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Abstract

A delay-insensitive inter-chip communication system
is proposed that optimises pin- and power-efficiency.
When data is being transmitted bidirectionally, a data
symbol passed in one direction is acknowledged by a
data symbol passing in the other direction. When com-
munication is unidirectional, a simple acknowledge
protocol is used. If no data communication is taking
place the system is quiescent. Either end may initiate
communication, and the situation where both ends
attempt to initiate communication at the same time is
addressed and resolved in a way that is insensitive to
the inter-chip delays.

1: Introduction

It is a common requirement in a multi-chip system to
have an efficient mechanism for passing information
between chips. Conventional microprocessor buses are
effective for connecting memory and peripheral chips to
a processor and a DMA controller, but contention for bus
bandwidth limits the scalability of such a system.

Where greater scalability is required, such as in a
massively parallel computer system, point-to-point
communication channels are often used [1]. As each
chip in such a system is connected to several neighbours,
each channel should use as few pins as are necessary to
deliver the required throughput. As off-chip capacitive
loads are high, a low-power communication system will
attempt to minimise the switching rate of inter-chip
wires. Power-efficiency gains can also be made at the
electrical signalling level, for example by reducing volt-
age swings [2], but these gains are in addition to the
switching optimizations considered here.

This paper presents a novel inter-chip communica-
tion system that uses delay-insensitive off-chip behav-
iour to give reliable operation and attempts to optimise
power- and pin-efficiency through the use of appropriate
protocols and encodings. The control for the system
presents an interesting illustration of asynchronous
design techniques.

2: Delay-insensitive communication

There are many ways that information can be com
municated between chips, but a delay-insensitive (‘DI
communication system may be preferred as it allows
very flexible physical organisation of large systems
chips. A minimal unidirectional DI communication
channel comprises two wires from the sender to t
receiver and one wire in the return direction (see figu
1). The two transmit wires send data using dual-ra
encoding, so a zero is sent by raising the voltage on o
of the wires, ‘D0’, and a one by raising the voltage o
the other wire, ‘D1’. Each bit of data is acknowledge b
a high on the return acknowledge (‘Ack’) wire, and the
the wires are restored to their original levels in a retur
to-zero (‘RTZ’) cycle: first the data wire that was raise
returns to zero, then this is acknowledged by Ack retur
ing to zero. The system is then back in its initial state an
ready to send the next bit of data.

2.1: Transition signalling

An alternative to RTZ encoding is to use non-return
to-zero (‘NRZ’) or transition encoding. Here a zero i
sent as a transition on the wire D0. This will be a risin
transition if the wire was previously low, or a falling
transition if the wire was previously high. The informa
tion is in the transition, not the voltage level on the wire
Such a scheme has obvious advantages if each off-c
transition has a significant energy cost as it halves t
number of transitions required to send a given amount
data. It also improves performance as it only takes o
end-to-end cycle to send a bit of data, whereas the R

Figure 1: Unidirectional dual-rail channel
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scheme requires two end-to-end cycles.
A drawback of transition encoding is that it is rela-

tively complex to encode and decode the signals on the
wires. This overhead is justifiable only if the power sav-
ings are significant, as they are likely to be on inter-chip
wiring.

2.2: Related communication schemes

A scheme that appears to combine the best of both
RTZ and NRZ approaches is similar to the single-wire
handshake proposed by van Berkel and Bink [3]. The D0
or D1 wire is driven high by the Sender to transmit data
and then the same wire is returned low by the Receiver
to indicate acknowledge. The drawback of this approach
is the requirement to have the wire driven from either
end, with the concomitant problems of drive hand-over,
termination, and the infeasibility of inserting repeaters
in long wires.

The data rate of any delay-insensitive scheme is lim-
ited by the end-to-end cycle time of the system. Where
very high data rates are required timing information can
still be embedded in the data, for example in the bal-
anced 3-wire system proposed by Røine [4]. Such
schemes achieve high performance by abandoning the
constraint of delay-insensitive operation, and as such
require more careful engineering than the approaches
presented here.

Stan and Burleson have conducted a detailed analysis
of various low-power encodings for global communica-
tions [5], particularly looking at broad bus-based com-
munication. Again, there is no attempt to ensure delay-
insensitive operation.

2.3: N-of-M codes

For higher communication rates, other delay insensi-
tive codes can be used such as an ‘N-of-M’ code [2]. For
example, in a 3-of-6 code six wires are used. A transition
on any three of the six wires represents a symbol, and
there are 20 possible symbols (6x5x4/3x2). These sym-
bols can be used to represent a 4-bit binary value (0-15),
Start, End, Ack, etc. A 2-of-7 code can similarly offer 21
symbols, giving the same data rate for less power (two
instead of three transitions to send four bits of data) and
more pins (7 instead of 6). Pin-efficiency can therefore
be traded-off against power-efficiency.

(The ‘End’ symbol referred to above can be used to
indicate the end of a data packet, and data packets can
therefore have a variable length. This contrasts with the
dual-rail system described previously where, because
there are no spare symbols available during data trans-
mission, the end of a data packet must be implicit. A
fixed-length data packet is the simplest, though not the
only, way to implement an implicit packet length.)

A 1-of-4 code has much simper encoding and decod-
ing than a 3-of-6 or 2-of-7 code, but requires more pins.

Like the dual-rail system, it has no spare symbols to ind
cate the end of a data packet. It is likely to be a goo
choice for on-chip communication where wiring is a les
scarce resource. It is also likely that for many on-ch
applications RTZ coding will give better performanc
than NRZ coding.

3: Proposed bidirectional communication
scheme

In many applications bidirectional communication i
required between chips. In what follows we begin b
constructing a bidirectional scheme based upon dual-r
NRZ encoding; later we will return to NRZ N-of-M
codes.

Bidirectional communication following the dual-rail
system uses six wires. However, this number of wir
appears excessive, and an optimization of this sche
uses only four wires by exploiting the data wires in on
direction to carry acknowledges for communication i
the other direction using the following approach:
• Four wires are used for bidirectional communication

A0 and A1 carry data symbols in one direction; B
and B1 carry data symbols in the other direction.

• During true bidirectional communication a transitio
on A0 or A1 is acknowledged by a transition on B
or B1, and vice versa.

• During unidirectional communication the same pro
tocol applies, but the returned data is void.

• The start of valid data is indicated by preceding
with a ‘Start’ symbol. For example, a void respons
could be zero and a Start symbol a one. A predefin
number of bits following a Start symbol represen
valid data.
The above protocol gives good wiring efficiency an

causes minimum synchronisation between the tw
directions. There is no requirement that bidirection
communications start at the same time; the second c
start at any time before, during or after the first.

3.1: Protocol power-efficiency

For a low-power communications system we want
minimize the number of transitions on wires used
send a given data value. In particular, we want to avo
sending transitions when there is no data to send. T
leads to a problem with the above proposed bidirection
communications system: in the DI communicatio
model there is, in effect, a single token being pass
from end to end determining whose turn it is to send
symbol. In order to enable either end to initiate comm
nication this token must pass back and forth, requiring
least one wire transition in each direction and consumi
power when there is no data being passed. To sa
power, the token should be discarded once neither e
has data available to transmit. This leaves the system
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a zero-power quiescent state.
However, once the system is in a quiescent state

either end may wish to initiate communication at any
time, and inevitably from time to time both ends will
attempt to initiate communication at the same time (to
within some tolerance). Initiating communication
requires the generation of a token, and if both sides
attempt to initiate communication at the same time two
tokens will be introduced into the loop. This is not
allowed within the DI model as there is no way to pre-
vent it from leading to symbol interference [2].

To resolve this problem the following mechanism is
proposed:
• Both ends of the communication channel ‘know’

there is a problem, as both will issue a Start symbol
and receive a Start symbol instead of an Ack symbol.

• One end of the channel must ‘defer’ to the other. We
will call the end that defers the Slave, and the other
the Master.

• The Slave defers by retracting its Start symbol and
replacing it by an Ack.
In a DI system true retraction is not possible since,

once the sender has made a transition on a wire, it cannot
make another transition on the same wire until it has had
confirmation (in the form of some sort of acknowledge-
ment) that the first transition has been received at the far
end. If two transitions were sent on a wire they might
arrive as two distinct transitions, coalesce so that nothing
is received, or partly coalesce into a runt pulse that may
cause unpredictable behaviour in the receiver. The actual
behaviour depends on the delays to which the two tran-
sitions are subject, and the delay-insensitive model starts
from the assumption that these are unknown. Reliable
retraction is therefore infeasible.

Instead of attempting retraction we define a special
SlaveAck symbol which subsumes the Start symbol. In
other words, every wire that makes a transition in the
Start symbol also makes a transition in the SlaveAck
symbol, and there must be at least one additional wire
making a transition in the SlaveAck symbol to differen-
tiate it from the Start symbol. When the Slave needs to
‘retract’ its Start symbol, it sends a transition on the wire
that did not make a transition for the Start symbol, effec-
tively morphing the Start symbol already sent into a
SlaveAck symbol.

A corollary of this subsumption is that SlaveAck
must be outside the code set used for normal communi-
cation.
• Once the Slave has deferred and the Master has re-

ceived the SlaveAck symbol, the Master has the to-
ken and communication can begin. The Master can
send a data symbol and the Slave can acknowledge
this with a Start symbol, followed by full bidirection-
al data transmission.

• The final Ack symbol before communication ceases
must use a set of wire transitions that does not over-
lap with the Start symbol, otherwise the end of the

channel that issues the final Ack cannot subsequen
issue a Start without risk of symbol interference.
A sensible solution is to make Start and Ack non

overlapping codes and SlaveAck the union of the tw
codes (see the dual-rail example below).

The full protocol is illustrated in figure 2 (which was
created by Alex Yakovlev and is used with permission
This illustrates the signal sequences seen on the wi
connecting the Master (M) and the Slave (S). The s
major states are Idle, Slave transmit (Ts), Master tran
mit (Tm), Retract (Ret) and two duplex states (TsTm an
TmTs). The marking on the arcs illustrates the ne
transmission in the protocol, for example ‘M/Data/Las
indicates that the Master sends its last data value.

3.2: Dual-rail example

In a dual-rail DI system 01 can be used for Start, 1
for Ack and 11 for SlaveAck. A state machine control
the transition from Start to data communication, but th
return to idle must be controlled by implicit knowledge
at both ends of the channel of the packet length.

3.3: Master and Slave identification

Identifying the Master and Slave in a symmetric sy
tem could be problematic. One idea, in a dual-rail sy
tem, would be for the zero wire to be held at logic 0 an
the one wire at logic 1 at reset. If the wires from Maste
to Slave are cross-connected, the Slave can detect th
reset and cross them back internally, but rememberi
that it is the Slave (see figure 3). Alternatively, Maste
and Slave status could be configured at system start
by an external agency.

3.4: N-of-M example

A similar scheme can be constructed using N-of-M
codes, with 2M wires used to form the bidirectional link

TsTm TmTs

Idle

Ret TmTs

S/StartM/Start

S/Ack

S/SlaveAckM/Ack

S/Data/Last

M/StartS/StartM/Ack
S/Ack

S/Start
M/Start

M/Ack

S/Data/NotLast

S/Data/Last M/Data/Last

M/Data/NotLast

S/Ack

M/Data/Last

S/Data/NotLast

M/Data/NotLast Dx

Sx(S) Sx(M)

Figure 2: Protocol diagram
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M in each direction. As before, the SlaveAck symbol
must be outside the N-of-M code set in order that it can
subsume the N-of-M Start symbol; it could, for example,
be the Start symbol plus one extra transition.

For minimum power in an N-of-M system it seems
excessive to use N transitions for Ack. Instead, Start and
Ack use a 1-of-M code. A state machine then moves the
send channel to N-of-M for data communication and
returns to 1-of-N after End. In this case SlaveAck can be
the 2-of-M code formed by the union of Start and Ack.

In a 3-of-6 system this reduces the number of transi-
tions for sending four bits of data in unidirectional com-
munication from six to four, a 33% power saving.

4: Metrics

When comparing various alternative DI communica-
tion systems there are two metrics that seem most rele-
vant:
• Power-efficiency: the number of bits of data sent per

wire transition. This will be different for unidirec-
tional and bidirectional communication.

• Pin-efficiency: the number of bits sent per send-re-
ceive cycle per pin.
(Clearly the above power-efficiency metric is based

on the assumption that off-chip activity dominates the
power consumption, so the power overhead of N-of-M
encoding and decoding logic is negligible.)

Table 1 summarizes the performance of various sys-
tems using these metrics when sending very large data
packets. For shorter packets the start-stop overheads will
reduce the efficiency of all systems somewhat.

The codes listed in the table cover 2-rail (the 1-of-2
code) which sends one bit at a time in both RTZ and
NRZ forms, the NRZ 1-of-4 code which sends 2 bits at
a time, and the NRZ 3-of-6 and 2-of-7 codes which send
4 bits at a time. The codes listed as ‘...+ Ack’ use sepa-
rate acknowledge wires. The other codes use a symbol
on the return set of wires for Ack. The 1/3-of-6 code uses
1-of-6 for Start and Ack and 3-of-6 for data; 1/2-of-7
likewise.

The ‘cost’ figure gives an overall figure of merit
(smaller is better) based on a combination of the factors
in the table as: 1/[(ave. bits/transition)*(ave. bits/cycle/
pin)], where the averages are taken between unidirec-
tional and bidirectional figures with equal weighting.
This is an arbitrary cost function, and other combined

cost functions that give different weightings to powe
and pin-efficiency and uni- and bidirectional commun
cation can be postulated to suit a particular applicatio

It can be seen that those communication systems t
do not use a separate acknowledge wire have at le
25% better power-efficiency and 12.5% better pin-effi
ciency in bidirectional communication than those th
do. For the dual-rail codes the benefits are 50% in bo
power-efficiency and pin-efficiency. The 1/N-of-M
codes only affect power-efficiency in the unidirectiona
case, where the benefit is to cancel the power-efficien
loss of the new N-of-M code system relative to th
equivalent with a separate acknowledge wire.

In a system that makes extensive use of bidirection
communication the best codes are eight times mo
power-efficient than a basic RTZ dual-rail with acknow
edge system, and four time more power-efficient tha
the NRZ dual -rail system.

On the basis of the cost function used in Table 1, th
NRZ 2-of-7 with separate acknowledge code is 16 tim
better than the basic RTZ dual-rail scheme; the use of
reverse channel offers a further 20% improvement, a
the 1/2-of-7 scheme a further 10% on top of that, makin
a factor 23 improvement overall.

The duplex communication scheme does, of cours
introduce a coupling between the send and receive ch

Figure 3: Identifying Master and Slave

Master

A0

A1

B1

B0 Slave

1

0

1

0 0

1

0

1

Power-
efficiency

Pin-
efficiency

bits/
transition

bits/cycle/
pin

‘cost’

DI style uni bi uni bi

2-rail RTZ + Ack 1/4 2/8 1/12 2/12 32

2-rail RTZ 1/4 2/4 1/8 2/8 14.2

2-rail NRZ + Ack 1/2 2/4 1/6 2/6 8

2-rail NRZ 1/2 2/2 1/4 2/4 3.6

1-of-4 + Ack 2/2 4/4 2/10 4/10 3.3

1-of-4 2/2 4/2 2/8 4/8 1.8

3-of-6 + Ack 4/4 8/8 4/14 8/14 2.3

3-of-6 4/6 8/6 4/12 8/12 2

1/3-of-6 4/4 8/6 4/12 8/12 1.7

2-of-7 + Ack 4/3 8/6 4/16 8/16 2

2-of-7 4/4 8/4 4/14 8/14 1.6

1/2-of-7 4/3 8/4 4/14 8/14 1.4

Table 1: comparison of protocols
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nels that is avoided when separate acknowledge wires
are used. If one channel has a slow data source this will
adversely affect the performance of the reverse channel.
The extent to which this amounts to a serious problem
depends on the application, but a higher-level protocol
may be necessary in some cases to minimise interference
effects. For example, data transmission could be delayed
until it is known that a full packet is available and the
receive buffer is empty.

5: Controller design

The design of an inter-chip communication system
based on the above techniques presents some interesting
challenges. The principle is fairly straightforward. The
design is first broken down into three subsystems as
shown in figure 4:
• the transmit logic - this handles the outgoing data

stream;
• the receive logic - this handles the incoming data

stream;
• the controller - this handles the interactions between

the two data streams required to implement the pro-
tocol.
The transmit and receive subsystems are then further

broken down into:
• a control section that is largely independent of the

data encoding scheme;
• a datapath section that performs the data encoding or

decoding.
The high-level specification of the controller reflects

the four possible modes of operation: idle, transmission
(Tx), reception (Rx) and bidirectional communication
(TxRx). The state machine also requires states to handle
transitions between these top-level states, some of which
include arbitration processes. For example, consider the
case when transmit data becomes available just as the

controller is about to acknowledge received data. Shou
it send an acknowledge or a Start symbol? The relat
timing of the transmission request and the data recept
is arbitrary, so arbitration is required to ensure reliab
operation.

In addition, the Slave controller requires state trans
tions to handle the Start retract case discussed in sec
3.1. The full state machine structure is shown in figure

6: Controller implementation

A detailed implementation of the controller was ca
ried out using Petrify [6], an STG-based synthesis to
that produces speed-independent circuits. The design
the STG for this circuit turned out to be a complex tas
as is evidenced by the result shown in figure 6.

The controller implementation required 83 gates, an
the full communication interface using 3-of-6 encodin
required a total of just under 400 gates. The breakdow
of these gates is shown in figure 7. Just over half of t
gates are in the transmit and receive data blocks, a
these figures would be most subject to change if a diffe
ent DI code were used.

The interface was designed using the 0.35µm AMS
CMOS gate library available through Europractice an
simulated using Verilog with typical gate speeds. Th
simulation used two interfaces communicating throug
modelled interconnect with 5 ns delay in each directio
under which conditions it had a cycle time of 24 ns. Th
inter-chip 3-of-6 encoding sends 4-bits in each directio
per cycle for a total throughput of over 320 Mbits/s.

7: Conclusions

Delay-insensitive communication is attractive fo
inter-chip point-to-point communication as it will give

Figure 4: Communication system structure

Controller

Transmit

Receive

Tx control

Rx control

Figure 5: Controller state machine
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Tx
Rx

TxRx

retract
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reliable operation over short or long connections. The
wires carry unidirectional signals, so repeaters can eas-
ily be inserted in long connections and the DI operation
will not be affected. N-of-M codes using transition
encoding offer significant (factor 8 for a 2-of-7 code)
power savings over the simplest dual-rail return-to-zero
codes due to the greatly reduced number of transitions
on off-chip wires that are required to send a given quan-
tity of data.

Bidirectional communication can be implemented
using a pair of unidirectional channels, one in each
direction. However, an improvement to this approach is
to replace the acknowledge wires with acknowledge
symbols sent down the return data channel. This reduces
the pin requirement and further improves the power-effi-
ciency. Where the channel sometimes carries unidirec-
tional data, it is more power-efficient to use a 1-of-M
code for the acknowledge and to switch dynamically
between this and N-of-M for data transmission.

Achieving zero quiescent power is possible without
breaking the delay-insensitivity of the inter-chip connec-
tions, but a special protocol is required to handle the case
where both ends of the communication start to send data
at (approximately) the same time.

The full protocol controller is complex, but has been

synthesized as a speed independent circuit using Pet
[6] and simulated at the gate level. The circuit operat
correctly and achieves acceptable performance, thou
further improvements may be possible.

Greater power-efficiency is also achievable at th
electrical level [2], but this is in addition to the powe
benefits of reduced switching activity that are the ou
come of the techniques presented here.
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Figure 7: Communication system gate counts

Controller: 83

Transmit: 132

Receive: 92

Tx control: 52

Rx control: 39
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