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Abstract—High-speed asynchronous hardware makes it pos-
sible to virtualise neural networks’ temporal dynamics as well
as their structure. Through SpiNNaker, a dedicated neural chip
multiprocessor, we introduce a real-time modelling architecture
that makes the neural model run on the device independent of
the hardware specifics. The central features of this modelling
architecture are: native concurrency, ability to support very
large (≫ 10

9 neurons) networks, and decoupling of the tem-
poral and spatial characteristics of the model from those of
the hardware. It circumvents a virtually fatal tradeoff in large-
scale neural hardware between model support limitations or
scalability limitations, without imposing a synchronous timing
model. The chip itself combines an array of general-purpose
processors with a configurable asynchronous interconnect and
memory fabric to achieve true on- and off-chip parallelism,
universal network architecture support, and programmable
temporal dynamics. An HDL-like concurrent configuration
software model using libraries of templates, allows the user
to embed the neural model onto the hardware, mapping the
virtual network structure and time dynamics into physical
on-chip components and delay specifications. Initial modelling
experiments demonstrate the ability of the processor to support
real-time neural processing using 2 different neural models.
The complete system is therefore an environment able, within a
wide range of model characteristics, to model real-time dynamic
neural network behaviour on dedicated hardware.

I. THE NEED FOR DEDICATED NEURAL NETWORK

HARDWARE SUPPORT

NEURAL networks use an emphatically concurrent

model of computation. This makes the serial unipro-

cessor architectures upon which many if not most neural

simulators run [1] not only unable to support real-time

neural modelling with large networks, but in fact architec-

turally unsuited to neural simulation at a fundamental level.

Given that biological neural networks, and likewise many

interesting computational problems, demonstrate temporal

dynamics, a serial computer imposing hard synchronous

temporal constraints is at best a poor fit and at worst unable to

model networks that change in real time. For this reason ded-

icated neural network hardware embedding the concurrent

model and the time dynamics into the architecture has long

appeared attractive [2], [3], [4]. Yet the traditional digital

serial model offers a critical advantage: general-purpose

programmable functionality that let it simulate (if slowly)

any neural network model at least in principle [5]. There

has been some experimentation with hybrid approaches [6],

but these impose a significant speed penalty for models and

functions not integrated onto the device. Lack of flexibility

is probably the main reason why neural hardware in practice
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Fig. 1. SpiNNaker chip block diagram.

has had, at best, limited success: it is not very useful to

have hardware for neural modelling if the hardware forces

the user to make an a priori decision as to the model

he is going to use. If it is basic that large-scale real-time

neural modelling necessitates dedicated hardware [7], it is

therefore equally essential that the hardware support con-

current processing with a time model having the same level

of programmability that digital computers can achieve with

function. Likewise, existing software models designed for

synchronous serial uniprocessor architectures are unsuitable

for parallel, real-time neural hardware, and therefore a fully

concurrent, hardware-oriented modelling system is a pressing

need. We propose a system that borrows its underlying

model and development tools from the hardware design

environment, using a describe-synthesize-simulate flow to

develop neural network models possessing native concur-

rency with accurate real-time dynamics. Our approach to

practical hardware neural networks develops software and

hardware with a matching architectural model: a configurable

“empty stage” of generic neural components, connectivitity

and programmable dynamics that take their specific form

from the neural model superposed on them.

II. SPINNAKER: A GENERAL-PURPOSE NEURAL CHIP

MULTIPROCESSOR

SpiNNaker (fig. 1) [8] is a dedicated chip multiprocessor

(CMP) for neural simulation designed to implement the

concept of the neural empty stage. A full scale SpiNNaker
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system envisions more than a million processing cores dis-

tributed over these CMP’s to achieve a processing power of

up to 262 TIPS with high concurrent inter-process commu-

nication (6 Gb/s per chip). Such a system would be able to

simulate a population of more than 109 simple spiking neu-

rons: the scale of a small mammalian brain. Architecturally,

it is a parallel array of general-purpose microprocessors

(ARM968) embedded in an asynchronous network-on-chip

with both on-chip and inter-chip connectivity. An off-chip

SDRAM device stores synaptic weights, and an on-chip

router configures the network-on-chip so that signals from

one processor may reach any other processor in the system,

(whether on the same chip or a different chip) if the current

configuration indicates a connection between the processors.

The asynchronous network-on-chip allows each processor to

communicate concurrently, without synchronising either to

each other or to any global master clock [9]. Importantly,

this implies that the chip embeds no explicit time model. For

real-time applications, time “models itself”: the clock time

in the real world is the clock time in the virtual simulation,

and in applications that use an abstract-time or scaled-time

representation, time is superimposed onto the SpiNNaker

hardware substrate through the model’s configuration, rather

than being determined by internal hardware components.

Spatially, as well, there is no explicit topological model.

A given neural connection is not uniquely identified with

a given hardware link, either on-chip or between chips, so

that one link can carry many signals, and the same signal can

pass over many different link paths in the physical hardware

topology without affecting the model connection topology

of the neural network itself. Nor are processors uniquely

identified with a particular neuron: the mapping is not 1-

to-1 but rather many-to-one, so that in general a processor

implements a collection of neurons which may be anywhere

from 1 to populations of tens of thousands depending on

the complexity of the model and the strictness of the real-

time update constraints. SpiNNaker is therefore a completely

generic device specialised for the neural application: it has

an architecture which is naturally conformable to neural

networks without an implementation that confines it to a

specific model.

III. THE SPINNAKER HARDWARE MODEL

A. SpiNNaker local processor node: the neural module

The local processor node (fig. 2) is the system building

block - the on-chip hardware resource that implements the

neural model. SpiNNaker uses general-purpose low-power

ARM968 processors to model the neural dynamics. Each

processor also contains a high-speed local Tightly Coupled

Memory (TCM), arranged as a 32K instruction memory

(ITCM) and a 64K data memory (DTCM). A single processor

does not implement a single neuron but instead a group of

neurons (with number dependent on the complexity of the

model); running at 200MHz a processor can simulate about

1000 simple yet biologically plausible neurons such as [10],

using the ITCM to contain the code and the DCTM the
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Fig. 2. ARM968E-S with Peripherals.

neural state data. We have optimised SpiNNaker for spik-

ing neural networks, with an execution model and process

communications optimised for concurrent neural processing

rather than serial-dominated general-purpose computing. In

the spiking model, neurons update their state on receipt of

a spike, and likewise output purely in the form of a spike

(whose precise “shape” is considered immaterial), making

it possible to use event-driven processing [5]. An on-board

communications controller embedded with each core controls

spike reception and generation for all the neurons being sim-

ulated on its associated processor. In addition, the processor

contains a programmable hardware timer, providing a method

to generate single or repeated absolute real-time events. The

processor node does not contain the synaptic memory, which

resides instead in off-chip SDRAM and is made “virtually

local” through an integrated DMA controller. The local node

therefore, rather than being a fixed-function, fixed-mapping

implementation of a neural network component, appears

as a collection of general-purpose event-driven processing

resources.

B. SpiNNaker memory system: the synapse channel

The second subsystem, the synapse channel, is the hard-

ware resource that implements the synaptic model. Since

placing the large amount of memory required for synapse

data on chip would consume excessive chip area, we use an

off-the-shelf SDRAM device as the physical memory store

and implement a linked chain of components on-chip to make

synapse data appear “virtually local” by swapping it between

global memory and local memory within the interval between

events that the data is needed. The critical components

in this path are an internal asynchronous Network-on-Chip

(NoC), the System NoC, connecting master devices (the

processors and router) with slave memory resources at 1GB/s

bandwidth, and a local DMA controller per node able to

transfer data over the interface at 1.6 GB/s in sequential

burst requests. We have previously demonstrated [11] that
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the synapse channel can transfer required synaptic weights

from global to local memory within a 1 ms event interval

while supporting true concurrent memory access so that

concurrent requests from different processors remain non-

blocking. This makes it possible for the processor to maintain

real-time update rates. Analogous to the process virtualisa-

tion the neural module achieves for neurons, the synapse

channel achieves memory virtualisation by mapping synaptic

data into a shared memory space, and therefore not only

can SpiNNaker implement multiple heterogeneous synapse

models, it can place these synapses anywhere in the system

and with arbitrary associativity.

C. SpiNNaker event-driven dynamics: the spike transaction

An event: a point process happening in zero time, is the

unit of communication that implements the temporal model.

SpiNNaker uses a vectored interrupt controller (VIC) in each

processor core to provide event notification to the processor.

Events are processor interrupts and are of 2 principal types.

The more important type - and the only one visible to the

neural model - is the spike event: indication that a given

neuron has signalled to some neuron the current processor is

modelling. Spikes use Address-Event Representation (AER):

an abstraction of the actual spike in a biological neuron that

simplifies it to a zero-time event [12] containing information

about the source neuron, and possibly a 32-bit data payload

(fig. 3). The second type is the process event: indication of

the completion of an internal process running on a hardware

support component. Process events make possible complete

time abstraction by freeing the processor from external

synchronous dependencies. Within the ARM CPU, a spike

event is a Fast Interrupt Request (FIQ) while a process

event is an Interrupt Request (IRQ) [13]. To program a

time model the user programs the VIC, interrupt service

routine (ISR), and, if needed, the internal timer. Since each

processor has its own independent VIC, ISR, and timer,

SpiNNaker can have multiple concurrent time domains on

the same chip or distributed over the system. It is because

interrupts, and hence events, are asynchronous, i.e. they

can happen at any time, that SpiNNaker can have a fully

abstract, programmable time model: interrupt timing sets

the control flow and process sequencing independently of

internal clocks.

D. SpiNNaker external network: the virtual interconnect

The external network is a topological wireframe - the

hardware resource that implements the model netlist. Signals

propagate over a second asynchronous NoC, the Communi-

cations NoC [9], supporting up to 6 Gb/s per chip band-

width [8] that connects each processor core on a chip to

the others, and each chip with six other chips. The hub

of the NoC is a novel on-chip multicast router that routes

the packets (spikes) to the internal on-chip processing cores

and external chip-to-chip links using source-based associative

routing. Each chip’s Communications NoC interface links to

form a global asynchronous packet-switching network where

a chip is a node. A system of any desired scale can be

Fig. 3. SpiNNaker AER spike packet format. Spike packets are usually
type MC. Types P2P and NN are typically for system functions.

Fig. 4. Multichip SpiNNaker CMP System.

formed by linking chips to each other with the help of

these links, continuing this process until the system wraps

itself around to form a toroidal mesh of interconnected

chips as shown in Figure 4. Because the NoC is a packet-

switched system, the physical topology of the hardware is

completely independent of the connection topology of the

network being modelled. To map physical links into neural

connections each chip has a configurable router containing

1024 96-bit associative routing entries that specify the routes

associated with any incoming packet’s routing key. A default

routing protocol for unmatched inputs in combination with

hierarchical address organisation minimises the number of

required entries in the table. By configuring the routing tables

(using a process akin to configuring an FPGA) [14], the

user can implement a neural model with arbitrary network

connectivity on a SpiNNaker system. Since, like the System
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NoC, the Communications NoC is asynchronous, there is no

deterministic relation between packet transmission time at the

source neuron and its arrival time at the destination(s). Spike

timing in the model is a function of the programmed temporal

dynamics, independent of the specific route taken through

the network. Once again this decouples the communications

from hardware clocks and makes it possible for a SpiNNaker

system to map (virtually) any neural topology or combina-

tion of topologies to the hardware with user-programmable

temporal model.

IV. THE SPINNAKER SOFTWARE MODEL

A. 3-level system

From the point of view of the neural modeller, SpiNNaker

hardware is a series of generic processing blocks capable

of implementing specific components of neural function-

ality. The user would typically start with a neural model

description which needs to be transformed into its corre-

sponding SpiNNaker implementation. Modellers will most

likely not be familiar with, or necessarily even interested

in, the low-level details of native SpiNNaker object code

and configuration files. Users working at different levels of

abstraction therefore need an automated design environment

to translate the model description into hardware object code

to load to the device. We have created a software model

(fig. 5) based on the flow of hardware description language

(HDL) tools, that use a combination of synthesis-driven

instantiation [15] (automated generation of hardware-level

netlists using libraries of templates that describe imple-

mentable hardware components) and concurrent simulation

environments [16] (software that uses a parallel simulation

engine to run multiple processes in parallel). This environ-

ment uses SystemC [17] as its base, the emerging standard

for high-level hardware modelling. SystemC has several

important advantages. It is a concurrent language, matching

well the massive parallelism of neural networks. It contains

a built-in simulator that eliminates the need to build one

from the ground up. It has also been designed to abstract

hardware details while providing cycle-accurate realism if

necessary, making it possible to target specific hardware

with a behavioural model while retaining accurate temporal

relationships at each stage. Critically, SystemC supports the

use of class templating, the ability to describe an object

generically using the template parameters to specify the

particular implementation. This makes it possible to use

the same model at different levels of abstraction simply by

changing the template parameter. The software environment

defines 3 levels of abstraction: device level, system level, and

model level. At the device level, software functions are direct

device driver calls written mostly in hand-coded assembly

that perform explicit hardware operations without reference

to the neural model. The system level abstracts device-

level functions to neural network functions, implementing

these functions as SpiNNaker-specific operation sequences:

templates of neural functionality that invoke a given hard-

ware function. At the model level, there is no reference to

Fig. 5. SpiNNaker system software flow. Arrows indicate the direction in
which data and files propagate through the system. A solid line represents
a file, where dashed lines indicate data objects. Boxes indicate software
components, the darker boxes being high-level environment and model
definition tools, the lighter ones hardware-interfacing components that
possess data about the physical resources on the SpiNNaker chip.

SpiNNaker (or any hardware) as such; the modeller describes

the network using abstract neural objects that describe broad

classes of neural behaviour. In principle a network described

at the model level could be instantiated on any hardware

or software system, provided the library objects at their

corresponding system and device levels existed to “synthe-

size” the network into the target implementation. This 3-

level, HDL-like environment allows modellers to develop at

their own level of system and programming familiarity while

retaining the native concurrency inherent to neural networks

and preserving spatiotemporal relations in the model.

B. Model level: concurrent generic description

The model level considers a neural network as a process

abstraction. The user describes the network as an interaction

between 2 types of containers: neural objects and synaptic

objects. Both types of containers represent groups of indi-

vidual components with similar behaviour: for example, a

neural object could represent a group of 100 neurons with

identical basic parameters. This makes it possible to describe

large neural networks whose properties might be specified

statistically by grouping components generated from the
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same statistical distribution within a single object. Although

we use the terms “neural” and “synaptic” for convenience, a

neural object need not necessarily describe only neurons: the

principal difference between the objects is that the synaptic

object is an active SystemC channel and therefore defines a

communication between processes whereas a neural object is

a module. These objects take template parameters to describe

their functionality: object classes that define the specific

function or data container to implement. The most important

of these classes are functions (representing a component of

neural dynamics), signal definitions (determining the time

model and data representation) and netlists (to represent the

connectivity). Thus, for example, the modeller might define

a set of differential equations for the dynamic functions, a

spike signal type, and a connection probability to generate

the netlist, and instantiate the network by creating neural and

synaptic objects referencing these classes in their templates.

At the model level, therefore, specifying time is entirely a

matter of the template definition: the user determines the time

model in the specification of the dynamic functions and the

signal type. Processes execute and communicate concurrently

using SystemC’s asynchronous event-driven model. Since at

this level the model is a process abstraction, it could run,

in principle, on any hardware platform that supports such

asynchronous communications (as SpiNNaker does) while

hiding low-level timing differences between platforms.

C. System level: template instantiation of library blocks

At the system level, the model developer gains visibility

of the neural functions SpiNNaker is able to implement

directly. System-level models can be optimised for the actual

hardware, and therefore can potentially run faster; however,

they run more slowly in software simulation because of the

need to invoke hardware-emulation routines. Our approach

uses template parameters to access the hardware components.

A given system-level object is a generalised neural object

similar to a model-level object, whose specific functionality

comes from the template. At the system level, however, a

template is a hardware “macro” - for example a function

GetWeights() that requests a DMA transfer, performs the

requisite memory access, and retrieves a series of weights,

signalling via an interrupt when complete. Time at the system

level is still that of the neural model, reflecting the fact that

the only hardware event visible is the spike event. The user

at system level specifies time as an input argument to the

template functions: the “real time” the process would take to

complete in the model. The processor can then arbitrarily

reorder actual hardware timing as necessary to optimise

resource use while preserving real-time-accurate behaviour.

We have earlier shown [18] how to use this reordering

capability to achieve accurate neural updating and STDP

synaptic plasticity in an event-driven system. Both processes

are interrupt-driven routines with a deferred process, pro-

grammed into instruction memory. System level descriptions

are the source input for the SpiNNaker “synthesis” process:

a bridge between the model level and the device level that

uses templates as the crucial link to provide a SpiNNaker

hardware abstraction layer.

D. Device Level: a library of optimised assembly routines

The device level provides direct interfacing to SpiNNaker

hardware as a set of event-driven component device drivers.

In the “standard SpiNNaker application model” events are

interrupts to the neural process, triggering an efficient ISR to

call the developer-implemented system-level neural dynamic

function associated with each event. ISR routines therefore

correspond directly to device-level template parameters. The

device level exposes the process events as well as the spike

event, and therefore the programmer specifies a time model

by explicit configuration of the hardware devices: the timer,

the DMA controller, and the communications controller,

along with the ARM968 assembly code. Time at device

level is the “electronic time” of the system, as opposed

to the “real time” of the model. We have implemented an

initial function library as part of the configuration process

for the SpiNNaker system using ARM968 assembly language

for optimal performance. This device driver library includes

the functions needed by a neural application where it has

to interact with the hardware to model its dynamics. We

have optimised the functions to support real-time applica-

tions in an event-driven model with efficient coding and

register allocation schemes [19]. We have also optimised

the SpiNNaker memory map so that so that the processor

will start executing the ISR in just one cycle after receiving

the event. In our reference application sending a spike

requires 4 ARM instructions while receiving a spike requires

27 instructions, including the DMA request to upload the

relevant data block into the local memory. By providing

a ready-made library of hardware device drivers we have

given users access to carefully optimised SpiNNaker neural

modelling routines while also presenting a template for low-

level applications development should the user need to create

his own optimised hardware drivers for high-performance

modelling.

V. SPINNAKER SYSTEM DESIGN AND SIMULATION

A. Design of hardware components

The SpiNNaker chip is a GALS system [9] - that is,

a series of synchronous clocked modules embedded in an

asynchronous “sea”. Such a system typically requires a mix

of design techniques. To minimise development time we have

attempted where possible to use industry-standard tool flows

and off-the-shelf componentry. Most of the processor node,

including the ARM968 and its associated interrupt controller

and timers, along with the memory interface, are standard IP

blocks available from ARM. A further set of blocks: the com-

munications controller, the DMA controller, and the router,

were designed in-house using synchronous design flow with

HDL tools. We implemented these components using Reg-

ister Transfer Level (RTL)-level descriptions in Verilog and

tested them individually using the industry-standard Synop-

sys VCS concurrent Verilog simulation environment. Finally,
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the asynchronous components: the NoC’s and the external

communications link, used a combination of synthesis-like

tools from Silistix and hand-designed optimisation to achieve

required area and performance constraints. Where component

design has used low-level cycle-accurate tools, system-level

hardware testing and verification, by contrast, is being done

using higher-level SystemC tools.

B. SystemC modelling and chip-level verification

One of the main objectives of this work has been to

provide an early platform to develop and test applications

for SpiNNaker while the hardware is still in the design

phase. It is possible to verify the cycle accurate behaviour

of individual components using HDL simulation. However,

verifying the functional behaviour of a neural computing

system on the scale of SpiNNaker would be unmanageably

complex, either to demonstrate theoretically, or to simu-

late using classical hardware description languages such as

VHDL and Verilog. In addition, industry-standard HDL sim-

ulators emphasize synchronous design, making verification

of asynchronous circuits difficult and potentially misleading.

Therefore, as part of the SpiNNaker project, we have created

a SystemC system-level model for the SpiNNaker computing

system to verify its functional behaviour - especially the new

communications infrastructure. SystemC supports a higher

level of timing abstraction: the Transaction Level Model

(TLM), exhibiting “cycle approximate” behaviour. In a TLM-

level simulation, data-flow timing remains accurate without

requiring accuracy at the level of individual signals. This

makes it possible on the one hand to integrate synchronous

and asynchronous components without generating misleading

simulation results, and on the other to retain timing fidelity

to the neural model since the data-flow timing entirely

determines its behaviour. We developed SystemC models

for in-house components [20] and integrated them with a

cycle-accurate instruction set simulator for the ARM968E-

S processor and its associated peripherals using ARM SoC

Designer. SoC Designer does not support real-time delays,

therefore we captured the behaviour of the asynchronous

NoC in terms of processor clock cycles. We then tested the

complete system behaviour extensively in two neural appli-

cation case studies [8]. For simplicity of simulation on a host

PC with limited memory, the model simulates 2 processing

cores per chip - the number of cores on the initial test chip.

With all chip components in the simulation, we were able

to achieve a simulation of 9 chips running concurrently,

thus verifying both on-chip and inter-chip behaviour. With

system-level functional verification we have thus been able

to achieve both a strong demonstration of the viability of the

SpiNNaker platform for real-world neural applications and a

methodology for the development and testing of new neural

models prior to their instantiation in hardware.

C. Performance and functionality testing

To verify the event-driven model and develop the neu-

ral library routines we used an ARM968 emulation built

with ARMs SOC designer, containing one processing node

Fig. 6. SpiNNaker top-level model output of the spiking network. For
clarity only 25 neurons are shown.

together with its associated peripherals: DMA controller,

router, interrupt controller, and memory system. Router

links wrap around connecting outputs to inputs, so that

all packets go to the emulated processor. We successfully

tested a reference neural network using Izhikevich [10]

neural dynamics for 1000 neurons, with random connectivity,

initial states, and parameters, updating neural state once per

ms. Using assembly code programming and 16-bit fixed

point arithmetic (demonstrated in [21], [22]) it takes 8

instructions to complete one update. Modeling 1,000 neurons

with 100 inputs each (10% connectivity) firing at 10Hz,

requires 353 µs SpiNNaker time to simulate 1 ms of neural

behaviour. Modelling 1 ms for 1,000 neurons with 1,000

inputs each (100% connectivity) firing at 1 Hz requires

approximately the same computational time. The model can

therefore increase the connectivity by reducing the firing

rates as real neural network systems do, without losing real-

time performance. This model ran on the SystemC model

with a small population of neurons, reproducing the results

presented in [23]. Using the results from this experiment,

we ran a cycle-accurate simulation of the top-level model

(fig. 6) to analyse the impact of system delays on spike-

timing accuracy. Figures 7 and 8 show the results. Each point

in the raster plot is one spike count in the histogram. The

spike-raster test verified that there are no synchronous system

side effects that systematically affect the model timing. We

used the timing data from the simulation to estimate the

timing error for each of the spikes in the simulation - that is,

the difference between the model-time “actual” timing of the

spike and the system-time “electronic” timing of the spike

- by locally increasing the timing resolution in the analytic

(floating-point) Izhikevich model to 50 µs in the vicinity of

a spike and recomputing the actual spike time. Most spikes

(62%) have no timing error, and more than 75% are off by

less than 0.5ms - the minimum error necessary for a spike

to occur ±1 update off its “true” timing. Maximum error

is, as expected, 1 ms, since the update period fixes a hard

upper bound to the error. In combination with the raster plot

verifying no long-term drift, the tests indicate that SpiNNaker

can maintain timing fidelity within a 1 ms resolution.

2616



Fig. 7. SpiNNaker spiking neural simulation raster plot. The network
simulated a random network of 60 neurons, each given an initial impulse
at time 0. To verify timing synaptic plasticity was off.

Fig. 8. SpiNNaker spike error histogram. Estimated spike-timing errors
are from the same network as the raster plot.

VI. NEURAL MODELLING IMPLICATIONS

An important observation of the tests is that in a system

with asynchronous components, the behaviour is nondeter-

ministic. While most of the spikes occurred without timing

error, some had sufficient error to occur at the next update

interval. The effect of this is to create a ±1 ms timing jitter

during simulation. Biological neural networks also exhibit

some jitter, and there is evidence to suggest that this random

phase error may be computationally significant [24]. It is

not clear whether asynchronous communications replicates

the phase noise statistics of biological networks, but its

inherent property of adding some phase noise may make

it a more useful platform for exploration of these effects

than purely deterministic systems to which it is necessary

to add an artificial noise source. In addition, the modeller

can (statically) tune the amount of noise, to some degree,

by programming the value of the update interval acting as

an upper bound on the phase noise. A GALS system like

SpiNNaker therefore appears potentially capable of repro-

ducing a wider range of neural behaviours than traditional

synchronous systems, while supporting the programmability

that has been a limiting factor in analogue neuromorphic

devices.

The combination of design styles we used within a concur-

rent system of heterogeneous components is very similar to

typical situations encountered in neural network modelling.

This synergy drove our adoption of the hardware design flow

as a model for neural application development. Notably, the

environment we are implementing incorporates similar prin-

ciples: off-the-shelf component reuse through standard neural

library components; synthesis- directed network configura-

tion using automated tools to generate the hardware mapping;

and mix of design abstraction levels. The essential feature

of hardware design systems: native support for concurrent

description and simulation, is likewise essential in real-time

neural network modelling, and we also note, not essential in

ordinary software development. In particular, most software

development does not incorporate an intrinsic notion of time:

the algorithm deterministically sets the process flow which

then proceeds as fast as the CPU will allow. Hardware design

systems, by contrast, must of necessity include a notion of

time, given that timing verification is one of the most impor-

tant parts of the process. HDL-like systems also provide a

logical evolutionary migration path from software simulation

to hardware implementation, since the same model, with

different library files, can be used to simulate at a high level,

to develop hardware systems, or to instantiate a model onto

a developed hardware platform.

Considerable work remains to be done both on SpiNNaker

and generally in the area of neural development tools. Imme-

diate future efforts in the hardware will focus on fabrication

and testing of the chips prior to scaling system size. In

addition we will verify simulation results on the physical

hardware. For larger systems statistical description models

as well as formal theories for neural network model design

may be necessary. There remains also an open question of

verification in a GALS system such as SpiNNaker: with

nondeterministic timing behaviour, exact replication of the

output from simulation is both impossible and irrelevant. It is

important to develop meaningful test criteria for the finished

device, focussing on replication of timing in the neural model

independent of system-level timing. With respect to the

software model, developing a high-level mapping tool [14]

to automate the “synthesis” process is a priority. We are

also working on creating a SystemC-based user development

environment that allows the modeller to implement the neural

model with a high-level graphical or text description and

use the automated generation flow to instantiate it upon

SpiNNaker. Work is ongoing on extending the neural library

with additional neural models, including extensions to non-

spiking representations. Of particular interest are the popular,

time-independent MLP networks. While it is important that

the chip and the software work with dynamic models incor-

porating a concept of time, demonstration of a “timeless”

model extends the capabilities of the system towards a truly
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general-purpose neural modelling environment.

VII. CONCLUSIONS

Design of an integrated hardware/software system like

SpiNNaker provides a powerful model for neural network

simulation: the hardware design flow of behavioral descrip-

tion, system synthesis, and concurrent simulation. With this

work we also emphasize one of the most important fea-

tures of our hardware-design-flow methodology: the ability

to leverage existing industry-standard tools and simulators

so that it is unnecessary to develop a complete system

from the ground up. The concept SpiNNaker embodies:

that of a plastic hardware device incorporating dedicated

neural components but neither hardwired to a specific model

nor an entirely general-purpose reconfigurable device such

as an FPGA, is the hardware equivalent of the software

model, and is a new and perhaps more accessible neural

hardware architecture than previous model-specific designs.

By making the hardware platform user-configurable rather

than fixed-model, we introduce a new type of neural device

whose architecture matches the requirements of large-scale

experimental simulation, where the need to configure and

test multiple and potentially heterogenous neural network

models within the same environment is critical. Such a

model, we propose, is more suitable to neural network mod-

elling than existing systems, especially when the model has

asynchronous real-time dynamics. An asynchronous event-

driven communications model makes it easier to design for

arbitrary model timing and delays since it is not necessary to

sample updates according to a global clock. Exploration of

nondeterministic time effects also seems likely to occupy a

growing interest within the neural research community, and

devices such as SpiNNaker that have similar properties could

reveal behaviours unobservable in conventional processors.

In time it would also be ideal to move from a GALS

system to a fully asynchronous system, ultimately, perhaps,

to incorporate analogue neuromorphic components. Such a

hybrid system would offer configurable processing with the

speed and accuracy of analogue circuits where appropriate,

instantiatable using a descendant of the software model we

have developed. This system is the future version, as much

as SpiNNaker is the present version, of a neural network

matching the development model and environment to the

computational model.
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