
An Asynchronous, Iterative Implementation of the Original Booth Multiplication
Algorithm

A. Efthymiou W. Suntiamorntut J. Garside L. E. M. Brackenbury

Department of Computer Science,
University of Manchester,

Oxford Road, Manchester M13 9PL, UK
E-mail:

�
ae,eve,jdg,lemb � @cs.man.ac.uk

Abstract

One of the main reasons for using asynchronous de-
sign is that it offers the opportunity to exploit the data-
dependent latency of many operations in order to achieve
low-power, high-performance, or low area. This paper de-
scribes a novel, asynchronous, iterative multiplier which ex-
hibits data-dependency in both the number of iterations re-
quired to produce the result and in the delay of each step
of the iteration. The preliminary evaluation of the multi-
plier, implemented using standard-cells, shows that speed
improvements can be achieved in comparison to a standard
iterative, radix-4 Booth multiplier.

1. Introduction

One of the main reasons for using asynchronous design
is that it offers the opportunity to exploit the data-dependent
latency of many operations in order to achieve low-power,
high-performance, or low area. A typical example is a
ripple-carry adder: statistically, the number of bits that a
carry propagates is very small [1], thus its average delay is
just a handful of gates. At the same time it is by far the
smallest possible adder implementation.

Although data dependent processing is usually linked
to delay-insensitive circuits, it can also be achieved with
bundled-data circuits, as was shown in [2] and [3]. Bundled-
data design produces circuits which are much smaller and,
possibly, with a lower power consumption than circuits built
with delay-insensitive methods. Thus, bundled-data circuits
with data-dependent processing times are a very interesting
class of circuits.

Although a number of asynchronous multipliers have
been described in the literature [2] [4] [5] [6], none of them
implements the original Booth algorithm [7]. This algo-
rithm ‘scans’ the multiplier operand and skips chains of

consecutive ones or zeros. For example if the multiplier is
00111100, it is converted to �������	��
 and each of the two
terms is multiplied (actually shifted, since they are powers
of two) with the multiplicand and then added together. This
algorithm can reduce the number of additions required to
produce the result compared to the paper and pencil algo-
rithm, where each bit of the multiplier is multiplied with the
multiplicand and the partial products are aligned and added
together. More interestingly the number of additions is data
dependent, which makes this algorithm a good candidate for
data-dependent processing.

The commonly used, modified (radix-4) Booth algo-
rithm considers two bits of the multiplier operand at a time.
Therefore the number of operations is fixed to half the bit-
width of the multiplier. Some of these operations are addi-
tions with zero, when the considered bits of the multiplier
are all ones or zeros.

This paper describes an asynchronous, iterative multi-
plier exhibiting data-dependency in both the number of iter-
ations required to produce the result and in the delay of each
step of the iteration. The design is described progressively,
in much the same way as it was conceived, from a simple
initial implementation to the final optimised design.

A first, simple implementation of an iterative Booth mul-
tiplier that uses a carry-propagate adder is presented in sec-
tion 3. Then the design is improved in two steps. First
the ‘worst-case’ of the original Booth algorithm, where the
number of operations is the same as in the paper and pencil
algorithm, is identified and a solution is found that reduces
the number of operations in this case to half (section 3.2).
Second, the carry-propagate adder is replaced with a carry-
save adder, speeding-up and reducing the energy consumed
in each iteration (section 4). In section 5 the presented de-
signs are evaluated and compared with a standard, radix-4
Booth multiplier and the related work is reviewed in sec-
tion 6. Finally in section 7 the conclusions are given.

2. Multiplier Architecture Issues

There are two main multiplier architectures: array (or
tree) multipliers and iterative multipliers [8]. Array mul-
tipliers are implemented by an array structure of adders,
while iterative multipliers use a few functional units repeat-
edly to produce the result.

2.1. Array multipliers

Array multipliers are the common choice for high-speed
multiplication. Since they can be easily pipelined, they are
used where high-throughput multiplication is required, in
DSP applications, for instance.

The most typical implementation of an array multiplier
is the radix-4, modified Booth multiplier [8] with carry-save
(CS) addition for ‘compressing’ the partial products to two
numbers which are then added with a carry-propagate (CP)
adder to produce the final result. Carry-save addition is used
as it is much faster than CP addition, since there is no carry
propagation, and the circuit area is substantially lower.

In a pipelined, array multiplier there are limited oppor-
tunities for exploiting data-dependent delay, due to both the
simplicity of the circuits used and the pipeline behaviour.

Although data-dependent delay can be employed in the
final CP adder, the CS stages do not exhibit significant data-
dependent delay variation. For example using a multiplexer
to bypass the CS adder when one of its operands is zero,
adds about 2 gate delays to the critical path, while the CS
delay itself is about 2 gates. Kearney [2] showed a cir-
cuit to combine the multiplexer with the CS adder that ex-
hibits some data-dependent benefit, at the expense of leav-
ing some of the least significant carries unresolved; these
then have to be accounted for by the final CP adder, thereby
increasing its size and delay.

Elastic pipelining in asynchronous circuits causes a slow
stage to block its upstream stages. Since it is quite com-
mon for at least one stage to be processing its worst possi-
ble case, the whole pipeline will be affected [9]. This effect
was observed in the array multiplier of Kearney [2] where
the data dependent speed advantage of isolated cells was
almost completely lost.

As the opportunities of data-dependent delay in array
multipliers are limited, we restrict our interest to iterative
multipliers.

2.2. Iterative multipliers

Figure 1 shows the shift-add, iterative implementation of
a multiplier. Right-shifting is selected as it allows the use of
a � -bit adder, where � is the bit width of the operands [8];
shifting left would require a ��� -bit adder. A common, area-

mux

Multiplicand
0

Partial product

Multiplier

Figure 1. Shift-add, iterative multiplication.

saving optimization is to merge the registers of the multi-
plier and the low-part of the partial product into one.

In the simplest implementation of this type of multiplier,
constant shifting by one is used, thus the product is com-
plete after � iterations. By using the modified Booth al-
gorithm, 2 bits at a time are operated upon, reducing the
number of iterations to �

� � , while constant shifting by 2 is
used. The only modifications in the above schematic is that
a more complex ‘multiplexer’ is required and a carry-in in-
put is needed for the adder to form the 2’s complement ver-
sions of the multiplicand. Higher radix Booth encoding can
be used to further reduce the required number of iterations
(constant shifting by more than two) at the expense of hav-
ing to produce not only shifted and complemented versions
of the multiplicand (�), but also terms such as �����	� .

Within each step there are opportunities to exploit vari-
able delay; frequently zero is added to the partial product,
which could be detected and result in a move to the next iter-
ation faster than when an addition or subtraction takes place.
Moreover the variability in the addition/subtraction can also
be exploited by using the appropriate circuits. However, a
more sophisticated implementation would use a carry save
adder and only use a carry propagation adder at the end to
produce the final result. The block diagram of this imple-
mentation is shown in figure 2. In this case the variability
of each step is severely diminished, as explained for array
multipliers.

Generally, in a design where shifting by a constant
amount in every step is used, a fixed number of iterations
are required to produce the result. However, having a fixed
number of iterations means that the control and energy over-
head per cycle is paid in full for the whole operation.

An optimization found in a number of modified Booth
implementations [10][6] is to detect whether the remaining
bits of the multiplier are all 1’s or 0’s and terminate the op-
eration, since the rest of the partial products to be added are

Sum}
{Carry,

Multiplicand

Multiplier

[15:2]

CSA

Partial product

0

Figure 2. Shift-add, iterative multiplication
with CS addition.

all 0. A shifter is required in this case to correctly align the
final product.

Although this optimization can be useful in applications
where small integers are being multiplied, it cannot be ex-
ploited in fractional arithmetic, commonly used in fixed-
point applications. In the fractional arithmetic representa-
tion the least significant bits are usually zero as they repre-
sent the high accuracy digits of the fraction, while the most
significant bits contain most of the useful information.

This work uses variable shifting per iteration, by employ-
ing the original Booth algorithm, leading to a variable num-
ber of iterations. But the requirement for variable shifting
means that a ‘real’ shifter is needed now at the output of
the adder. This adds to the time and energy consumption
of each iteration, whereas constant shifting comes for free.
One of the aims of this work is to establish trade-offs for
when either implementation is the best in terms of speed
(latency) and energy per multiplication. Obviously a fixed-
shifting implementation has always a smaller area, as no
shifter is required.

3. A simple, asynchronous, Booth multiplier

The first, simple implementation of the asynchronous
Booth multiplier is shown in figure 3. A carry propagate
adder is used in this implementation for simplicity. The par-
tial product is kept in two registers: prod high, prod low.
In the first iteration prod high is cleared while prod low is
loaded with the value of the multiplier operand. A one bit
register, neg, indicates whether the next operation is a sub-
traction (neg = 1) or an addition (neg = 0). For subtractions,
the multiplicand is inverted and a 1 is added as a carry in to
produce its 2’s complement.

Adder

Multiplicand

product

[0]

complete

[31:16] [15:0]

helper

{10...0, Multiplier}

neg prod_lowprod_high

shift_by

Scan

[15:0][32:16]

Shifter

0

Opt. inv.

Figure 3. Iterative Booth multiplier with carry-
propagation in each step.

Since the number of iterations is variable, an extra regis-
ter, helper, is used to indicate when to stop the process. It is
initialized to 1000. . . 0, the 1 being at the bit position above
the MSB of the multiplier operand, and is shifted with the
partial product in each iteration. When the single 1 in the
helper is found at the rightmost position, the whole multi-
plier has been consumed and the multiplication is complete.

The scan block, shown in figure 4, scans the multiplier
from right to left detecting the next position where an op-
eration should be performed, i.e. where there is a break in
consecutive zeros or ones. It is implemented as a combina-
tional circuit. First the multiplier bits are bitwise XORed to
produce a 1 where there is a ‘break’. The result is passed
into a priority enforcer which produces an output with a sin-
gle 1, at the leftmost position where a 1 was found in its
input. The output of the priority enforcer can be either used
directly in a barrel shifter implementation, or encoded for a
logarithmic shifter.

3.1. Description of operation

In each iteration the adder is adding a partial product
while, in parallel, the scan block is searching for the next
‘discontinuity’ in the multiplier. When both results are
available, the output of the adder is shifted by as many
bits as scan indicates, so that the product will be correctly

shift_by[]

in[15] in[14] in[13] in[12] in[11] in[10] in[9] in[8] in[6]in[7] in[5] in[4] in[1]in[3] in[0] lastShifted

encoder

enforcer
priority

in[2]

Figure 4. The scan logic for finding the next discontinuity in the multiplier operand.

aligned for the next operation. In the very first iteration
no addition or subtraction is performed, while the first scan
operation takes place. Thus the total number of iterations
equals the number of multiplier discontinuities plus one. In
this iteration multiplication by zero is also detected and the
operation is completed in a single step.

The order of operations is fixed: the first discontinuity is
always going to be 10, thus the first operation is always a
subtraction, while the next is always an addition (01 in the
multiplier). This observation is very useful as it simplifies
the calculation of the next value of neg to a single inverter.

3.2. Reducing the number of operations

Since the original Booth multiplier performs one oper-
ation per ‘break’ in the multiplier, it does more work than
necessary when it encounters the patterns ‘010’ and ‘101’.
In the case of ‘010’ instead of performing a single addition,
two operations are performed: a subtraction, for the 10 part
and then an addition for the 01 part. The inverse happens
for ‘101’ patterns.

In the worst case, when the multiplier operand is a series
of alternating ones and zeroes, the total number of opera-
tions to compute the result is equal to the multiplier’s bit
width, � . On the contrary, the modified, radix-4 Booth al-
gorithm considers two bits at a time, thus it is guaranteed to

perform �
� � operations.

As this property of the original Booth algorithm is
clearly unwanted, a simple improvement was done on the
previous implementation to avoid this situation. The scan
block is modified so that it can detect when one of these
patterns occur by looking at one bit further than the current
discontinuity. When such a pattern is detected, the current
iteration continues as normal, but an extra bit of information
is stored to show that (i) the next discontinuity should be ig-
nored and (ii) the next operation is the inverse of what it was
supposed to be (or, in other words, the same as the one in
the current step). For example, if the current operation is an
addition the next operation, skipping the next discontinuity,
will be an addition too.

When the first break in such a pattern is detected, the
next discontinuity is known to be at the next bit of the mul-
tiplier. A simple modification in the priority enforcer can
be used to skip it, without requiring a full iteration through
the circuit, while keeping the adder idle. As the least signif-
icant bits of the priority enforcer have a lower logic depth,
the added gates do not increase the critical path of the scan
block. Moreover, the pattern detection happens in paral-
lel with the shift operation, i.e. away from the critical path.
The detection signal is used as a load-enable for the register
keeping the neg bit, preventing it from getting inverted for
the next operation, as it would normally do.

4. Using carry-save addition

In a multiplication a number of partial products have to
be added together either using a tree of adders, or using a
single adder many times. It is well known that using a carry-
propagate adder for adding any more than two numbers is
not the most efficient way of doing this operation [8]. Carry
save addition is much better, deferring the slow carry prop-
agation process for when it is actually needed. Thus a nat-
ural improvement of the iterative, original-Booth multiplier
presented here is to implement it using carry-save addition.
Figure 5 shows the block diagram of the circuit. Note that
the thick lines represent two busses: one for the ‘sum’ and
one for the ‘carry’ part of the partial product.

For reasons that will become apparent later, it was de-
cided that the low part of the product should not be kept in
a redundant, carry-sum representation, so as to avoid a ���
carry propagation adder at the end of the iterative process.
In each iteration the part of the product that falls into the
least significant part is resolved after the shift, in CPAlow,
and stored in the low-part of the product. Thus only the
most significant part of the product is kept in the redun-
dant, carry-sum, representation. In the last step, the most-
significant bits of the product are resolved, in CPA high, and
concatenated with the least significant part to form the final
result.

Replacing the CP adder with a much faster CS one, puts
pressure on the scan block to produce the shift by output
at least at the same time as the adder. The output of the
CS adder is ready within a few gate delays from the time
the registers are loaded. The scan shift-control output, as
shown in figure 4, takes at least five, which makes it the
slower of the two blocks. In order to improve the speed
of the scan block, the bitwise XOR stage can be removed.
Instead of storing the multiplier value in the low-part of the
product register, its pairwise XOR can be stored instead. As
this information does not change while the circuit operates,
there is no need to compute them again in each iteration,
thus the XORs can be removed from the scan block.

4.1. Variable-width carry-propagate adder

A crucial component of this multiplier is the variable-
length, carry-propagate adder, CPAlow. Since an arbitrary
number of bits of the intermediate product can be shifted
into the lower half, this adder must be able to handle vari-
able bit-width operands. Moreover, some of the least sig-
nificant bits of the intermediate product have already been
resolved, thus no addition should be performed at these bit
positions.

A bit mask, enf out, from scan is used to determine
which part of the shifted intermediate product is going to
be resolved. This mask is derived from the output of the

[32:16]

c_out

Multiplicand

complete

[0]

Multiplier}{100...0,

helper

enf_out

{C, S}

[31:16] [15:0]

shift_by

product

Carry Save Adder

0

neg prod_lowprod_high

[15:0][31:16]

[15:0]

CPA lowCPA high

Scan

Opt. inv.

Shifter

Figure 5. Iterative Booth multiplier with carry-
save addition.

priority enforcer, so as all the bits, which correspond to the
skipped bits of the multiplier, produce a 1, while the rest are
0. The resulting mask has as many 1’s as the number of bits
that are shifted and, consequently, as the number of bits that
are going to be added.

Figure 6 shows the implementation of this block. It is
essentially a carry-ripple adder, where a carry-in can be in-
serted at any bit position and one of the two operands can
be either the carry part of the intermediate product, neg, or
zero.

A carry out of CPAlow becomes the next carry into
CPAlow at the next iteration. This is automatically aligned
to the correct bit position, as the bit position of the carry out
will become the least significant bit to be added in the next
iteration. Obviously, in the last iteration, the carry out of
CPAlow becomes the carry-in of CPAhigh.

Now that a CS adder is used to add the intermediate prod-
uct with the current partial product, when the 2’s comple-
ment of the multiplicand has to be added, there is no avail-
able input in the CS adder for the carry-in needed to convert
the inverted multiplicand to its 2’s complement. Thus this
extra 1 bit is added in the CPAlow, by selecting neg as its

Cin

enf[3]C[14]

S[14]

enf[2]

01

neg

Full adder

enf[15]

S[0]

Full adder

C[15] neg

Full adder

neg

1 0
S[15]

enf[1]

Figure 6. Variable width, carry-propagate adder.

input.
For the part of prd low where the previously resolved

bits of the product (and or the multiplier operand) are input,
the bit mask ensures that the other operand of the adder (the
shifted helper) is cleared, thus preserving these bits.

4.2. Control unit

Figure 7 shows the control unit for the multiplier. The
SR latch is initialised to 0. When a request for multiplica-
tion is received, load rises and ‘clocks’ the registers in the
datapath, all of which are edge-triggered. This also makes
the SR latch output rise which, in turn, causes load to return
to zero.

The first delay element matches the delay through the
CS adder (or the scan) and the shifter. This delay is not
data dependent. The following delay element is designed to
match the delay through CPAlow. This delay is data depen-
dent and its implementation is discussed in the following
section. When the variable-width, CP adder has finished, if
this is not the last iteration, the upper AND gate (A1) is ac-
tivated which resets the SR latch and creates another pulse
on load which restarts the cycle. For the last iteration the
low AND gate (A2) is activated which, after a delay that
matches that of CPAhigh, gives an acknowledgement signi-
fying that the result is ready. When, the request returns to
zero, in response to the acknowledge signal, the SR latch is
reset again and it is ready for the next multiplication.

4.3. Discussion

Using a CS adder in this implementation unfortunately
reduces the opportunity for data-dependent delay within an
iteration. The circuit of a CS adder is too shallow in logic
depth to justify bypassing it with a multiplexer. Moreover
efficient shifter implementations do not exhibit data depen-
dent delay either.

A2

A1

cpaH_done

cpaL_done

last_cycle

sh_done

ack

mul_req
load

SR

Q

Figure 7. Control logic for the multiplier.

As a result the only circuit where data-dependent de-
lay can be exploited is the variable-width, carry-propagate
adder (CPAlow). In the implementation, shown in figure 6,
instead of using completion detection, a variation of the
simpler technique of speculative completion [3] was used.
As explained above, the number of bits that are going to be
added is known by the shift by signal. This number deter-
mines the maximum number of bits a carry can propagate in
the CPAlow adder and can be used to select the appropriate
delay-matched element, as shown in figure 8.

At first the selection of a carry-ripple adder to implement
CPAlow might appear the wrong choice as it is in the criti-
cal path. In practice, the maximum number of bits a carry
can propagate in the whole multiplication can only be 16
for the specific adder (and another 16 for CPAhigh). This
is because the total number of bits that can be shifted out in
the whole multiplication process can be 16. Thus the larger
the number of carry propagations that take place in this iter-

cpaL_done

1

n

0

shift_by

start

Figure 8. Selection of the matched CP adder
delay.

ation, the less propagation will happen in the next step, and
so on. As a result a carry ripple adder is a very area effi-
cient way to implement CPAlow and at the same time the
performance is not affected.

5. Implementation and evaluation

The multiplier datapaths have been modelled in RTL-
level Verilog and synthesised for a 0.18 � m technology, us-
ing a standard-cell library. The results presented here in-
clude the parasitic effects, as the designs were placed and
routed.

For each multiplier, two variations were designed de-
pending on the shifter implementation: one using tri-state
drivers and one using multiplexers. The designs with the tri-
state based shifters were consuming about twice the power
of the others, mainly due to the brief short-circuits caused
when a driver is not fully turned off before another is turned
on. With a standard-cell based design, the timing of the tri-
state enable signals could not be made precise enough to
stop this effect. For this reason these design variations were
deemed not suitable for standard-cell based implementation
and are not described any further here.

The four multipliers that were evaluated are the follow-
ing: ‘CPA’ is the first implementation presented in sec-
tion 3. ‘CPA-impr’ is similar to ‘CPA’ but includes the
‘look-ahead’ improvement in the scan logic, as described
in section 3.2. ‘CSA’ is the carry save implementation pre-
sented in section 4, which includes the ‘look-ahead’ opti-
mization. Finally, ‘Booth-r4’ is a standard, iterative, radix-
4, Booth multiplier with carry-save addition.

Table 1 shows the delay per iteration for each multiplier.
The last column shows the time needed after the last itera-
tion to produce the final result. For CPA designs the product
is ready at the end of the final iteration, so no extra time is
needed. On the contrary, an addition is required for CSA de-
signs to convert the most significant bits of the product from
the sum-carry representation into standard binary; thus the
extra delay is non-zero here.

Table 1. Delay per iteration.

Design cycle (ns) last cycle (ns)
CPA 2.0 0
CPA-impr 2.1 0
CSA 2.5–4.4 +0.6
Booth-r4 1.2 +0.5

Of these designs only CSA has a data-dependent delay
within each iteration, with quite a wide range between the
two extremes. The two variations that use CPA addition
could potentially have data-dependent delays too, but since
the intention was to eventually use a carry-save adder, the
CPA implementations just use standard look-ahead adders
for simplicity. These implementations are presented mainly
to demonstrate the effect of the modification in the scan
block, which guarantees a maximum number of �

� � iter-
ations.

From the delay results, it is clear that Booth-r4 has the
fastest cycle time. This was expected since Booth-r4 does
not have to perform a variable shift in each iteration. The
improvement in the scan block for detecting the worst case
patterns had a small penalty on the delay, but compared to
the number of iterations that it can save, this penalty is very
low.

Although a carry-save adder is faster than a carry-
propagate adder, ‘CSA’ has a higher cycle time than CPA
on which it was intended to improve. This is mainly due to
two reasons: Changing the CP adder with a CS adder, puts
the scan block in the critical path. The delay through that
block is comparable to that of a CP adder. Moreover, the
variable-width adder is inherently quite slow, as it needs to
be able to insert a carry-in at any bit position. The combina-
tion of these two effects have caused the CSA design to be
slower. We believe that this result is greatly affected by the
standard-cell based implementation style; a full-custom im-
plementation should greatly improve the speed of the ‘CSA’
multiplier.

The delay figures do show a potential speed advantage of
the original Booth algorithm: To complete a multiplication
Booth-r4 needs 8 cycles, 10.1ns in total. Dividing this time
by the cycle time of CPA gives 5. Thus if fewer than 5
iterations are needed on average, CPA would be performing
faster than Booth-r4, proving that variable shifting can be
beneficial. Further work is needed to determine how many
iterations are needed on average for ‘typical’ data. Further
work is needed to gather such data from instruction-level
simulations of benchmark programs.

Table 2 shows the average power consumption of the
multipliers using our test-bench. The results are produced
from Synopsys PowerCompiler and include the effect of
parasitic capacitance. Since the test-bench was designed to

Table 2. Average power consumption.

Design Power (mW) Norm
CPA 25.5 1.8
CPA-impr 23.6 1.6
CSA 22.0 1.5
Booth r4 14.4 1.0

Table 3. Area comparison.

Design Cells Area (����� ��� �) Norm
CPA 999 26.2 1.7
CPA-impr 1078 28.7 1.8
CSA 1949 52.1 3.3
Booth r4 928 15.7 1.0

use values to test the validity of the designs, they are not the
average values that are likely to be used in multiplications
in real applications. Thus the results presented here can be
used as rough estimations only.

Unfortunately all the variable shift multipliers appear to
be consuming significantly more power than Booth-r4. The
‘look-ahead’ improvement in the scan logic appears to be
paying off in the power consumption as a small decrease
can be observed in the table.

In the original Booth implementations, the majority of
the power is consumed in the shifters which accounts for
approximately 40% of the total. As explained earlier, the
shifters were implemented using multiplexers because the
implementation is based on standard-cells. A full-custom,
barrel-shifter implementation is expected to produce much
better results.

It is already stated that the areas of the original Booth
multipliers is expected to be higher in comparison to the
Booth-r4. Table 3 confirms this and shows that the size of
CSA is particularly high in comparison to the CPA designs.
The major reason is that using carry-sum representation has
almost doubled the size of the shifters and registers that
keep the upper-half of the partial product. Moreover, the
variable-width adder is considerably larger than a standard
adder and a third adder, CPAhigh, is included to produce the
upper-half part of the product on the last cycle.

Further optimization of the presented designs is possible;
we are investigating circuit and organization modifications.
A possible improvement would be to build a transistor-level
implementation based on pass transistor logic, which is very
well suited for arithmetic circuits and multiplexers.

The above results, although preliminary, show that im-
provements in performance seem likely to be achieved by
the presented class of multipliers, although their power con-
sumption and area are quite high.

6. Related work

As explained in the introduction, we believe that this
work is the first implementation of the original Booth al-
gorithm using asynchronous circuits. Several implementa-
tions of iterative multipliers have been published, mostly
using the modified, radix-4 Booth algorithm.

The design by Killpack et al. [5] is very similar to
‘Booth-r4’ used in our evaluation. As can be expected from
the organization of the specific multiplier, data-dependent
latency was not included in their design goals. Moreover
early termination was not implemented.

Kearney et al. [2] have presented a bundled-data, itera-
tive multiplier using carry-save addition and data dependent
delays. The data dependent delay focused on bypassing the
carry save adder when one of the operands is zero and on
the implementation of the final carry-propagate adder. The
number of iterations in their implementation is fixed, equal
to the number of bits of the multiplier operand, as no varia-
tion of the Booth algorithm was employed. In comparison,
the implementation presented here offers a variable number
of iterations and variable delay per iteration.

Bartlett and Grass [4] have combined the data dependent
carry-save adders of the above paper with conditional eval-
uation and used dynamic logic for the implementation to
achieve ultra low power in an array multiplier.

Kim and Jeong [6] have presented an asynchronous,
iterative, multiplier with early termination (called early
completion in that paper) using dual-rail dynamic logic
(DCVSL). A data-dependent delay variation of 9 times dif-
ference between the best and worst cases was achieved due
to early termination.

Finally, the multiplier of AMULET3 [10] uses two levels
of carry-save addition per iteration and is capable of early
termination. It employs the radix-4 Booth algorithm, thus
the intermediate product is shifted by a fixed amount in each
iteration. Unfortunately it is designed in full custom in a
different technology to the one used for the multipliers pre-
sented here, so no comparisons were made.

7. Conclusions

A novel, asynchronous, iterative multiplier has been pre-
sented. It implements the original Booth algorithm which
allows it to exploit data-dependent delays not only within
each iteration, but also in the number of iterations required
to produce the result. This is achieved by including a shifter
in the circuit, allowing a variable number of equal, consec-
utive bits of the multiplier operand to be skipped, unlike
the common, radix-4 Booth algorithm which only consid-
ers two bits at a time.

First a simple implementation of the algorithm has been
presented and has then been improved in a number of steps

by making key modifications. The preliminary evalua-
tion of these multipliers, implemented using standard-cells,
show that speed improvement can be achieved although the
power consumed is significantly increased in comparison to
a standard iterative, radix-4 Booth multiplier.

Further work is now needed to develop a full-custom im-
plementation of the proposed multiplier and evaluate it us-
ing ‘real-world’ values.

References

[1] Jim D. Garside. A CMOS VLSI implementation of
an asynchronous ALU. In S. Furber and M. Edwards,
editors, Asynchronous Design Methodologies, volume
A-28 of IFIP Transactions, pages 181–207. Elsevier
Science Publishers, 1993.

[2] David Kearney and Neil W. Bergmann. Bundled data
asynchronous multipliers with data dependant compu-
tation times. In Proc. International Symposium on Ad-
vanced Research in Asynchronous Circuits and Sys-
tems, pages 186–197. IEEE Computer Society Press,
April 1997.

[3] Steven M. Nowick, Kenneth Y. Yun, and Peter A.
Beerel. Speculative completion for the design of high-
performance asynchronous dynamic adders. In Proc.
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 210–223.
IEEE Computer Society Press, April 1997.

[4] V. A. Bartlett and E. Grass. A self-timed multi-
plier using conditional evaluation. In Anne-Marie
Trullemans-Anckaert and Jens Sparsø, editors, Power
and Timing Modeling, Optimization and Simulation
(PATMOS), pages 429–438, October 1998.

[5] K. Killpack, E. Mercer, and C. J. Myers. A standard-
cell self-timed multiplier for power and area critical
synchronous systems. In Advanced Research in VLSI
Conference (ARVLSI), pages 188–201, March 2001.

[6] Do-Wan Kim and Deong-Kyoon Jeong. A 32x32 self-
timed multiplier with early completion. In Proc. AP-
ASIC. IEEE Computer Society Press, 1999.

[7] A. D. Booth. A signed binary multiplication tech-
nique. Quarterly J. Mechanics and Applied Mathe-
matics, 4(2):236–240, June 1951.

[8] Behrooz Parhami. Computer Arithmetic, Algorithms
and Hardware Designs. Oxford University Press,
2000.

[9] Mark R. Greenstreet and Brian de Alwis. How to
achieve worst-case performance. In Proc. Interna-
tional Symposium on Advanced Research in Asyn-
chronous Circuits and Systems, pages 206–216. IEEE
Computer Society Press, March 2001.

[10] J. Liu. Arithmetic and control components for an asyn-
chronous microprocessor. PhD thesis, Department of
Computer Science, University of Manchester, 1997.

