g-input C-e
ment tree is used to gather the group acknowledges toge
into a single acknowledge signal for the latch stage. This
fed back to the preceding stage, through suitable bufferi
to give the drive necessary to fan-out the acknowledge to
of the latches in the preceding stage.

Since asynchronous circuits are effectively a series
interlocked ring-oscillators, their performance is dete
mined by the delays in one loop of the slowest stage. He
measured in inverting logic stages, this is made up from (

Figure 1: Buffering signals to minimize latency
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following the shaded grey loop): Delay=
2x2 (2 inversions in each of the two high drive-strength

datapath C-element latches)
+ 2 w (two long wires, 1 forwards, 1 acknowledge)
+ log2(g) (1 inversion in each level of the tree of low

drive-strength C-elements in acknowledge path)
+ log2(g) (buffer in acknowledge path prior to fan-out

to many C-elements in preceding latch stage)
+ completion-detector
+ (1+ completion-detector + 2 log2(g)) mod 2
The final term arises because every loop must contain an

odd number of logical inversions for correct operation/
oscillation to occur and thus an additional inverter may be
required – dependent on the logic depth of the completion
detector, C-element tree and buffer.

Some of these terms are fixed – the repeater latches are
essential; wire delays are determined by the space between
repeaters which is chosen to minimise latency. The others
can be varied.

In earlier work [2], we suggested using narrow links
each with their own acknowledge signal, operating at
higher speeds in a time-division multiplexed manner to pro-
vide a fatter virtual pipe that allowed eight 1-of-4 encoded
channels operating in parallel to provide comparable
throughput to an equivalent 32-bit dual-rail channel, but
using much less resource. That approach trades an
increased number of wires (additional acknowledge sig-
nals) for reduced cycle-times (no C-element tree and little
buffering in the acknowledge path) allowing higher fre-
quency operation.

Here, we present a new approach for using more com-
plex delay-insensitive codes, to increase the “code-density”
beyond that possible with 1-hot codes such as dual-rail or
1-of-4.

3. Delay Insensitive Codes

Unordered codes are codes in which no code word
contained in any other. They possess the property that
time of arrival of individual bits does not affect the inter
pretation of the code word. Consequently, these cod
have many applications in error correction and dela
insensitive communication.

DI codes can be characterised by three main factors [1

• Efficiency

• Membership test

• Encoding/Decoding complexity

Efficiency is determined by a code’srate R,the number
of binary bits per wire given by:

where M is thesizeof the code (the number of data val
ues represented) andn is lengthof the code (the number of
wires occupied).

Membership test is the completion detection function
determine the arrival of valid data. Encoding/Decodin
complexity is the circuitry required to extract the datawor
from the code word. Both concepts are difficult to quantif

Costs given in this paper will be based on implementin
these functions using the Delay-Insensitive Minterm Sy
thesis (DIMS) technique [10]. DIMS functions are gene
ated using the complete set of valid products for th
function. Each product is formed using a C-element (to gi
DI operation on the return-to-zero phase) across each of
inputs as illustrated in figure 3.

While DIMS circuits are often far from optimal, they are
useful in a delay-insensitive environment as they simpli
the creation of logic functions with respect to dela
assumptions. They are employed here because the siz
such circuits can easily be determined as a function of t
valid products. All costs are given in terms of transistors p
bit, based on the circuitry required to represent 32-bit da

Figure 2: Self-timed multiple-group pipeline
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paths. In all cases, the minimum integer number of code-
groups required to represent the symbols is used.
Encoding and decoding costs are for converting between
dual-rail and the relevant code since it is assumed that the
data will arrive at the interface from a DI dual-rail datapath.

The costs are calculated as follows: C-elements and OR
gates of up to 3 inputs are used. 2-input C-elements contain
10 transistors, and 3-input 12, 2-input or gates contain 6
transistors and 3-input 8. For codes where log2(no of sym-
bols) is not an integer, the encode and decode costs are
infeasibly large due to the need to form 232 products repre-
senting all of the symbols in the datapath. In these cases the
costs in table 1 assume that the number of valid symbols has
been reduced to the nearest power of two.

There are many different types of DI codes. The most
important of these are described below and characteristics
of examples of these codes are summarised in table 1.

1-of-n codesare 1-hot codes of size n. Wider datapaths
are created by concatenating many such codes together.
The simplest, and most efficient of the 1-of-n codes are
1-of-2 (dual-rail) and 1-of-4 codes, both of which have a
rate of 0.5. The main advantage of the 1-of-n code is the
ease of completion detection. Because data is represented
by a single ‘1’ within a code group, completion detection
can be performed with a simple OR of the wires.

Systematic codes are those in which some bits represent
valid binary encoded data symbols and others, the so-called
check bits, are introduced to make the code delay-insensi-
tive. A dual-rail encoding is an example of a systematic
code. Encoding and decoding of systematic codes to binary
values is straightforward with little overhead. It should be
noted that table 1 presents results for transforming to/from
dual rail interfaces. In the case of a dual-rail code, the
encoding and decoding costs are obviously zero.

No 1-of-n codes for n > 2 are systematic and therefore
data encoded in a 1-of-4 scheme incurs encoding and
decoding costs. For n > 4, the efficiency of the code
decreases dramatically, consequently these codes are rarely
used.

m-of-n codesare the superset of 1-of-n codes. Here the
presence of m ‘1’s on n wires represents the arrival of a data
word. As in 1-of-n codes, small code groups may be con-
catenated to form wider datapaths. The size of an m-of-n
code is given bynCm.

The most optimal of the m-of-n codes, the Sperner code,
is also the most optimal DI code, here m = n/2. However the
completion detection and encoding/decoding overheads for
m-of-n codes with n > 2 areconsiderable. Example costs for
2-of-4, 2-of-7 and 3-of-6 codes are presented in table 1.
DIMS completion detection methods involve large sets of
products that are of exponential order with increasing n. As
m-of-n codes with n > 2 are not systematic, encoding and
decoding complexity may be great. The costs in table 1 are

for a simple DIMS implementation using a complete set
products. Although more optimal techniques are possib
the circuits depend on the code and the ordering chose

Systematic codes, as previously described, are code
where the information content can be distinguished fro
the check bits required to make the code unordered. T
most optimal systematic code, the Berger code consists
I data bits and k check bits, where I = 2k-1. The checkbits,
k, record the number of zeros in the I-bit data word. Th
length of a Berger code is:  giving a rate of

As table 1 shows, DIMS techniques are unsuitable f
Berger codes due to the need to use a complete set of pr
ucts. This makes completion detection and encoding ve
expensive. It should be noted that the high cost of decod
is due to the need for completion detection to signify a val
code word. Realistic completion detection methods f
Berger codes and other systematic codes are explained
Piestrak [8] and Akella [1]. Applying Piestrak’s technique
reduces the complexity of completion detection of th
I=32,K=5 berger code to 109 transistors/bit. This als
reduces the encoding costs to 124.6 and decoding cos
131.9 transistors/bit.

4. Incomplete Codes

As discussed in sections 2 and 3 the rate of 1-of-n cod
deteriorates rapidly beyond a 1-of-4 code and the comple
ity of the logic circuits necessary to use n-of-m codes is to
great.

In this section, a method is presented to combine sm
1-of-n codes together so as to increase the number of sy
bols beyond the products of their constituent compone

232

Code M Rate
Completion
detection

Encoding Decoding

transistors-per-bit

Dual-Rail 2 0.5 11.9 0 0

1-of-4 4 0.5 9.9 20 12

2-of-4 6 0.65 35.6 30 32

3-of-6 20 0.72 80.9 116 100

2-of-7 21 0.63 73.9 133 108

Berger
I=32, K=5

0.86 2.6x1010 2.0x1010 2.6x1010

Table 1: Properties of DI-codes and DIMS imple-
mentations

I Ilog2+

R
Ilog2
I

I Ilog2+
--------------------- I

I Ilog2+
---------------------= =

2
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codes without drastically increasing the completion detec-
tion complexity.

When two codes are concatenated, the number of sym-
bols in the resultant code is given by the product of the two
code sizes. This number can be increased by moving ‘1’s
between the code groups, allowing one of the groups to
adopt ordered or invalid values. These values can, however
be detected by the data value in the other code group thus
preserving the delay-insensitivity of the code as a whole.
This method can be applied to any concatenation of m-of-n
codes. If any ‘1’ is permitted to move between code groups
so that all groups are allowed to adopt unordered values, a
regular M-of-N code is created (where M is the sum of all
weightings (m) of constituent codes and N is the combined
number of wires (n) in the code). When movement is only
permitted in a single direction, the code size is increased
beyond that of the simple concatenation of the codes, but
not to the full M-of-N code. Such a code is anincomplete
[8] m-of-n code, represented here as m-of-n*, and offers
opportunities for simpler completion detection and encod-
ing/decoding as discussed later.

To further illustrate the composition and use of the
incomplete m-of-n* code, this paper focuses on two exam-
ples where movement is only permitted in a single direc-
tion. In each case one group is chosen as thecontrolgroup
that adopts ordered values by acquiring or donating ‘1’s to
or from the otherbodygroups. It should be noted that the
number of ‘1’s active on the wires carrying a code is kept
constant at m and therefore the number of transitions con-
tributing to energy consumption is not increased by this
technique.

4.1. Example A1: the incomplete 2-of-7* code

A seven wire code can be composed from a 1-of-3 and a
1-of-4 code. Twelve values can be formed from the con-
catenation of these two codes. Using the 1-of-3 code as con-
trol, an extra six values can be generated by using the idle-
state value (000), also known asspacerand adding an extra
‘1’ to the body group thereby converting these 6 values
from a 1-of 4 code to a 2-of-4 code. This gives 18 values in
total as shown in figure 4 compared with 21 for a complete
2-of-7 code.

A valid codeword is detected when a valid 1-of-3 code
and a valid 1-of-4 code are detected or when a valid 2-of-4
code is detected. Although this is more complicated than
completion detection for a 1-hot code, it is considerably
more simple than that required for a complete 2-of-7 code.

The completion detection circuitry (discussed in more
detail in section 5) can be further simplified by treating the
two-of-four code as two dual-rail codes (body0 and body1),
avoiding the illegal ‘11’ symbols (markedi on fig 4), leav-
ing 16 usable symbols.

The incomplete 2-of-7 code now has a rate of 0.57,
14% improvement over both a 1-of-2 dual rail code and
1-of-4 code. The mapping of the binary values to code sym
bols shown in figure 4, and other possible mappings, a
discussed in section 6 since their principal affect is on t
encoding and decoding complexity.

4.2. Example B1: the incomplete 3-of-6* code

A similar code can be generated in 6 wires using a du
rail and a 2-of-4 code group. Concatenating these two cod
creates 12 symbols. Here the dual-rail code is used as a c
trol group, allowing extra values to be generated by “bo
rowing” a ‘1’ from the 2-of-4 code, and using the “11”
symbol of the dual-rail code as illustrated in figure 5.

It should be noted that the spacer symbol of the dual-r
code could have been adopted as in the previous exam
and a 3-of-4 code used; however, this makes encodin
decoding the symbols more complex. If both the spac
symbol and the “11” symbol are used the code become
regular 3-of-6 code. The incomplete code shown has a r
of 0.67.

This method can be extended to any concatenation
m-of-n codes. However, with the increase in size, partic
larly in the control group, comes an increase in completio
detection and encoding/decoding overheads. Addition
examples of its application are shown in table 2. In th
remainder of this document codes created using th
method will be denoted by m-of-n*, to differentiate them
from regular m-of-n codes. In table 2 each encodin
adopted by each group is listed, the spacer values
marked ‘spacer’, and the all-one values are marked with

Figure 4: Incomplete 2-of-7 code
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n-of-nentry. The ‘useful symbols factor’ column gives the
number of symbols per constituent code combination with
the ‘total’ column showing the total number of symbols
representable by the m-of-n* code. The number of informa-
tion bits this can represent is shown in the rightmost col-
umn.

5. Completion detection

Detecting the arrival of data in delay-insensitive circuits
is an important and often non-trivial problem [1,8].

From table 1 it can be seen that 1-of-n codes are the eas-
iest to detect, with the complexity reduced for increasing
sizes of n. Unfortunately, m-of-n codes are more compli-
cated to detect: the complexity is proportional to the
number of symbols and is also dependent on the size ofm
because of the limited fan-in of CMOS gates.

Small m-of-n codes can be detected usingthreshold
logic, such as that proposed by Theseus Logic [5]. Thresh-
old logic functions assign to each input a weighting, and to
the function a threshold. If the product of the inputs and
their weightings is greater than the threshold the output
transitions. Null Convention Logic devices [9] developed
by Theseus Logic, exhibit hysteresis behaviour to control
the return-to-zero phase of their inputs in the same way as
C-elements. However the fan-in of these gates is limited to
around 3 in CMOS processes under 0.2µm due to the limit
on the number of series PMOS transistors. Using a combi-
nation of NCL threshold gates can reduce the complexity of
a 2-of-4 code completion detection circuit to 8.6 transis-
tors-per-bit. The complexity of larger code groups
increases exponentially.

Piestrak [8] described a general purpose solution to
completion detection for m-of-n codes, using multiple-out-
put threshold functions, implemented using sorting net-

works. Using this method the complexity of completio
detection for 2-of-7 and 3-of-6 codes presented in table
can be reduced to 30.4 and 39.9 transistors/bit respectiv

Completion detection for the incomplete m-of-n* code
introduced in the previous section is made considerab
easier due to their being composed from smaller m-of
codes. The 2-of-7* code from example A consists of thre
single 1-hot codes, concatenated together. Data is va
when any two of the code groups contain valid data. Com
pletion detection can be implemented by ORing each co
group and combining the result with either a 2-of-3 thres

Figure 5: Incomplete 3-of-6 code

0 1 0 0 1 1 0 1 0 0

0 1 0 1 0 1 1 0 0 0

0 1 0 1 1 0 1 0 0 1

0 1 1 0 0 1 1 1 0 0

0 1 1 0 1 0 1 1 0 1

0 1 1 1 0 0 1 1 1 0

1 0 0 0 1 1 0 0 0 1

1 0 0 1 0 1 0 0 1 0

1 0 0 1 1 0 0 1 1 0

1 0 1 0 0 1 0 0 1 1

1 0 1 0 1 0 0 1 1 1

1 0 1 1 0 0 1 0 1 1

1 1 0 0 0 1 0 0 0 0

1 1 0 0 1 0 0 1 0 1

1 1 0 1 0 0 1 0 1 0

1 1 1 0 0 0 1 1 1 1

BinaryValueControl Body code decomposition useful symbols bit

control body0 body1 factor
total
(M)

2-of-4* 1-of-2 1-of-2 2x2 4 2

2-of-5* 1-of-2
1-of-2
spacer

1-of-2
1-of-3
2-of-3

2x2x1
2x1x1
2x1x1

9 3

2-of-7* 1-of-3
spacer

1-of-4
2-of-4*

3x4
1x4

16 4

3-of-6* 1-of-2
2-of-2

2-of-4
1-of-4

2x6
1x4

16 4

3-of-7* 2-of-3
1-of-3
spacer

1-of-4
2-of-4
3-of-4

3x4
3x6
1x4

34 5

3-of-8* 1-of-2
spacer
spacer

1-of-3
2-of-3
1-of-3

1-of-3
1-of-3
2-of-3

2x3x3
1x3x3
1x3x3

36 5

3-of-9* 2-of-5*
1-of-5
spacer

1-of-4
2-of-4
3-of-4

4x8
6x5
4x1

66 6

4-of-8* 3-of-4
2-of-4
1-of-4

1-of-4
2-of-4
3-of-4

4x4
6x6
4x4

66 6

4-of-9* 2-of-4
1-of-4

2-of-5*
3-of-5*

4x8
6x8

80 6

5-of-11* 1-of-3
2-of-3
2-of-3
3-of-3

2-of-4
1-of-4
2-of-4
1-of-4

2-of-4
2-of-4
1-of-4
1-of-4

3x6x6
3x4x6
3x6x4
1x4x4

268 8

5-of-12* 2-of-4
2-of-4
1-of-4

1-of-4
2-of-4
2-of-4

2-of-4
1-of-4
2-of-4

6x4x6
6x6x4
4x6x6

432 8

Table 2: Example formation of incomplete m-of-n
codes
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old gate (3 inputs of unity weight and a threshold of 2), or
with a set of C-elements covering the possible products as
in figure 6.

The code of example B requires more complex comple-
tion detection circuitry. Here the code is decomposed into
2-of-4 and dual-rail code groups. Completion detection for
each sub-code is required as well as completion detection
for the 1-of-4 code assumed when the control group trans-
mits the “11” value, (which also must be detected). An
example circuit is given in figure 7. It should be noted that
in this circuit, several terms have been shared between the
various constituent circuits, reducing the size of the overall
circuit.Table 3 shows the completion detection complexity
for some of the codes presented in the previous section,
using these techniques.

It is worth mentioning at this point that the completion
detection method described by Piestrak [8], is especially
suitable for these codes as all the functions with thresholds
from 1 to m are calculated, and so detection of the code
adopted during reallocation of ‘1’s can easily be obtained.

6. Ordering

Delay-Insensitive codes, by definition, are unordered.
For systematic codes and some simple codes such as 1-of-n
codes, an ordering scheme is implied or easily determined.
However, for complex codes such as the m-of-n code,
encoding and decoding complexity can be reduced by
selecting a suitable ordering scheme.

A standard method of assigning binary values to m-of-n
codes is described by Overveld [11]. Table 1 shows the

encoding/decoding complexities of various m-of-n code
adopting this ordering and table 4 shows the same metr
for the incomplete m-of-n* codes discussed in this pape

Encoding and decoding complexity can be significant
reduced for these m-of-n* codes using the control group
determine the ordering, making the codessemi-system-
atic[8]. The following two examples show how differen
approaches to ordering can significantly reduce the co
plexity.

6.1. Example A2

From table 4, it can be seen that the cost of encoding
2-of-7* code (from dual-rail) is 116 transistors-per-bit.

This cost can be significantly reduced by using th
1-of-3 control group to coordinate the encoding. An exam
ple ordering is given in figure 8. Here when the contro
group adopts the spacer (000) value, the 2-of-4 body co
values map straight onto the message vector. When the c
trol group assumes the 0 (001) value the message vector
3 zeros (in the bottom four bits) and the 1-of-4 body cod
determines the position of the 1 value. The 3 (100) value
the control code covers the cases when the message ve
contains 3 ones; here the 1-of-4 code represents the posi
of the zero in the message vector. The final four cases
covered by the 2 (“010”) control value, where the four va
ues have to be generated. As can be seen in table 1 enco

Figure 6: 2-of-7 completion detection

code completion detection

transistors-per-bit

2of5* 17.7

2of7* 13.9

3of6* 23.4

4of8* 46.1

5of12* 32.2

Table 3: Incomplete m-of-n* code completion
detection complexity

C

C

C
completion

d0
d1
d2
d3
d4

d5
d6

Figure 7: 3-of-6 completion detection

code encode decode

transistors-per-bit

2of5* 42.5 51.25

2of7* 116 100

3of6* 133 108

4of8* 497 456

5of12* 2108 1788

Table 4: Incomplete m-of-n code circuit costs

C

C

C
completion

d5

d3

d2

d1

d4

d0
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and decoding codes that do not readily map to binary bits
is infeasibly complex. For this reason the encoding com-
plexity of the scheme outlined above is given in terms of
transistors-per-symbolfor a single code group, it is com-
pared with a similar metric for regular 2-of-7 codes. Using
this encoding scheme gives an encoding complexity and
decoding complexity of 14.6 and 18.7 transistors per sym-
bol. A complete 2-of-7 code has encoding and decoding
complexities of 31.3 and 28.1 respectively.

As mentioned in the previous section this complexity
can be reduced still further by treating the 2-of-4 code as
two dual-rail code groups. In this case the ordering can be
determined by using the regular ordering of 1-of-n codes to
produce the ordering shown in figure 4. This ordering gives
an encoding cost of 26 transistors/bit and a decoding cost
of 32 transistors/bit.

6.2. Example B2

Another example of using the control group to orche
trate the encoding process involves the incomplete 3-o
code of example A2. Here the 2-of-4 body code, can be re
resented as two 1-of-4 codes superimposed (ORed) on
of each other, the control group can then be used to de
mine which of the ‘1’s in the code symbol determines th
least significant two bits (each 1-of-4 code represents tw
binary bits). The cases where both 1-of-4 codes contain
same value are covered by the “11” value of the code gro
since in this case both sets of message bits are determi
by the 1-of-4 code. For example, the code word 01 10
maps to the message vector 1100, as the “01” control sy
bol decrees the leftmost active wire to represent the le
significant bits (0001 equates to 00 and 1000 to 11). In t
case of 10 0110 the message vector becomes 0110. Fig
5 shows the complete ordering.

This scheme gives an encoding complexity of 42 trans
tors/bit and a decoding complexity of 73.5 transistors/b.
Suitable encode and decode circuits are shown in figure
and 10..

7. Code evaluation

The decomposition of m-of-n* codes into smaller, sim
pler codes is applicable to many such codes as illustra
above. However, whilst using a more complex code reduc
the data-path width for a given point-to-point connection,
also affects the complexity of the completion detectio

Figure 8: Example ordering for incomplete 2-of-7

Figure 9: 1-of-4 to 3-of-6 encode
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Figure 10: 3-of-6 to 1-of-4 decode
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used at repeater stages and the complexity of the encoder
and decoder at each end of the link.

The cost of the completion detectors is the most impor-
tant factor here since this is typically paid multiple times in
a long link, whereas the encode and decode costs only occur
once for a point-to-point link. The completion detector is
also the limiting factor upon performance since the encoder
and decoder can often be further pipelined.

Whilst previous sections described the costs of the logic
blocks required to use the incomplete m-of-n codes, they do
not easily facilitate a direct comparison between them. For
this, an additional metric is required that takes into account
the number of bits transmitted by the code.

Here we compare:

• the delay (in logic inversions, i) around the loop illus-
trated in figure 2 (excluding the wire delay which is the
same in each case) ;

• the size of the circuit (in transistors, t) required to imple-
ment the repeater stage;

• the number of wires (w) used for the connection, includ-
ing the acknowledge signals.

Table 5 shows a comparison of these costs and perform-
ances for an isolated link, and for a 32-bit datapath con-
structed from such links both when each of the links runs
independently with its own acknowledge, and when a sin-
gle acknowledge is used for the entire 32-bit datapath -
requiring the extra logic mentioned in section 2 to gather
individual acknowledges and provide buffering to drive the
many gates all connected to the same acknowledge wire.

In cases where the datapath width does not exactly

match an integer number of instances of the chosen co
then the deficit is made up using simpler codes. Such si
ations are marked in the g column of table 5 which show
the number of code groups used for the 32-bit datapath

This table shows:

• with each individual code group having its own ac
knowledge, the smaller the group size n, the faster it o
erates;

• the logic overhead of the m-of-n* codes varies betwee
zero and 30% relative to the simple 1-hot codes;

• the wire saving provided by the m-of-n* codes varie
between 0 and 30% relative to the simple 1-hot code

• the speed overhead of the complex m-of-n* codes
small when considered for wide, conventional datapat
where the individual group completion signals must b
gathered to generate a single acknowledge.

The 2-of-7* code is a particularly interesting exampl
having the same repeater stage logic size and performa
as a 1-of-4 code but with 10% fewer wires required.

A final point to note is that when using 1-hot codes fo
constructing on-chip networks[3], additional wires ar
required to provide additional symbols for control signa
ling. With the complex m-of-n codes, the extra symbols ca
be provided from the pool of symbols that are not used f
the normal data traffic, and although these may have to
treated as a special case in the completion detection lo
this can usually be allowed without impeding the overa
performance. In such cases, the wire-cost improveme
over the 1-hot codes are even more substantial.

Isolated link 32-bit datapath

code M 1 ack/group groups used 1 ack/group 1 ack/32-bits

i t w g i t w i t w

1of2 2 5 24 3 32 5 768 96 15 1214 65

1of4 4 7 54 5 16 7 864 80 15 1054 65

2of4* 4 7 110 5 16 7 1760 80 15 1950 65

2of5* 8 9 98 6 10+1of4 9 1034 65 15 1144 55

2of7* 16 9 122 8 8 9 976 64 15 1054 57

3of6* 16 11 152 7 8 11 1216 56 17 1286 49

4of8* 64 13 322 9 5+1of4 13 1664 50 19 1710 45

5of12* 256 15 378 13 4 15 1512 52 19 1558 49

Table 5: m-of-n* repeater stage costs
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8. Conclusions

Throughout this paper we have ignored wire delay in our
measurements and calculations since it is a constant in our
comparison. However wire delay is becoming increasingly
significant and when added to the delay in the loop, further
reduces the impact of the extra completion detection com-
plexity necessary to use the m-of-n* codes.

For maximum throughput whilst retaining delay-insen-
sitive operation, 1-hot codes with separate acknowledges
for each code-group deliver the best results. However the
incomplete m-of-n (m-of-n*) codes allow a trade-off
between performance and wire cost.

For wide datapaths using a single, common acknowl-
edge, the m-of-n* codes can deliver almost the same
throughput as the 1-hot codes at substantially reduced inter-
connect fabric wiring cost.

Both cases do however require the added expense of an
encoder and decoder at the sender and receiver and slightly
larger repeater latch stages.

Thus, whilst full m-of-n codes are too expensive, the
incomplete codes presented here provide an attractive
method for trading cost versus performance when con-
structing on-chip interconnect systems.
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