
Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14-19, 2009

978-1-4244-3553-1/09/$25.00 ©2009 IEEE

Optimal Connectivity In Hardware-Targetted MLP Networks

A. D. Rast, S. Welbourne, X. Jin and S.B. Furber

Abstract—

In large neural networks, partial connectivity is both bio-
logically plausible and a matter of necessity when targetting a
hardware implementation. We are using the SpiNNaker neural
chip multiprocessor to model such networks as a drop-in
replacement for the Lens network simulator. For the popular
MLP network, a theoretical model of the relation between
connectivity, network size and gain in the activation function
provides a method to set these parameters to near-optimal
values. Using the model, we run a series of network simulations
in Lens, permuting the parameters to explore the effects in 2
networks of different size and application. Initial test results
show a clear connectivity-gain relation and a benefit to partial
connectivity in both networks, with optimal hidden-output
connectivity values ranging from ∼10%-∼30% depending on
the network type. We show that optimal connectivity-gain
settings reduce training time, minimising error oscillations
during learning. Preliminary analysis also suggests that while
very low connectivities may improve error they may also result
in decreased adaptivity to new inputs or component failure.
These results in combination with the theoretical relation give
a method for determining reasonable initial connectivity and
gain values at design time for an MLP network, allowing
more efficient use of hardware resources such as SpiNNaker
and faster simulations in any software environment. They also
suggest a different way of considering the problem of MLP
network design: rather than specify a fixed number of neurons,
specify a fixed number of connections and vary the number of
neurons to reach optimal connectivity.

I. INTRODUCTION

LARGE neural networks have obvious reasons to have

partial rather than full connectivity. Observations on

the brain demonstrate certain structural patterns that suggest

other than random or full connectivity [1]. Nonetheless, most

neural network models use full or random connectivity as

an implementation convenience, partly to avoid obscuring

the significance of other model parameters behind effects

of the connectivity statistics [2]. This method is adequate

for small networks, containing up to ∼1000 neurons, but

computationally unmanageable at larger scales. It is unrea-

sonable to assume that random partial connectivity will lead

to an optimal structure in a large network performing a

specific task; we might expect rather that the task itself would

suggest a structured pattern of connectivity matching in some

way the characteristics of the task. However, usually the

defining characteristics are not known a priori, leading to

a combination of intelligent guesswork and pure trial-and-

error to find a good structure. Better methods for defining

the connectivity, or at least for setting a reasonable starting

point to optimise via some adaptive learning rule, are clearly

essential as neural network models scale to very large sizes.

The authors are with the School of Computer Science, The University of
Manchester, Manchester, UK (email: {rasta}@cs.man.ac.uk).

U
 'S
C
 P

R
 M
 9
 6

Network

Router

A
 8

Network On Chip

SDRAM

Fig. 1. SpiNNaker Chip Architecture.

The general problem of optimal routing is NP-complete,

therefore we cannot expect and do not need to find the global

optimum connectivity; it suffices to find reasonably good

solutions. Since the determining characteristics are unknown

a priori, these solutions must furthermore only use properties

of the data that can be identified at the inputs and outputs

of the neural network. We focus here on a specific neural

architecture: the classical multilayer perceptron (MLP), since

in the first place we expect that the optimal connectivity

is architecture-specific, and secondly, the MLP, as the most

common neural network architecture in actual use, is both

a good exemplar for a general optimisation technique and

the one in which a specific solution would be most valuable

at present. The task, then, is this: given a set of inputs and

outputs with known characteristics, along with a network of

known size, what is the form of the optimal connectivity

structure? We introduce here a series of rules based on

connectivity per neuron and transfer-function sensitivity that

make it possible to optimise an MLP neural network for a

particular application.

II. SPINNAKER HARDWARE MAPPING

Efficient network connectivity becomes particularly sig-

nificant in the context of hardware systems. In such de-

vices, available circuit densities constrain the number of

connections available at any given size. Various hardware

neural network implementations have used signal multiplex-

ing to mitigate this problem, and yet inevitably there is

an absolute limit where the number of active connections

in the model would exceed the available hardware band-

width. We are targetting the MLP implementations under

examination for SpiNNaker (fig. 1), a general-purpose neu-

2619

ral chip multiprocessor capable in principle of supporting

virtually any network model. Each SpiNNaker chip contains

up to 20 general-purpose ARM968 processors to implement

the neurons’ functionality. The ARM968 is a power-and-

area optimised core that achieves its design goals through

several important tradeoffs. The processor has no floating-

point support; all neural functions must be mappable to a

fixed-point representation, and in particular, transcendental

functions such as the sigmoid threshold function typical

of the MLP must be implemented as lookup tables. Local

memory is small, each processor having 32K instruction

memory and 64K data memory. By using a large, external

1 Gbit SDRAM in combination with an application-specific

DMA controller we have developed a method [3] to make a

larger memory area for synaptic data appear virtually local

to the processor, provided that the processor does not need to

provide immediate response to an input packet. Nonetheless,

for continually-in-use data such as neural parameters, some

data and instructions must remain permanently resident in

local memory, affecting the implementation of the model.

SpiNNaker’s connectivity fabric has the following fea-

tures: 1) It is asychronous, in other words, each signal is

self-timed and not referenced to a global system clock. This

permits true concurrency in the system, each neural output

signal being timing-independent from others and meaning

that each of the processors on the chip runs independently

without regard for coherency with its peers. 2) It is packet-

switched by source processor, meaning that the system uses

only the originating processor’s address in order to route its

outputs to any other processors that may use these outputs. 3)

The router itself, one per chip, is a programmable multicast

associative router with 1024 entries. While this architecture

permits a fully configurable architecture and the ability to

group both sources and local routing destinations into asso-

ciated “bundles”, it likewise sets finite constraints on what

topologies are routable within the number of entries. 4) Each

chip operates within a multi-chip environment connected to

6 neighbouring chips in a hexagonal mesh topology. The

physical topology of the system is completely decoupled

from the virtual topology of the modelled network, provided

that the network topology is routable.

In previous tests we found that the 1024 entries in the

local routing table tend to be the limiting factor estab-

lishing routability of the network [4]. Further analysis of

the MLP network revealed an additional constraint. The

backpropagation learning rule typical for the MLP requires

that information be passed backwards through the synapses.

Since SpiNNaker’s communications fabric is source-routed,

if the mapping of an MLP onto SpiNNaker followed a

naı̈ve one-processor-per-neuron model, it would require 2

router entries per connection: one for the forward link and

one for the reverse link. Instead, we have mapped the

MLP by dividing input processing into subunits representing

square submatrices of the overall connectivity matrix. (fig. 2)

This distributes the routing problem evenly between forward

and backward signal propagation. Nonetheless, the routing

Fig. 2. SpiNNaker mapping of the MLP neural network. Each small circle
is a processor within the box representing a SpiNNaker chip. The grey and
yellow colours represent 2 separate submatrices of the connectivity matrix
(arranged in source × target row-by-column format). Processors such as
A and B on the left side of the line within each processor box perform
the initial element calculations on each submatrix element representing a
particular connection. Processors such as 2 and 3 on the right side of the
line perform aggregation of the submatrix elements into local row (forward)
and column (reverse) partial sums. Processors 1 perform the final summation
and thresholding at the neurons’ output.

overhead is significant, and furthermore, since the final sum-

and-threshold processors “1” can only update after receiving

all their partial sums, it is important to minimise both the

number of partial sums to compute and their mean path

length to processor “1”. The simplest way to achieve this

is by reducing the total connectivity of the network.

If, however, by reducing the number of connections impor-

tant performance measures like training time or classification

speed deteriorate, then the network optimisation is of little

value. Therefore the goal is to find connectivity patterns

that maximise the speed and learning rate per connection.

In addition, it is essential to balance the communications

load across the network. This is firstly because SpiNNaker’s

routing model assumes average-case traffic conditions, and

secondly, since the overall sum-and-threshold processors “1”

require all partial sums for any result, significant delays in

receiving the partial sum from any processor will greatly

slow down the overall update rate per neuron. Significant

delays would result if there were local congestion: we

have previously performed simulations to show that local

congestion potential increases (as expected) as the network

connectivity increases. Note however that the pattern of

connectivity in the neural network has no direct impact

on local congestion because of the complete decoupling of

the physical SpiNNaker topology from the virtual network

topology. The connectivity analysis that follows considers

optimal patterns with respect to a SpiNNaker hardware

implementation, where available processing resource is large

relative to available connection resource.

III. THEORETICAL CONNECTIVITY MODELS

Exploration of the tradeoffs between connectivity and per-

formance in neural networks has been somewhat specialised.

2620

Fig. 3. Partial connectivity networks. At top is a “small-world” network.
Note the absence of distinct layers. At bottom is a partially-connected MLP.
Here neurons are clearly arranged in layers, the connectivity between each
layer being less than full.

One prominent line of research involves examination of the

benefits of “scale-free” and “small-world” networks. “Small-

world” networks (fig. 3, top) possess simply the property

that local connections are more probable than long-range

ones [5]. Such networks are both biologically plausible [6]

and computationally efficient in terms of storage capacity of

an autoassociator per connection [7]. Scale-free topologies,

e.g. [8], give a probability for a given neuron to have a given

number of connections N that scales as an inverse power law:
1

N c
. Such topologies appear to have good performance in

autoassociator-like tasks but are of questionable biological

plausibility [1]. Calcroft, et al. [9] observed near-optimal

performance when connection lengths follow a Gaussian

distribution centred on 0. None of these studies, however,

considered learning time, and all of them use the same

ring-shaped (1-layer) topology, distinctly different from the

partial-connectivity MLP (fig. 3, bottom) KrishnaKumar [2]

examines the learning time in an MLP topology, using a

learning algorithm to optimise the connectivity. In [10] the

authors examine the learning time within a feedforward

MLP-type network. Their findings indicate an improvement

in learning error and time with intermediate values of con-

nectivity, using random rewiring across all layers. All of the

above studies, however, consider a network of fixed size

with respect to number of neurons, which may not be the

most efficient technique given that in practice connections

dominate the area in networks of reasonable size [11].

Furthermore, the results are purely empirical findings not

linked to a theoretical model. A model relating connectivity

and network size would therefore be extremely useful to

generalise connectivity determination for arbitrary large-scale

networks, particularly for targetting to hardware implemen-

tations.

The local connectivity of a given neuron affects both its

output error per time step and its contribution to error in

any subsequent layers. Assume a neuron j connected to n

neurons i in a previous layer and to l neurons k in the next

layer. Neuron j has error for input S δSj from the standard

backpropagation formula:

dBj

dOj

∑

k

δSkwjk

where Bj is the input aggregate before thresholding and Oj

the output of neuron j. We can break this into an input-

error term in the derivative and an output-error term in the

backpropagated sum. On the input side of the neuron, the

total error is ∑

i

δi.

Let this be the sum of significant and insignificant inputs:

∑

x

δix +
∑

n−x

δi0.

Inputs i contribute to term Bj and may cause the derivative

to deviate far from its correct value, resulting in a large

weight correction. If a weight should actually be near-zero,

indicating that neuron i does not contribute significantly to

the correct output for neuron j, error terms involving these

elements will dominate the total error. When
dBj

dOj
is large,

changes in the δi0 non-contributing inputs would cause large

error updates for neuron j. We therefore expect 2 results.

Sparse inputs will cause smaller errors by reduction in the

number of non-contributing inputs:

∑

x

δix +
∑

n−x−y

δi0 ≤
∑

x

δix +
∑

n−x

δi0.

Lower gain values will minimise the impact of such non-

contributing inputs by mapping them onto more nearby

points in the output: if

dBj

dOj

≤
d′Bj

d′Oj

,

∑
δi

dOj

≤

∑
δi

d′Oj

.

On the output side of neuron j, its error propagates through

successive layers. Following the backpropagation rule, the

error propagated is ∑

k

δSkwjk.

If a connection has a nonzero weight it will contribute to the

total error through its output neuron. For the same reasons as

the input side, total error propagated will be greater than the

optimal error propagated, when there are inputs to neurons

k that should have a near-zero weight, by

∑

k

wj0kδSk,

2621

using the same notation as the input side to represent non-

contributing inputs. Assuming the weights wj0k and errors

δSk are randomly distributed, this “overpropagated” error is

(l − x) ¯wj0k
¯δSk,

where l − x is the number of non-contributing inputs to

neurons k. Each neuron k would ideally have

Nwk = l − xk

initial connections, xk being the number of non-contributing

inputs for the particular neuron k. On the output we therefore

expect that the optimal connectivity between j and k will

be when the mean number of actual connections equals the

mean number of required connections:

Cjk =
¯Nwk

m
,

where m is the number of neurons j.

For output neurons, we define the stopping criterion Vok

indicating how accurately outputs must match the target for

the network response to be considered correct. Specified on

a per-neuron basis,

(TSk − OSk) ≤ Vok,

where TSk is the correct output. Maximum output coding

efficiency occurs when the total number of states to be

represented in neuron k is

Okmax − Okmin

Vok

=
1

Vok

for normalised outputs. The number of required significant

inputs J’ should be at minimum enough to code all the

possible output states:

J′∑

r=1

(r

1

Vpj

−1

)J′Cr = 1/Vok,

where Vpj is the internal resolution of the previous layer: how

many valid states are coded. (For typical sigmoidal networks

the value is usually 1: a hidden neuron registers the relative

presence or absence of a template pattern) It is now possible

in principle to work backwards through the error propagation,

substituting the values for the minimum number of required

inputs for each output neuron to determine the mean and

thereby a reasonable approximation to the optimal connec-

tivity. When connectivity is heavily optimised, however, the

network may be vulnerable to overtraining. In practice it is

best to start with a fairly aggressive criterion and a somewhat

higher than optimal connectivity since the method assumes

optimal coding.

IV. CRITICAL NETWORK PARAMETERS

Previous connectivity examinations have primarily fo-

cussed on evaluating the effects of varying connectivities

in a network of fixed number of neurons, generally with

a “small-world” characteristic. In a hardware system such

as SpiNNaker, however, it is likely that large neural net-

works will be more connection-limited than they are neuron-

limited, given the finite routing resources. Simply varying

connectivity with a fixed number of neurons may not lead

to an optimal hardware-implementable network. Congestion

issues also have a significant role. Since the synchronous

nature of the update in SpiNNaker’s MLP implementation

requires the arrival of all contributing inputs before the

processor computes an update, large numbers of inputs to

a given output processor would lead to long delays before

an update, as the system waited for distant inputs to arrive. In

a congested situation, there would be additional delays, and

since the SpiNNaker processing model drops packets after

a certain time, a hub node could deadlock awaiting arrival

of an input packet that had been dropped due to transient

congestion. It is therefore more realistic to consider uniform

partial connectivity on a per-layer basis.

MLP’s have a distinct layered topology, making it useful to

investigate the effects of differing inter-layer connectivities.

For example, in a simple feedforward network with input,

hidden and output layers, the input-hidden connectivity and

hidden-output connectivity could be different. A high input-

hidden connectivity and a low hidden-output connectivity

would produce a network with rich feature representation

but sparse feature selection in identification of an output

class. The converse would instead limit feature complexity in

an attempt to achieve high recognition accuracy through the

integration of multiple, simple, separable features. The ex-

periments therefore consider connectivity as an independent

parameter on a per-layer basis, varying the degree uniformly

throughout a given layer.

With a connection-limited system, it is practical to vary the

number of neurons since they do not add substantially to the

resource requirements. In the MLP model, however, both the

number of input neurons and the number of output neurons

remain fixed, because of the need to present the network with

external input and training class identifications. Both of these

originate in external sources that typically use a fixed format,

thus only the hidden neurons may vary in number. Noting this

constraint, however, the number of neurons within any given

hidden layer may vary independently for similar reasons as

the number of connections.

The third varying parameter in the model is gain (steepness

of the threshold function). Within the SpiNNaker hardware,

gain is a parameter loaded into instruction TCM. Memory use

is a concern; with only 32K it is impractical to have different

gain values across different (output) neurons mapped to the

same processor. Furthermore, the lookup table to implement

the threshold remains resident in the TCM at all times,

therefore the implementation embeds most of the important

parameters of the neurons’ transfer function into the LUTs.

Thus any given processor has the same parameters for all

the neurons it implements. It is most practical to do this by

mapping neurons in a given layer to the same processor or

group of processors. Mapped in this way, gain may again

vary on a per-layer basis, but not dynamically, thus Lens’

2622

Output

1

Input

Hidden

1

Hidden

2

Output

2

Fig. 4. Large phonetic network used in tests

ADAPTIVE GAIN neuron type is not available. Experiments

treat gain as a static parameter varied by run.

V. MODELLING SETUP

We have used the Lens [12] neural network simulator to

run neural network simulations. The simulator ran 2 different

neural networks: a relatively small network based on the

Lens example hand-digits designed to recognise handwritten

numbers. The network contains 64 input, up to 40 hidden,

and 10 output neurons in a simple feedfoward configuration.

The second network we ran was a larger one designed to

recognise spoken words from a small fixed vocabulary (a

development of the model in [13]) with further assistance

in the form of visual input of the characters. This network

contains a single input layer and 2 distinct groups each of

hidden and output layers representing the visual and sonic

characteristics.The input layer contains 400 units. The 2

output groups contain 800 and 61 neurons respectively. The

2 hidden groups have variable numbers of neurons; in the

first round of tests we used 50 neurons per group. Inputs

connect only to hidden group 1 from which there are 2 main

connectivity paths: to output group 1 and to hidden group 2.

Hidden group 2 then connects to output group 2 to establish

a forking pattern of connectivity. In addition there are further

connections from the input directly through to output group

1, and from output group 1 itself into hidden group 2 and

output group 2 (fig. 4).

We varied 3 different parameter classes: connectivity,

number of neurons, and gain. To test the effect of various

parameter combinations we permuted each parameter in a

series of steps. The permutation function can independently

set the values in each of these parameters on a per-group

basis, so that, for example, a network with 2 hidden groups

could have different values for the output connectivity in

each of those groups while maintaining the same gain, and

in a later permutation vary the gain with the same or different

connectivity values. It is, however, necessary to use discretion

in which values to vary or the number of permutations

rapidly becomes very large: for n parameters in k groups

with vn steps per parameter, the number of permutations

would be
∏

vk
n. For the case of the smaller network we

used a parameter step size leading to 5 different values for

connectivity and gain over each of the input, hidden, and

output layers, a total of 15,625 possible permutations. For

the larger network we preferentially varied the connectivities

in the preference order hidden-output, hidden-hidden, output-

hidden, input-hidden, input-output, and output-output over 3

different values, and hidden unit gain over 2 different values.

Considering only the actual connection paths as per the

architecture above this leads to 38∗22 - 26,244 permutations.

We ran each permutation for 500 training epochs in the

small network, 1000 in the large one and measured the final

and mean errors so as to get information both on ultimate

classification performance and learning rate (using the mean

as a proxy for the rate).

VI. TEST RESULTS

Results from all tests (figs. 5, 6, 7) demonstrate an

approximately linear relationship between connectivity and

error performance down to a certain minimum value. For

the simpler hand-digits networks performance clearly also

separates according to gain. At higher connectivities, lower

gains show improved performance by decreasing the slope

of the error line, thus the higher the connectivity, the greater

the impact of reduced gain. We can interpret these results in

the following way. Reduction of gain works by minimising

the error in early stages of the training. With large gains

and therefore steep transfer functions small deviations in

input lead to possibly large output deviations, and hence

large errors if there is any error in the initial inputs. Unless

the network happened to begin with perfect weight matrices,

these initial inputs would indeed create large errors, causing

output fluctuation until the values settle. Smaller gain values

yield lower fluctuations and therefore the ability to converge

along a more closely monotonic error path. Per the theory,

we also observe that this effect will be more pronounced

when the connectivity is high, in agreement with the data.

If, as per the theory, we consider each connection as a

symbolic path that codes for a particular subfeature, the

minimal connectivity represents the point where the neural

network exactly maps the training set. At this point further

reductions in connectivity imply data loss. The network could

be considerered “hard-wired” for the problem, thus this learn-

ing optimum occurs at the price of zero plasticity (no ability

to learn new inputs). The observation that at this point the

learning performance would be gain-independent is likewise

consistent with the theory: if the structure fully encodes

the information content of the training set, no changes in

2623

Fig. 5. Error-Connectivity results for hand-digits application. Data series
are grouped by gain.

gain could encode more information, nor lead to better error

performance (the structure perfectly routes the inputs into

their associated subfeature neurons, thus steepness of the gain

function serves no purpose in separating a correct input from

an incorrect one). In the large neural networks, architectural

complexity makes it difficult to separate the critical param-

eters, although the general pattern is clear. By grouping the

series first by Hidden0-Output0 connectivity, then by Input-

Output0 connectivity it is possible to identify groups. Each

group contains 2 branches, identifiable as a high-gain (upper)

branch and a low-gain (lower) branch. Overall, the 200-

neuron-per-hidden-layer networks perform better than the 50-

neuron-per-hidden layer networks, suggesting the improved

computing power of additional feature representations per

class. One interesting feature of the 50-neuron networks is

the presence of some series (i.e. parameter combination sets)

whose performance at all Hidden0-Output0 connectivities is

comparable to the 200-neuron networks and considerably

greater than the other series. These appear to occur with

certain combinations of Input-Hidden0 and Output0-Output1

connectivities, although the precise nature of the relationships

has not been determined.

Examination of the output performance with networks

trained for the task reveals the effect of overtraining with

lower connectivities. Fig. 8 gives the error with hand-digits

networks that successfully learned the training set according

to the maximum error criterion. These networks then ran a

test set from a second, independent data source. With all

connectivities the error is small, however, the mean error

reaches its minimum at about 60% connectivity and increases

(with greater variability) as the connectivity goes beneath this

value.

VII. NETWORK DESIGN IMPLICATIONS

The experimental results show that partial connectivity

can achieve up to 1.8 times faster training, in number of

weight updates, even in neural networks of relatively small

size. There are several possible contributors to this effect.

Fig. 6. Error-Connectivity results for the phonetic recognition network
with 50 hidden units. Refer to the text for series groupings.

Fig. 7. Error-Connectivity results for the phonetic recognition network
with 200 hidden units. Refer to the text for series groupings.

Fig. 8. Performance of the trained hand-digits network for configurations
that successfully learned the task. Red diamonds are average values; blue
squares are the individual results on each trial.

2624

One possibility is symmetry breaking. In a large network

under full connectivity, the mapping of a specific neuron in

either the hidden or output layers to a specific combination of

features or to an identified class is arbitrary. All the class and

feature identification must lie in the weights. As a result, the

network is initially class-undifferentiated and must spend a

certain time during early learning to develop weights that bias

individual neurons towards identification of a particular class

or feature. The usual solution to this problem is to randomise

the weight values. However, particularly with large networks,

randomised weights at best give a weak asymmetry since a

neuron receives inputs from many synapses. Simple statisti-

cal averaging will cause the net contribution to be near that of

a uniformly weighted network. Unless the weight randomi-

sation is heavily biassed towards zero the effect, therefore,

will be the same as in the uniform full connectivity case.

Thus strong symmetry breaking would only happen when

the weight randomisation had a strong zero bias, equivalent

to saying that the network had only partial connectivity.

Experimental results nonetheless suggest that the symmetry

breaking effect is relatively weak in networks of the size

we examine. If the effect were strong, we would expect

that reduced connectivity in any interlayer connection would

produce improved error performance, when in fact the error

improvement was most dramatic and obvious in the hidden-

output connections. Such a result is more consistent with the

second possibility: minimisation of error propagation.

The theoretical model predicts that reduction in the back-

propagation of errors in delta-rule learning will reduce train-

ing time and give better error performance. If certain neurons

in the output have large errors these errors can propagate

throughout the network, resulting in large weight corrections

in potentially irrelevant connections. Particularly early in

training, the large error will tend to dominate the sum in

neurons in the previous layer, propagating back through the

network as a wave of large weight changes. Thus in a highly

connected network, the overall error initially will fluctuate

before the weights settle enough that inputs from irrelevant

neurons have very small values. We observed this in actual

training, where high-connectivity networks would tend to

spend several epochs with oscillating or at best marginally

decreasing error before starting to learn (fig. 9). By contrast a

network with partial connectivity propagates fewer large er-

rors throughout the network. Localising the backpropagation

along the connected paths confines any weight adjustments

to the neurons in the path, and since there are fewer, each

one has a greater probability of contributing meaningfully

to the total error. The effect is two-fold: first, it helps to

suppress overadjustment of weights not involved in the error

- “innocent bystanders” - as it were, and second it more

rapidly adjusts the erroneous inputs towards a correct value,

so that training is more effective in the early epochs. Again,

we observed this in simulations, where sparsely connected

networks very rapidly settled in error even in the initial

epochs. (fig. 9). Both in the forward and backward passes

it is reasonable to infer that the effect of partial connectivity

Fig. 9. Settling time during early training. X-axis is the weight update
number, in 10’s (thus the tick mark “20” is the 200th update) Y-axis is the
global network error. The light-green trace is the fully connected network.
The black trace is the best of the sparsely connected networks.

Fig. 10. Error propagation in fully- versus partially-connected networks. In
the full case, the error propagates throughout the network from even a single
output with inaccurate value. Errors are propagated under partial connec-
tivity, but remain confined to specific paths where there exist connections,
leaving large sections on the network unaffected.

is to localise signal propagation into class-specific groupings

(fig. 10).

The optimum connectivity tends to be lower with smaller

network size, and likewise beyond a critical point the per-

formance of large networks with very sparse connectivity

drops dramatically. These are expected results with a simple

interpretation: at some point the number of connections

and/or neurons is too small to represent the data accurately.

Thus as the model removes more connections, the network

must eliminate classes or features. If we adopt the model

where the number of connections is fixed, and the number of

neurons (and hence the mean connectivity per neuron) varies,

it might be equally possible to represent the same data to

the same degree of accuracy with 2 networks of different

number of neurons but identical number of connections.

Comparison of best-case performance for the 50-hidden

and 200-hidden neuron large phonetic recognition networks

supports this hypothesis. However, the smaller network will

have a significant disadvantage: diminished fault tolerance

2625

and ability to represent new classes. In the limit, the smallest

possible network will use every neuron and every synapse

completely to represent the training data, thus if a single

neuron or synapse fails there is some data loss. By contrast

in the large-hidden-layers case, while neurons specialise due

to their differing local connectivities, the loss of one does

not imply permanent and total loss of a represented class

or feature if another neuron otherwise uncommitted or only

partially contributing to the class separation can specialise

to replace the faulty one. One benefit of large networks

therefore lies in robustness under component failure and

ability to adapt to new, heretofore unknown inputs. It is

clear from the data that the larger network performs better

under a wide variety of parameter combinations and hence

is the preferred choice in a system such as SpiNNaker where

processing is cheap and connections expensive.

VIII. CONCLUSIONS

We have examined optimal patterns of connectivity in

large MLP networks and seen that there is a clear rela-

tionship between network size and optimum connectivity

measurable in terms of total number of connections. By

examining simple networks it is also clear that the gain in the

transfer function plays an important role, and where minimal

error is desirable, should be relatively low. With decreasing

connectivity, however, the impact of gain diminishes, an

important property if strong class separation is desirable.

While this is an important first step towards the development

of objective formulæ for calculating connectivity and gain

values in an MLP model, considerable work remains to

quantify the relationship. The analysis of the data in this

study is only preliminary; there is scope both for further

analysis (particularly in the extraction of the most important

parameters for the large phonetic network), and for richer

exploration of the parameter space. An important future

topic is the development of methods for automated parameter

extraction from the raw input data: some means to normalise

the data characteristics so that they can be used directly in

the gain/connectivity calculations.

Using partial connectivity optimisations makes it possible

to apply the MLP to dedicated hardware like SpiNNaker

containing configurable but finite routing resources. The

ability to reduce the connectivity significantly reduces overall

network traffic, lessening potential congestion. That partial

connectivity is optimum improves the hardware feasiblity of

large neural networks, and suggests that the ideal architec-

tural model for future neural hardware systems may be a con-

figurable interconnect structure that assumes at most partial

connectivity, such as SpiNNaker. The connectivity and gain

values we have observed provide a useful point of departure

for MLP implementation on SpiNNaker, or for that matter,

other hardware systems. Ultimately it may be possible to

provide a complete theoretical formula to compute required

connectivity with a given hardware resource, network model,

and application.

Little work has been done on formal methods to compute

connectivity, gain, or for that matter any other parameter of

neural networks, whose design remains partially empirical;

it seems timely that this should change. The increasing

interest in larger neural networks inevitably means that

empirical methods cannot in any case continue: what is

adequate for optimising small networks of tens or hundreds

of neurons becomes completely unfeasible at the scale of

tens of thousands or millions where fully automatic methods

are essential. If nothing else, by viewing the problem from

a hardware implementation perspective, this work might

suggest a different way to conceptualise the design question:

rather than specifying the number of neurons, specify the

number of connections and fit the number of neurons to the

optimal connectivity point. In the limit, interactions between

parameters such as connectivity and gain may be basic to

the neural model of computation, and if so the research

could reveal fundamental properties of neural systems both

biological and artificial.

ACKNOWLEDGEMENTS

The SpiNNaker project is supported by the Engineering

and Physical Sciences Research Council, partly through the

Advanced Processor Technologies Platform Partnership at the

University of Manchester, and also by ARM and Silistix.

Steve Furber holds a Royal Society-Wolfson Research Merit

Award.

REFERENCES

[1] J. C. Reijneveld, S. Ponten, H. Berendse, and C. J. Stam, “The
application of graph theoretical analysis to complex networks in the
brain,” Clinical Neurophysiology, vol. 118, no. 11, Nov. 2007.

[2] J. KrishnaKumar, “Optimization of the neural net connectivity pattern
using a backpropagation algorithm,” Neurocomputing, vol. 5, no. 6,
Nov. 1993.

[3] A. Rast, S. Yang, M. M. Khan, and S. Furber, “Virtual synaptic
interconnect using an asynchronous network-on-chip,” in Proc. 2008

Int’l Joint Conf. on Neural Networks (IJCNN2008), 2008.
[4] M. M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras, and

S. Furber, “SpiNNaker: Mapping neural networks onto a massively-
parallel chip multiprocessor,” in Proc. 2008 Int’l Joint Conf. on Neural

Networks (IJCNN2008), 2008.
[5] D. J. Watts and S. Strogatz, “Collective dynamics of ‘small-world’

networks,” Nature, vol. 393, no. 6684, Jun. 1998.
[6] O. Shefi, I. Golding, R. Segev, E. Ben-Jacob, and A. Ayali, “Morpho-

logical characterization of in vitro neuronal networks,” Phys. Review

E, vol. 66, no. 2, Aug. 2002.
[7] N. Davey, L. Calcroft, and R. Adams, “High capacity, small world

associative memory models,” Connection Science, vol. 18, no. 3, Sep.
2006.

[8] J. J. Torres, M. A. Muñoz, J. Marro, and P. L. Garrido, “Influence of
topology on the performance of a neural network,” Neurocomputing,
vol. 58-60, no. 6, Nov. 2004.

[9] L. Calcroft, R. Adams, and N. Davey, “Efficient architectures for
sparsely-connected high capacity associative memory models,” Con-

nection Science, vol. 19, no. 2, Jun. 2007.
[10] D. Simard, L. Nadeau, and H. Kröger, “Fastest learning in small-world

neural networks,” Phys. Letters A, vol. 336, no. 1, Jan. 2005.
[11] L. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Belatreche,

and J. Harkin, “Challenges for large-scale implementations of spiking
neural networks on FPGAs,” Neurocomputing, vol. 71, no. 1-3, Dec.
2007.

[12] D. L. T. Rohde, “LENS: The light, efficient network simulator,” From

http://tedlab.mit.edu/˜dr/Lens, 1999.
[13] S. Welbourne and M. A. L. Ralph, “Using parallel distributed pro-

cessing models to simulate phonological dyslexia: The key role of
plasticity related recovery,” J. Cognitive Neuroscience, vol. 19, no. 7,
Jul. 2007.

2626

	Main Menu
	Table of Contents
	Conference Program
	Author Index
	Search This CD-ROM
	Print This Paper
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	IJCNN CD-ROM Help

