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Abstract

AMULET3 is the third fully asynchronous implementa-
tion of the ARM architecture designed at the University of
Manchester. It implements the most recent version of the
ARM architecture (v4T), including the Thumb instruction
set. Significant architectural changes from its predecessors
help achieve higher performance without sacrificing the
advantages of asynchronous design and some new power-
saving features have been incorporated.

This paper outlines the AMULET3 microprocessor
core, highlighting where this design differs from its prede-
cessors. Most notable among the changes are the use of a
Harvard architecture to increase memory bandwidth and
the inclusion of a reorder buffer to handle data forwarding
and memory faults.

1: Introduction

AMULET3 (figure 1) is the third asynchronous imple-
mentation of the ARM architecture [1] to be produced at the
University of Manchester. Its predecessors, AMULET1 [2]
and AMULET2 [3], were intended to demonstrate that
asynchronous circuits of this complexity are feasible and
practicable; AMULET3 has been designed to be a commer-
cially competitive macrocell. It is therefore required to
deliver a performance similar to that of the contemporary
synchronous ARM, the ARM9TDMI [4], and to implement
the most recent version (v4T [5]) of the instruction set
architecture including the 16-bit Thumb instruction set [6].
AMULET3 is being implemented in the same generic
0.35µm 3 metal layer process as the ARM9TDMI. This
implies a performance target of well over 100 MIPS (meas-
ured with Dhrystone 2.1), compared to the 40 MIPS deliv-
ered by AMULET2e on a 0.5µm process.

Achieving this performance has necessitated a consider-
ably different microarchitecture from the earlier AMULET
processors. AMULET3 has been influenced by aspects of
several recent microprocessors, most notably the Strong-
ARM [7] developed by Digital and now owned by Intel.

Some of these changes – such as the addition of a th
register read port – are not innovative, although they hav
considerable bearing on the processor’s performance; o
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Figure 1: AMULET3 internal overview
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ers – such as the reorder buffer – are asynchronous imple-
mentations of techniques widely used in synchronous
processors, and some we believe to be wholly new.

As in the previous AMULET processors the architec-
tural design is based on an asynchronous Micropipeline [8]
structure using four-phase [9] control signals. Figure 1
shows the basic pipeline stages although it excludes details
of the external memories and their interfaces (which may
also be pipelined to an arbitrary depth). Each of these stages
will be described briefly with most attention being given to
the more novel mechanisms.

2: Prefetch unit

The prefetch unit (figure 2) is responsible for generating
addresses for the instruction memory which are sent via the
Instruction Address Register (‘IAR’ in figure 2). The
prefetch unit has a highly parallel organization, specula-
tively computing the outcome of all scenarios in parallel
and then selecting the appropriate course of action in the
final multiplexer. Although such speculation causes some
unnecessary activity (and therefore wastes power) it is nec-
essary here to meet the required throughput.

Usually the output addresses form an ascending
sequence and are provided by a simple loop containing an
incrementer (‘INC’). When a branch occurs this loop may
be interrupted asynchronously (via an arbiter) and loaded
with a new address from the ALU. However in AMULET3
several other functions are performed here also.

2.1: Branch prediction

Branches disturb program flow and incur a considerable
penalty in deeply pipelined systems. Sophisticated branch
prediction mechanisms are now in use on state-of-the-art

processors, but even a relatively simple branch predic
can significantly reduce pipeline disruption.

AMULET3 uses the same branch prediction a
AMULET2 [10], namely a Branch Target Buffer (‘BTB’)
which predicts a previously-taken invariant branch a
‘always taken’ until it is displaced from the BTB by a new
entry. However there are two significant difference
between the BTB in AMULET2 and that in AMULET3.

The AMULET2 BTB records an address containing
branch instruction together with its target address. How
ever, if a branch instruction address subsequently hits in
BTB the instruction is still fetched from memory and exe
cuted as it may be conditional and it may require a retu
address saving (if it is a BL – Branch-and-Link – instruc
tion, used for procedure entry).

The information which AMULET2 gets from memory
when it fetches a predicted branch amounts to only five b
(four condition bits and the ‘L’ bit). In AMULET3 these
five bits are stored in the BTB so that the instruction do
not have to be fetched in repeat encounters and the instr
tion memory may be bypassed. As branches account
10%-15% of ARM instructions [11], and the majority of
these are cached in the BTB [10], this reduces the numb
of instruction fetches, yielding both a considerable pow
saving and a potential speed advantage (exploited autom
ically by the asynchronous pipeline).

The second BTB difference from AMULET2 is due to
the presence of the Thumb decoder. ARM instructions a
fetched as 32-bit words. When running Thumb code
choice must be made whether to fetch the 16-bit Thum
instructions individually or in pairs. As the speed and pow
consumption of a memory cycle is almost independent
the transfer size the decision was made to fetch Thum
instructions in pairs. However, as either or both of the
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instructions may be cached branches, the BTB must be able
to cope with zero, one or two simultaneous hits.

This is achieved by splitting the BTB Content Address-
able Memory (CAM) into two sections (see figure 3). In
Thumb mode each section works with one half word of the
instruction pair; any potential conflicts are resolved by tak-
ing the ‘even’ half word (the Thumb instruction at the lower
address) prediction because this will always be first in the
instruction sequence.

When running ARM code the two sections are merged.
This allows the BTB to cache a mixture of ARM and
Thumb branches simultaneously without compromising
the number of usable entries in either case

2.2: Halting and interrupts

Most current CMOS technology dissipates very little
power when not switching. This has been exploited in
AMULET2e by causing the system to halt when no useful
work can be performed, with demonstrable power-effi-
ciency benefits [3].

Halting an asynchronous pipeline at any point soon
causes the whole system to halt. Because there is no free
running clock this reduces the number of transitions – and
hence the power consumption – to near zero. In a synchro-
nous system the clock oscillator could be stopped, but this
is quite a complex procedure. The asynchronous system
also recovers quickly (as there is no clock to restart).
AMULET2e and AMULET3 exploit this by decoding a
branch back to itself as a ‘Halt’ instruction and use this to
stall the pipeline; this is fully compatible with much exist-
ing ARM code. The halt state is exited by the assertion of
an enabled interrupt.

As alluded to above, the stall can occur anywhere within
the pipeline. AMULET2, for example, stalls in the execu-
tion stage. AMULET3 adopts a somewhat cleaner model by
stalling at the prefetch stage. This means that the processor
restarts with an empty pipeline which provides the fastest
possible response, any ‘rubbish’ being cleared out at halt
entry.

Scrutiny of figure 1 reveals an interesting consequence
of this operation – the interrupt signals are fed into the
prefetch unit rather than the instruction decoder. This rather
unusual feature provides both a clean interrupt model and a
low interrupt latency. When an (enabled) interrupt is
asserted it is arbitrated into the prefetch cycle and treated
much like a predicted ‘BL’. The interrupt ‘hijacks’ an
instruction address, bypasses the memory, and proceeds
down the execution path to save the return address. The PC
is loaded with the address of the service routine (which is a
constant, generated in the Exception Unit, ‘EU’ in figure 2)
in parallel and the prefetching of this code begins immedi-
ately.

A consequence of this approach is that the prefetch u
must store an up-to-date copy of the interrupt enable stat
One danger is that this may be out of date because an op
ation already prefetched may change it. Another, relate
problem is that the hijacked address may be in the ‘shado
of a branch and the interrupt may try to save an incorre
return address.

Both these problems are solved by treating contr
instructions (such as enabling/disabling interrupts)
branches, and branches as potential control instructio
This is not particularly onerous because almost all instru
tions which can alter these flags (e.g. software interrup
return from interrupts, etc.) also cause flow changes an
way. If an interrupt has occurred in a branch shadow it w
be discarded in the same way as any other erroneou
prefetched instruction. Concurrently, the branch will reac
the prefetch unit, re-enable interrupts, and immediate
cause the interrupt entry mechanism to repeat, this tim
saving the branch target as the return address.

2.3: Indirect branches

ARM programs often load the Program Counter (PC
directly from memory as part of a subroutine return (an
less frequently, as a result of a jump table lookup). Typ
cally a subroutine return restores the PC together with a
of working registers using a load multiple (LDM) instruc
tion. The load ordering is such that the lowest number
register is loaded first, and thus the PC (R15) is loaded la
This delays the start of instruction fetching from the retur
address and compromises performance.

AMULET3 incorporates an optimization which exploits
the separate instruction memory port (see figure 1). T
execution unit passes the load address of the PC value b
to the prefetch unit via the branch address path in para
with initiating the other register transfers in the data inte
face. This ‘branch’ terminates prefetching from the redu
dant instruction stream and prompts a single read cy
which fetches the new PC. This is then returned to th
prefetch unit (via ‘IND’ in figure 2) where instruction
fetching resumes. With a typical subroutine return much
this should happen whilst the data transfers are proceed
and so the new instructions should be available before
LDM has completed.

Note that this feature imposes a significant constraint
the memory designer: the instruction and data memor
must be coherent because a PC value is stored via the d
port and then read via the instruction port. The firs
AMULET3-based system has a unified memory which
dual-ported to give independent instruction and data por
Coherence is therefore not an issue here.
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3: Thumb decoder

The Thumb instruction set [6] is intended to allow
higher code density, which is especially important in many
embedded systems. It is not a complete instruction set
architecture but a compression to 16 bits of many of the
more frequently used ARM instructions. With a few minor
additions to the execution stage Thumb instructions can be
expanded into 32-bit ARM instructions.

The Thumb decode stage in AMULET3 receives 32-bit
instruction packets which may contain a single 32-bit ARM
instruction, two 16-bit Thumb instructions or an exception
case such as a predicted branch or an ‘interrupt service
instruction’ as described in sections 2.1 and 2.2. In most
cases this packet undergoes little processing here and is
passed rapidly forwards to the main instruction decoder.
However if it is marked as containing Thumb instructions
this stage will perform two (slower) cycles, expanding each
Thumb instruction for the main decoder in turn. Because of
the asynchronous nature of the pipeline it accommodates
this ‘one-in, two-out’ behaviour automatically.

This can be contrasted with the approach used in the
ARM7TDMI and ARM9TDMI which fetch Thumb code
one 16-bit instruction at a time, thus smoothing the pipeline
flow but doubling the number of external cycles performed.

4: Instruction decoder

The instruction decoder represents much of the com-
plexity of the system. Figure 4 illustrates the main data
flows through the instruction decoder and subsequent pipe-

line stages. As can be seen there is considerable paralle
(although not all paths are invoked for every instruction
Note that the latch ‘stage’ between the decoder and the e
cution unit – one of the widest paths in the processor – co
prises several disparate elements which may operate
(slightly) different times. This helps to reduce penalties du
to forwarding (register operands may arrive slightly late
than the decoded instructions without penalty) and is al
an attempt to reduce emitted electro-magnetic noise
skewing the latch enable times. (Only one register read/fo
ward path is shown in figure 4; the processor contai
three).

Despite its complexity relatively little of the instruction
decoder design is novel or unusual. The two features wh
may be of interest are the register bank/reorder buffer
used here for register forwarding – and the mechanism
supporting the multi-cycle load (LDM) and store (STM
instructions.

4.1: Register bank

The register bank in AMULET2 has two read ports an
a single write port, although the latter is shared by tw
incoming data streams (from the ALU and the memor
using an arbitrating multiplexer. This port structure is a re
sonable match for the ARM6 instruction set, although se
eral instructions require more than two register operan
and therefore need two (or more) decode cycles. It uses
register ports efficiently, but imposes an overhead in t
control logic.

AMULET3’s register bank has three independent rea
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Figure 4: Data flows in the decode/execution pipeline
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ports. This increases the physical size of the unit but,
because these may be invoked or bypassed for any given
cycle, only the required registers are read so little extra
power is consumed and artificial register dependencies are
avoided. This means that almost all instructions can be exe-
cuted in a single cycle, reducing the control overhead in
this, and other, stages.

The register bank is tied closely to the reorder buffer (see
section 7.1). When an instruction arrives its register oper-
ands are both read directly and checked (in a CAM) to see
if they should be forwarded from outstanding results. Any
forwarding is asynchronous, and will override any value
from the register bank. Naturally, results which are invalid
– for example from instructions which fail their condition
code test – are not forwarded.

The register forwarding process can wait for an arbitrary
time before delivering data (or deciding that the operation
will not complete). The instruction will stall until all its data
fields are filled. This mechanism therefore replaces the reg-
ister locking mechanism [12] used in AMULET1 and
AMULET2; an added advantage is that forwarding from
the reorder buffer is faster than passing values through the
register bank and more flexible than the limited forwarding
provided by AMULET2 [3], thus leading to increased per-
formance.

The reorder buffer also provides several independent
register write ports; these are discussed in section 7.1.

4.2: Multiple register loads and stores

A ‘normal’ (i.e. single register) ARM load instruction
generates a single memory transfer following an address
calculation. Thus there is a need to invoke both the execu-
tion unit (to calculate the address) and the data interface.

A multi-register transfer performs all its data transfers
from contiguous addresses. This means that the execution
unit need only be invoked on the first cycle (figure 5), sub-
sequent addresses being generated in the data interface.
This saves cycling the execution unit unnecessarily (saving
power) and can exploit efficiently the resulting sequential
address sequence (e.g. for page mode transfers). An added
bonus is that, because the relatively high memory latency
causes an instruction backlog, a small amount of buffering
on this pipeline can allow subsequent (non-dependent)
instructions to begin flowing again even before the last
memory transfer cycles commence (see also section 2.3).

All ARM instructions are conditional, so an LDM may
fail its condition code check and be discarded. It is clearly
more efficient to discard a multi-cycle instruction as a sin-
gle unit rather than as many cycles, but – unfortunately – the
condition information is not known at the instruction
decode stage. To alleviate this problem an additional hand-
shake is used. The instruction decoder despatches the first

cycle of the operation to both the execution and data inte
face units and then pauses. Whilst the address is being s
between these units a separate pipeline sends a ‘go/no
signal back to the decoder which can then continue or p
ceed to the next instruction. This imposes a small time pe
alty but the cycle is lengthened by the data interface u
timing in any case.

5: Execution unit

The execution unit is responsible for computing result
making decisions and despatching values to their desti
tions. To support the ARM instruction set it contains a ba
rel shifter and iterative multiplier in series with the ALU.
The shifter and multiplier are used in only a few instruc
tions so they are normally bypassed (see figure 4); the e
cution cycle is stretched when they are required, aga
exploiting the asynchronous nature of the processor.

Execution begins by deciding whether the instruction
to be completed; this is a result of its condition code test (
ARM instructions are conditional) and a ‘colour’ test to se
if the instruction is in a branch shadow. In parallel with thi
the required operands are collected and an arbiter is sa
pled (the arbiter allows page faults from the data memo
to be accepted and processed).

When the initial phase is complete the required oper
tions may be performed. For example a simple AD
instruction which has passed its condition check w
bypass the shifter and multiplier, be evaluated in the AL
and be written into the reorder buffer; if it failed its condi
tion check the ALU is not activated and an invalid ‘result
is passed to the reorder buffer instead.

The execution unit may also pass an address to the d
memory. This may be an unadulterated register value o
computed result, corresponding to the ARM’s post- an

Decode

Execute Data Int.

Decode

Execute Data Int.

Decode

Execute Data Int.

Decode

Execute Data Int.

Internal operation Data Load

LDM – first cycle LDM – subsequent cycles

Figure 5: Sub-instruction routeing
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pre-indexing addressing modes; in either case a computa-
tion can take place and the adjusted address written back
into the reorder buffer concurrently with the data access.

Finally a branch operation may be required. Because the
ARM can branch in numerous ways it is necessary to allow
the ALU result to reach the branch output latch. However
the majority of branches are caused by explicit branch
instructions which – to reduce branch latency – are evalu-
ated earlier in the decode stage and thus are available as
soon as the condition check is complete. Note that the latch
on the branch output (figures 1 & 4) is essential; the branch
target may not be accepted immediately by the prefetch unit
and instructions in the branch shadow must keep flowing
(and be discarded) to ensure that the pipeline does not dead-
lock.

6: Data interface

The data interface (figure 6) is responsible for despatch-
ing memory transfers and, as noted in section 4.2, operates
semi-autonomously. As it is located on a separate pipeline
from the execution unit it receives its own ‘instructions’
irrespective of whether the instruction should be executed
or not. Notice of whether an instruction is to be abandoned
(for example due to a condition code failure) or continued
is received from the execution unit along with the address.
Reorder buffer space has already been allocated for this
operation so it cannot simply be thrown away, but it is
clearly inefficient to pass this packet through the whole
memory system to no avail. Instead a decision can be made
to route the packet directly back to the reorder buffer,
bypassing the data memory stage. This is possible because
the reorder buffer accepts inputs in any order (naturally!)
and is inexpensive because this channel carries no data.
Any potential dependencies on ‘failed’ memory operations
can then be resolved much earlier than would otherwise be
possible and – of course – there is a power saving in pre-
venting unwanted memory operations.

7: Reorder buffer & register writeback

7.1: The reorder buffer

The reorder buffer was already referred to in section 4
A reorder buffer [13] implements a form of register renam
ing. Data packets carry their own destination positio
within the buffer and are thus sorted into order; the reord
buffer is emptied, in order, to the register bank, thus ensu
ing that any permanent state changes happen in instruc
issue order. The advantage is that a result may be forward
from this buffer even if it is uncertain that the instruction
which created it should have been permitted to complet

Reorder buffers have been used in synchronous syste
for some time. However it is believed that this is the firs
asynchronous implementation (figure 7) [14, 15]. The di
ficulty arises because several asynchronous processes
interacting here:

• There are three processes which can write to the buf
(ALU, memory and memory skip - when a load or stor
fails its condition check). As these cannot write to th
same location at the same time it is adequate to ens
that they merely have their own write ports. The ‘write
port’ in the case of a memory skip is very primitive, a
no data is carried;

• there is a single writeback process (section 7.2) whi
reads the values out, in order, to the register file;

• the forwarding processes need access to data in the re
der buffer at arbitrary times. The key point here is to ob
serve that the register writeback process does n
destroy or invalidate the contents of any reorder buff
location – only the arrival of a new result does that. It i
therefore possible to forward data before, during or aft
their transfer to the register file.

The reorder buffer also allows speculation beyond mem
ory aborts (e.g. caused by page faults). The processo
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able to continue speculative execution (subject to register
dependencies) without committing to a definitive state
change. If an abort does occur the contents of the reorder
buffer can be discarded and the register bank state pre-
served at a coherent point in the program execution.

A final complication of the reorder buffer is due to the
conditional nature of all ARM instructions. When an
instruction is issued it is allocated a reorder buffer slot. If it
is not executed because it fails its condition test it must still
fill this slot (i.e. mark it as invalid). This means that the reor-
der buffer must be searched for each register read and the
latest valid data read, if any are present. This is imple-
mented using a simple, asynchronous chained search and
imposes a data-dependent delay; of course, this presents no
problems to the rest of the system.

7.2: Register writeback

Although it incorporates a number of features connected
with recovery from page faults, the register writeback stage
is basically a serial process which either copies entries from
the reorder buffer into the register bank or, if they are
marked as invalid, discards them. This process is independ-
ent from the forwarding process and is thus not time-criti-
cal, although it is important that it is not so slow that the
reorder buffer becomes full and thus stalls operation.

In practice the simplicity of this pipeline stage means
that it is significantly faster than stages such as the instruc-
tion decoder or data memory. Thus it is capable of main-
taining the reorder buffer in a near empty state unless it is
waiting for data from external memory, and it is capable of
catching up after a stall. In practice it cycles in 60%-70%
of the core cycle time; this would be inconvenient in a syn-
chronous system but is easily accommodated in
AMULET3.

8: ARM compatibility

From the outset the objective of the AMULET projects
has been to reimplement a successful synchronous architec-
ture using an asynchronous design style. It is an interesting
lesson to observe which features have been relatively
straightforward to implement and which cause problems;
such issues could be considered in future instruction set
architectures. Some features which have caused particular
problems are outlined below.

The ARM contains a fewmulti-cycle instructions,
notably the multiple register memory transfer operations
(LDM/STM). These are responsible for the introduction of
extra cycles into the pipeline and present difficulties involv-
ing pipeline stalls in both synchronous and asynchronous
implementations. In some ways the introduction of these
extra sub-instructions is easier in the asynchronous imple-

mentation because the pipeline stall is compensated
automatically; it does impose an added complication in t
control circuit however. This is exacerbated by the decisio
to synchronise with the execution stage when decodi
such instructions in order to ensure that if such an instru
tion fails its condition test it is abandoned after the firs
cycle. Despite this the benefits of LDM/STM are clear.

More questionable are the‘long’ multiplication
instructions, which require up to four 32-bit source regis
ters and deliver a 64-bit result (i.e. two register destin
tions). Unless extra register ports are added purely for the
(rarely used) operations they must be decoded specially a
sequenced in two cycles. The need for such steering lo
delays the control signals and slows the whole decod
down; here little benefit is gained.

Another area where compatibility issues impose on t
asynchronous design is inprogram counter (PC) track-
ing. The ARM architecture defines that the PC appears
the register file (as R15). It may be written to much like an
other register (with a few restrictions). However when it i
read the value is assumed to have been stepped on by
instructions (8 bytes) and so the value is PC+8. (This is
backward compatibility issue, derived from the first imple
mentations.) When executing Thumb code a similar arg
ment applies; however in this case the instructions are o
two bytes long, so the value read from R15 is PC+4. The
values are also used in other situations, such as when
culating the targets of relative branches and the address
aborting instructions.

AMULET3 must maintain full code compatibility with
existing code. To this end it appends the PC value toall
fetched instructions. This allows the correct value to b
obtained at the instruction decoder despite the prefetch u
being desynchronised with this stage. The expected valu
obtained by incrementing the PC appropriately on dema
(if it is not required the incrementer is not activated). Se
eral PC incrementers thus litter the datapath to provide t
correct value (after a value dependent, but typically sma
delay). Here an architecture which specified the exact P
value would be both cleaner and simpler.

The asynchronous design framework does make t
implementation of several instruction set architecture fe
tures more straightforward than it is in a rigid clocke
framework. For example:

The elastic pipeline structure allows the inclusion of th
Thumb instruction decompression logicwith very little
difficulty. A clocked pipeline requires that a time slot is
included in the pipeline schedule for this logic, and th
time is wasted when running 32-bit ARM code. Where th
cost is too high, as on the ARM9TDMI, a separate fu
instruction decoder must be included to support Thum
code, thereby negating some of the benefits of the compr
sion scheme. On AMULET3 the Thumb decode stage au
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matically collapses to occupy very little time when the
processor is running ARM code.

The ARM instruction set includes high functionality
shift and add instructions. These require a barrel shifter to
be placed in series with the ALU in the critical ‘execute’
stage of the processor, compromising the cycle time. The
dynamic frequency of instructions which use the full power
of this feature is low, especially in compiled code. In an
asynchronous implementation it is easy to switch the shifter
in and out of the path as required, so the overhead is only
incurred when the feature is being used. This is much
harder to handle in a clocked design and has led to some
complex compromises. In the ARM8 core, for example, the
hardware can perform a generalized shift in series with a
logic operation but only a limited subset of shifts in series
with an arithmetic operation. When the instruction calls for
a shift which is not in this subset in series with an arithmetic
operation the execution unit must double cycle [1].

9: AMULET3 performance

At time of writing the processor layout is incomplete and
therefore definitive performance figures are not available.
However a considerable amount of the processor is laid out
and it is therefore possible to give some figures based on
simulations of these parts. These include the instruction
decoder, register bank, reorder buffer and execution stage –
including the shifter, multiplier and ALU.

The following numbers were obtained by simulating
extracted layout using EPIC Timemill. The simulation rules
are based on a VLSI Technology, Inc. 0.35µm three-layer
metal process; simulation conditions were Vdd=3.3V, 20°C
with ‘typical’ silicon. Note that these figures apply to the
execution stages of the processor and assume that the
instruction supply is not limited by the throughput of the
prefetch unit or the instruction memory.

The throughput of the processing stages has been meas-
ured by injecting a stream of identical instructions into the
instruction input stage and measuring the achieved input
request frequency. The pipeline stages under test are fairly
well balanced, with the decode and execution stages taking
about the same time for operations such as MOV, although
the execution stage limits performance for ‘longer’ opera-
tions, especially multiplications. These tests were per-
formed using ARM instructions, so the Thumb decoder
stage is fast and merely acts as a prefetch buffer. The regis-
ter writeback is performed in parallel with the forwarding
operation and, as mentioned in section 7.2, is significantly
faster than the other pipeline stages.

The simulated frequency of a sequence of MOV opera-
tions is about 125 MHz; ADD operations are somewhat
slower (around 115 MHz) but this should be improved
before the device is fabricated. Including a shift operation

increases the cycle time by ~35%. Multiplication (32x32
is performed by a dedicated, iterative unit and increases
cycle time of the execution stage to about 30ns; early te
mination is performed but the performance gain is rel
tively slight.

Instruction dependencies are resolved through the f
warding mechanism; the test sequences of instructions w
and without dependencies have shown no difference
cycle time so it appears that the performance penalty
result forwarding is negligible.

9.1: Analysis

To give a fair comparison the throughputs describe
above should be compared with the equivalent part
AMULET2. The decode/execute stages of AMULET2
were faster than the overall throughput of the AMULET2
chip might suggest (~50MHz rather than ~40MHz), as th
bottleneck occurred in the instruction memory acces
AMULET2e was fabricated on a 0.5µm process and proc-
ess scaling would suggest that, on a 0.35µm process, it
could achieve an instruction cycle rate around 70MH
Design improvements therefore account for almost a fac
of two in throughput; indeed as AMULET2 suffered som
penalty due to operand dependencies – not reflected in
“50MHz” figure above – a factor of two is probably a rea-
sonable claim.

The increased parallelism in the processor – especia
the extra register port and the removal of extra cycles su
porting multi-register load/store operations – means th
the number of cycles per instruction (CPI) is also reduce
High level simulations suggest that AMULET2 achieve
around 1.35 CPI, whilst AMULET3 achieves around 1.
CPI, approximately a 10% improvement. There should al
be a noticeable improvement due to the dual memory int
face, but this has not yet been quantified as it is depend
on the memory/bus cycle times. These improvements a
summarised in table 1.

Feature Improvement

Architecture (CPI) +10%

Architecture (memory) + not yet quantified

Cycle time +80%

Process +40%

Total (approx.): +180% (+)

Table 1: AMULET3 performance gains over
AMULET2
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10: Conclusions

AMULET3 is the culmination of almost a decade of
intensive work at the University of Manchester on the
design of asynchronous implementations of the ARM
instruction set. In the course of this work we have identified
and designed many asynchronous mechanisms for solving
the organizational problems of general-purpose processors
– problems for which there have existed classical clocked
solutions for many years. Some of these ideas have worked
well, some have been disappointing. Now, at last, we
believe we have an adequate library of tools and techniques
(some developed by us, but many coming from others’
work) to claim that an asynchronous ARM can be compet-
itive with the clocked original.

In part, the story of the development of the AMULET
processors has been the story of finding a good solution to
the problem of data dependencies, especially in a context
where exact exceptions are required on memory faults.
AMULET1 used register locking to ensure correct func-
tionality [2]; AMULET2 added limited forwarding paths
[3]. AMULET3 is based around a completely new
approach, using a reorder buffer which has turned out to be
surprisingly simple, small and efficient in its implementa-
tion.

AMULET3 promises very similar functionality and per-
formance to an ARM9TDMI, with unusual low-power
properties and unique electromagnetic compatibility char-
acteristics which are advantageous in appropriate applica-
tion areas.
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