
Abstract 

A novel circuit for binary addition based on a parallel- 
prefir carry structure is presented. This circuit uses a 
recoding of the conventional carry kill and generate terms 
to yield a number of improvements over previous designs. 
In particular; a single circuit produces both the carry sig- 
nals and the Sum, Sum -+ 1 data that is required for a carry 
selection circuit, supporting a range of possible implemen- 
tations all of which have high performance, regular layout 
and good area-efiiency. The simple design also l e d  to 
good power-e@iency. 

Binary adders based on this technique have been used 
in the ARM9TDMI. the ARM Piccolo DSP coprocessor, 
and the AMULET3 asynchronous ARM processol: 

1. Introduction 

The AMULET group in the Department of Computer 
Science at the University of Manchester, U.K., has spent a 
decade researching the commercial potential of asynchro- 
nous design techniques. The focus of this work has been the 
design of asynchronous implementations of the ARM 32- 
bit RISC architecture [ 13. 

AMULET1 used a ripple-carry adder but exploited its 
asynchronous timing environment to deliver good average 
performance, having a variable delay that depends on the 
length of the longest carry propagation path in the current 
addition [2]. AMULET2 accelerated this scheme using a 4- 
bit carry look-ahead adder [3]. The most recent design, 
AMULET3 [4], required a significantly higher perform- 
ance than its predecessors and this, in turn, led to a require- 
ment for a higher performance binary adder [5]. 
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1.1. Binary addition 

Binary addition circuits are important in many applica- 
tions and much has been written regarding their optimiza- 
tion for performance and area [6] and, more recently, power 

consumption. Ultimately the problem boils down to that of 
generating the carry signals efficiently. Since the carry out 
from the top bit of the adder is a function of every input bit 
(including, frequently, a carry into the least significant bit) 
there is an irreducible fan-in problem to be addressed. The 
carry out from a 32-bit adder is a boolean function of 65 
input variables. 

With such a large fan-in, and given the fan-in restrictions 
of CMOS circuits, carry generation circuits are always 
compound designs comprising multiple stages. The carry 
logic equations have the properties of associativity and 
idempotency [7], so solutions can be found from highly 
sequential ripple-carry circuits to maximally parallel-prefix 
tree circuits [8]. 

The objective of binary adder design is to identify a cany 
generation technique that integrates well into the complete 
adder (or ALU) and that has high regularity (particularly 
when used in a custom datapath, for example in a high-per- 
formance microprocessor), appropriate performance, low 
power and uses minimum area. 

The binary adder circuit described in the remainder of 
this paper meets these requirements and has been used, in 
various forms, in the AMULET3 asynchronous ARM-com- 
patible processor [4], -9 [9] and the ARM Piccolo DSP 
coprocessor. 

2. Adder circuit 

The carry generation circuit uses the carry generate (G) 
and kill (K) terms, computed using a parallel-prefix tree [8]. 

The generate and kill terms can be combined according 
to the formula: 

(G,K) (G',K') = (G + I?. G',K + C. K') (Eq. 1) 
However, a simpler circuit is produced if the kill term is 

propagated in its inverse form. (Alternatively, the generate 
term may be inverted with similar effect.) Then we can 
rewrite equation 1 as: 

( G , b  (G,R) = ( E .  (G + G'),E. (G + E ) )  0%. 2) 
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Figure 1. Dynamic 3-input carry circuit. 

Note that equation 2 strictly enforces the relation G 1 
at all levels. Some other parallel-prefix schemes operate on 
the basis that if G then zis ‘don’t care’, but this will prevent 
the use of the parallel-prefix tree for generating group Sum 
and Sum + I outputs as used in the carry-select scheme 
later. 

The implementation of equation 2 as a CMOS circuit is 
particularly efficient due to the symmetry of the pair of 
equations and the commonality of factors in the two terms. 

2.1. Circuit fan-in and fan-out 

Although using equation 2 to combine two generate and 
kill terms is feasible, it is possible to combine more than 
two terms in a single circuit [lo]. Generating the carries for 
an N-bit adder using 2-input carry circuits requires a logic 
depth of log2N. The use of 3-input circuits gives a depth of 
logsN, and so on. Higher fan-in circuits are slower in 
CMOS, and optimization requires an analysis of the trade- 
off between logic depth and individual circuit speed. 

An analysis of the principles of circuit fan-in suggests 
that for a constant fan-out circuit with a fan-in of n and 
word-width N the delay varies as nlog,N. The optimum 
value of n is e, the natural logarithm base, and the optimum 
integer value is 3. However, when implemented as a tree the 
present circuit has a fan-out equal to its fan-in, so the delay 
varies as n210gnN. The optimum value of n is now less than 
2, and the optimum integer value is 2. If inverter buffers are 
included, these isolate the fan-in and fan-out and the delay 
is again nlog,N with an optimum integer solution of n=3. 
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Figure 2. AMULET3 3-input carry circuit. 

Additional factors may come into play, for example the 
bit pitch selected for the full-custom datapath in 
AMULETS provides sufficient space for a 3-input carry cir- 
cuit; a 2-input circuit could not use the available area as effi- 
ciently, and a 4-input circuit would not fit. It was therefore 
decided to base the design upon a 3-input carry circuit. 

2.2. Circuit implementation 

A 3-input dynamic implementation of equation 2 is 
shown in figure 1. The a inputs represent ‘not kill’ terms, 
the b inputs ‘generate’ terms. The vi output is the group ‘not 
kill’; the wi output is the group ‘generate’. The transistor 
circuit is symmetrical and exploits the shared terms fully to 
minimize circuit complexity. The circuit is designed in a 
self-precharging form, so it assumes that the inputs are all 
zero before the circuit is activated. (In fact, only the ai input 
really needs to be zero provided the other inputs do not 
change after ai has risen.) Nodes n l  and n2 are precharged 

‘ when ui is low and then selectively discharged during eval- 
uation. The inverters increase the output drive and ensure 
that the output transitions are suitable for driving subse- 
quent stages in the cany computation. 

The dynamic circuit is simple and fast but has poor noise 
immunity. A fully static version of the circuit can be 
designed, but the inclusion of correctly ratioed p-transistors 
will slow the circuit significantly as they represent 2 to 3 
times the capacitive load of the n transistors. To avoid this 
problem the 3-input carry circuit used in AMULET3 is nei- 
ther fully static nor fully dynamic; it is as shown in figure 2 
(with the output buffers omitted). This circuit combines the 
speed of a dynamic circuit with the noise-immunity of a 
static circuit. The fully static circuit is implemented, but the 
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p transistors are minimum size rather than being ratioed. 
Additional larger p transistors (P1 and P2) are used to accel- 
erate the precharge process between evaluations, and the 
evaluation process employs selective discharge just as the 
dynamic circuit does. 

(The p transistors marked '*' in figure 2 are redundant 
as their function is replaced by P1 and P2, so they may 
safely be omitted. They have been included here to clarify 
the base form of the static circuit.) 

The 3-input carry circuit can be cascaded into a carry 
computation tree as shown in figure 3. The black dots in the 
figure represent 3-input carry circuits. TWO layers of 3-input 
carry circuits can complete the carry computation for a 9- 
bit addition. 

2.3. Carry-select adder 

It is possible to merge the proposed parallel-prefix carry 
tree with a cany select scheme [3] as illustrated in figure 4. 
An interpretation of the v and w outputs is that v represents 

1st 2nd 3rd 4th 5th 

B* * 2 3 - 1 6  

Figure 5. AMULET3 adder organization. 

the carry out of a block if the carry in is 1 and w represents 
the carry out if the carry in is 0. The Sum and Sum + I can 
therefore be formed and the input carry used to select the 
appropriate answer. 

Note that separate group adders are not required since 
the group carries are produced by the same carry generator, 
exploiting the idempotency of the carry logic. 

3. AMULET3 adder 

The adder circuit used within the AMULET3 ALU is 
based upon the techniques described above. The organiza- 
tion of the adder is shown in figure 5. 

In the 1st logic layer the inputs are converted into G and 
K form using AND and OR gates respectively. These gates 
have enables, forcing their outputs to zero to precharge the 
following carry circuits. 

There are then two layers of 3-input carry circuits, ('c' 
in figure 5 )  together resolving the carry information across 
all groups of 9 bits. In the 4th logic layer the Sum and Sum 
+ I results are formed across groups of 8 bits, and two addi- 
tional carry circuits (not shown in figure 5 )  are used to gen- 
erate ~ 1 5  and ~ 2 3  for the final carry select layer. 

- 

3.1. Physical layout 

The technology on which the AMULET3 adder is based 
is a 0.35 pm triple metal CMOS process. The minimum 
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drawn width is 0.4 pm. 
The layout of the adder uses a full-custom style. for the 

datapath. The datapath bit pitch is 82 h. Data is routed hor- 
izontally in metal 3; control signals are routed vertically in 
metal 2. Metal 1 is used for local interconnections within 
the cells. The global power rails use metal 1 and metal 3, 
the local power rails use metal 2. 

The layout of the AMULET3 adder is illustrated in fig- 
ure 6. The regularity and compactness of the resulting lay- 
out are clearly visible. 

3.2. Performance 

The adder has a typical delay for a 32-bit addition of 
1.4 ns with a worst-case delay of 1.8 ns. It consumes 
80 pW per MHz with random data. 

The silicon area of the adder datapath is 686 h x 2624 h 
(137.2 x 524.8 p2 in 0.35 pm technology). 

4. AMULET3 and DRACO 

The adder circuitry described above is used in 
AMULET3, an asynchronous ARM-compatible processor 
employed in the DRACO chip. First DRACO silicon was 
received in September 2000 and is highly functional. 

The DRACO (DECT Radio Communications Control- 
ler) chip is a telecommunications controller intended for 
ISDN (Integrated Services Digital Network) DECT (Dig- 
ital European Cordless Telephone) base station applica- 
tions. The chip area is divided equally between the 
AMULET3H asynchronous processing subsystem and a 
synchronous telecommunications peripheral subsystem. 
The layout of the chip is shown in figure 7, where the posi- 
tion of the adder within the AMULET3 processor core is 
indicated. 

DRACO’S asynchronous processing subsystem is based 
around the MARBLE self-timed on-chip bus [I 11. This bus 
is a full functionality multi-master on-chip interconnect 
with a centraI arbiter and address decoder. It supports split 
transactions and, in its current manifestation, can perform 
up to 83 million 32-bit data transfers per second. 

The processor core is a 120 MIPS AMULET3 32-bit 
core with on-chip debug hardware support. 8Kbytes of 
dual-port high-speed RAM are connected to the processor’s 
instruction and data memory interfaces and both memory 
ports then connect to the MARBLE bus. The bus also hosts 
a 32channel DMA controller (synthesized using Balsa, an 
asynchronous sythesis tool [12]), 16 Kbytes of ROM and 
an extemal memory interface. The programmable extemal 
memory interface supports the direct connection of SRAM, 
DRAM and flash memory. 

Figure 6. AMULET3 adder layout. 
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7. References 

Figure 7. The DRACO chip 

5. Conclusions 

A hybrid carry scheme based on a fan-in 3 parallel-pre- 
fix carry tree and a final carry-select stage has been success- 
fully employed in AMULET3 and implemented in silicon 
within the DRACO chip. The adder design gives good per- 
formance and dense, regular layout. 

Related carry circuits have also been used in ARM9 [9] 
and the ARM Piccolo DSP coprocessor [ 11. 

As with other parallel-prefix schemes, a wide range of 
area and performance options are available through selec- 
tive exploitation of the associativity and idempotency of the 
carry generation logic. 
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