
Abstract

A novel circuit for binary addition based on a parallel-
prefir carry structure is presented. This circuit uses a
recoding of the conventional carry kill and generate terms
to yield a number of improvements over previous designs.
In particular; a single circuit produces both the carry sig-
nals and the Sum, Sum -+ 1 data that is required for a carry
selection circuit, supporting a range of possible implemen-
tations all of which have high performance, regular layout
and good area-efiiency. The simple design also l e d to
good power-e@iency.

Binary adders based on this technique have been used
in the ARM9TDMI. the ARM Piccolo DSP coprocessor,
and the AMULET3 asynchronous ARM processol:

1. Introduction

The AMULET group in the Department of Computer
Science at the University of Manchester, U.K., has spent a
decade researching the commercial potential of asynchro-
nous design techniques. The focus of this work has been the
design of asynchronous implementations of the ARM 32-
bit RISC architecture [13.

AMULET1 used a ripple-carry adder but exploited its
asynchronous timing environment to deliver good average
performance, having a variable delay that depends on the
length of the longest carry propagation path in the current
addition [2]. AMULET2 accelerated this scheme using a 4-
bit carry look-ahead adder [3]. The most recent design,
AMULET3 [4], required a significantly higher perform-
ance than its predecessors and this, in turn, led to a require-
ment for a higher performance binary adder [5].

A Novel Area-Efficient Binary Adder

S . B. Furber and J. Liut
Department of Computer Science, The University of Manchester,

Oxford Road, Manchester M13 9PL, UK.
sjiwber@ cs.man.ac. uk

tnow with Intel Corporation, Austin, Texas, USA

1.1. Binary addition

Binary addition circuits are important in many applica-
tions and much has been written regarding their optimiza-
tion for performance and area [6] and, more recently, power

consumption. Ultimately the problem boils down to that of
generating the carry signals efficiently. Since the carry out
from the top bit of the adder is a function of every input bit
(including, frequently, a carry into the least significant bit)
there is an irreducible fan-in problem to be addressed. The
carry out from a 32-bit adder is a boolean function of 65
input variables.

With such a large fan-in, and given the fan-in restrictions
of CMOS circuits, carry generation circuits are always
compound designs comprising multiple stages. The carry
logic equations have the properties of associativity and
idempotency [7], so solutions can be found from highly
sequential ripple-carry circuits to maximally parallel-prefix
tree circuits [8].

The objective of binary adder design is to identify a cany
generation technique that integrates well into the complete
adder (or ALU) and that has high regularity (particularly
when used in a custom datapath, for example in a high-per-
formance microprocessor), appropriate performance, low
power and uses minimum area.

The binary adder circuit described in the remainder of
this paper meets these requirements and has been used, in
various forms, in the AMULET3 asynchronous ARM-com-
patible processor [4], -9 [9] and the ARM Piccolo DSP
coprocessor.

2. Adder circuit

The carry generation circuit uses the carry generate (G)
and kill (K) terms, computed using a parallel-prefix tree [8].

The generate and kill terms can be combined according
to the formula:

(G,K) (G',K') = (G + I?. G',K + C. K') (Eq. 1)
However, a simpler circuit is produced if the kill term is

propagated in its inverse form. (Alternatively, the generate
term may be inverted with similar effect.) Then we can
rewrite equation 1 as:

(G , b (G,R) = (E . (G + G'),E. (G + E)) 0%. 2)

119 0-7803-65 14-3/00/$10.0002000 IEEE

bk
ak

bi

Figure 1. Dynamic 3-input carry circuit.

Note that equation 2 strictly enforces the relation G 1
at all levels. Some other parallel-prefix schemes operate on
the basis that if G then zis ‘don’t care’, but this will prevent
the use of the parallel-prefix tree for generating group Sum
and Sum + I outputs as used in the carry-select scheme
later.

The implementation of equation 2 as a CMOS circuit is
particularly efficient due to the symmetry of the pair of
equations and the commonality of factors in the two terms.

2.1. Circuit fan-in and fan-out

Although using equation 2 to combine two generate and
kill terms is feasible, it is possible to combine more than
two terms in a single circuit [lo]. Generating the carries for
an N-bit adder using 2-input carry circuits requires a logic
depth of log2N. The use of 3-input circuits gives a depth of
logsN, and so on. Higher fan-in circuits are slower in
CMOS, and optimization requires an analysis of the trade-
off between logic depth and individual circuit speed.

An analysis of the principles of circuit fan-in suggests
that for a constant fan-out circuit with a fan-in of n and
word-width N the delay varies as nlog,N. The optimum
value of n is e, the natural logarithm base, and the optimum
integer value is 3. However, when implemented as a tree the
present circuit has a fan-out equal to its fan-in, so the delay
varies as n210gnN. The optimum value of n is now less than
2, and the optimum integer value is 2. If inverter buffers are
included, these isolate the fan-in and fan-out and the delay
is again nlog,N with an optimum integer solution of n=3.

120

Figure 2. AMULET3 3-input carry circuit.

Additional factors may come into play, for example the
bit pitch selected for the full-custom datapath in
AMULETS provides sufficient space for a 3-input carry cir-
cuit; a 2-input circuit could not use the available area as effi-
ciently, and a 4-input circuit would not fit. It was therefore
decided to base the design upon a 3-input carry circuit.

2.2. Circuit implementation

A 3-input dynamic implementation of equation 2 is
shown in figure 1. The a inputs represent ‘not kill’ terms,
the b inputs ‘generate’ terms. The vi output is the group ‘not
kill’; the wi output is the group ‘generate’. The transistor
circuit is symmetrical and exploits the shared terms fully to
minimize circuit complexity. The circuit is designed in a
self-precharging form, so it assumes that the inputs are all
zero before the circuit is activated. (In fact, only the ai input
really needs to be zero provided the other inputs do not
change after ai has risen.) Nodes n l and n2 are precharged

‘ when ui is low and then selectively discharged during eval-
uation. The inverters increase the output drive and ensure
that the output transitions are suitable for driving subse-
quent stages in the cany computation.

The dynamic circuit is simple and fast but has poor noise
immunity. A fully static version of the circuit can be
designed, but the inclusion of correctly ratioed p-transistors
will slow the circuit significantly as they represent 2 to 3
times the capacitive load of the n transistors. To avoid this
problem the 3-input carry circuit used in AMULET3 is nei-
ther fully static nor fully dynamic; it is as shown in figure 2
(with the output buffers omitted). This circuit combines the
speed of a dynamic circuit with the noise-immunity of a
static circuit. The fully static circuit is implemented, but the

carry output

j input operands

Figure 3.9-bit carry computation.

boundary carry
I

el boundarycarry

Figure 4. Carry-select scheme.

2
s
a

3

3

4

p transistors are minimum size rather than being ratioed.
Additional larger p transistors (P1 and P2) are used to accel-
erate the precharge process between evaluations, and the
evaluation process employs selective discharge just as the
dynamic circuit does.

(The p transistors marked '*' in figure 2 are redundant
as their function is replaced by P1 and P2, so they may
safely be omitted. They have been included here to clarify
the base form of the static circuit.)

The 3-input carry circuit can be cascaded into a carry
computation tree as shown in figure 3. The black dots in the
figure represent 3-input carry circuits. TWO layers of 3-input
carry circuits can complete the carry computation for a 9-
bit addition.

2.3. Carry-select adder

It is possible to merge the proposed parallel-prefix carry
tree with a cany select scheme [3] as illustrated in figure 4.
An interpretation of the v and w outputs is that v represents

1st 2nd 3rd 4th 5th

B* * 2 3 - 1 6

Figure 5. AMULET3 adder organization.

the carry out of a block if the carry in is 1 and w represents
the carry out if the carry in is 0. The Sum and Sum + I can
therefore be formed and the input carry used to select the
appropriate answer.

Note that separate group adders are not required since
the group carries are produced by the same carry generator,
exploiting the idempotency of the carry logic.

3. AMULET3 adder

The adder circuit used within the AMULET3 ALU is
based upon the techniques described above. The organiza-
tion of the adder is shown in figure 5.

In the 1st logic layer the inputs are converted into G and
K form using AND and OR gates respectively. These gates
have enables, forcing their outputs to zero to precharge the
following carry circuits.

There are then two layers of 3-input carry circuits, ('c'
in figure 5) together resolving the carry information across
all groups of 9 bits. In the 4th logic layer the Sum and Sum
+ I results are formed across groups of 8 bits, and two addi-
tional carry circuits (not shown in figure 5) are used to gen-
erate ~ 1 5 and ~ 2 3 for the final carry select layer.

-

3.1. Physical layout

The technology on which the AMULET3 adder is based
is a 0.35 pm triple metal CMOS process. The minimum

121

drawn width is 0.4 pm.
The layout of the adder uses a full-custom style. for the

datapath. The datapath bit pitch is 82 h. Data is routed hor-
izontally in metal 3; control signals are routed vertically in
metal 2. Metal 1 is used for local interconnections within
the cells. The global power rails use metal 1 and metal 3,
the local power rails use metal 2.

The layout of the AMULET3 adder is illustrated in fig-
ure 6. The regularity and compactness of the resulting lay-
out are clearly visible.

3.2. Performance

The adder has a typical delay for a 32-bit addition of
1.4 ns with a worst-case delay of 1.8 ns. It consumes
80 pW per MHz with random data.

The silicon area of the adder datapath is 686 h x 2624 h
(137.2 x 524.8 p2 in 0.35 pm technology).

4. AMULET3 and DRACO

The adder circuitry described above is used in
AMULET3, an asynchronous ARM-compatible processor
employed in the DRACO chip. First DRACO silicon was
received in September 2000 and is highly functional.

The DRACO (DECT Radio Communications Control-
ler) chip is a telecommunications controller intended for
ISDN (Integrated Services Digital Network) DECT (Dig-
ital European Cordless Telephone) base station applica-
tions. The chip area is divided equally between the
AMULET3H asynchronous processing subsystem and a
synchronous telecommunications peripheral subsystem.
The layout of the chip is shown in figure 7, where the posi-
tion of the adder within the AMULET3 processor core is
indicated.

DRACO’S asynchronous processing subsystem is based
around the MARBLE self-timed on-chip bus [I 11. This bus
is a full functionality multi-master on-chip interconnect
with a centraI arbiter and address decoder. It supports split
transactions and, in its current manifestation, can perform
up to 83 million 32-bit data transfers per second.

The processor core is a 120 MIPS AMULET3 32-bit
core with on-chip debug hardware support. 8Kbytes of
dual-port high-speed RAM are connected to the processor’s
instruction and data memory interfaces and both memory
ports then connect to the MARBLE bus. The bus also hosts
a 32channel DMA controller (synthesized using Balsa, an
asynchronous sythesis tool [12]), 16 Kbytes of ROM and
an extemal memory interface. The programmable extemal
memory interface supports the direct connection of SRAM,
DRAM and flash memory.

Figure 6. AMULET3 adder layout.

122

7. References

Figure 7. The DRACO chip

5. Conclusions

A hybrid carry scheme based on a fan-in 3 parallel-pre-
fix carry tree and a final carry-select stage has been success-
fully employed in AMULET3 and implemented in silicon
within the DRACO chip. The adder design gives good per-
formance and dense, regular layout.

Related carry circuits have also been used in ARM9 [9]
and the ARM Piccolo DSP coprocessor [11.

As with other parallel-prefix schemes, a wide range of
area and performance options are available through selec-
tive exploitation of the associativity and idempotency of the
carry generation logic.

6. Acknowledgments

The development of AMULET3 was supported prima-
rily within the EU-funded OM-DE2 and OMI-ATOM
projects, and authors are grateful to the European Commis-
sion for their continuing support for this work. ARM Lim-
ited coordinated these projects; their support, and that of the
other project partners, is also acknowledged.

Aspects of the work have benefited from support from
the UK government through the EPSRC.

The VLSI design work has leant heavily on CAD tools
from Compass Design Automation (now part of Avant!)
and EPIC Design Technology, Inc. (now part of Synopsis).

[ll S.B. Furber, ARM System-on-Chip Arrhitecture, Addison
Wesley Longman, 2000. ISBN 0-201-67519-6

[2] J.D. Garside, “A CMOS VLSI Implementation of an Asyn-
chronous ALU”, IFIP Working Conference on Asynchronous
Design Methodologies, April 1993. Ed. Furber, S. B. and
Edwards, M. D. Pub. North Holland.

[3] D. Goldberg, “Computer Arithmetic”, Appendix A of: J.L.
Hennessy and D.A. Patterson, “Computer Architecture: A Quan-
titative Approach” (2nd edition), Morgan Kaufmann, San Fran-
cisco, 1996.

[4] S.B. Furber, D.A. Edwards and J.D. Garside, “AMULET3: a
100 MIPS Asynchronous Embedded Processor”, Proc. ICCD
2000, Austin, Texas, September 2000.

[SI J. Liu, Arithmetic and Control Components for an Asynchro-
nous System, PhD thesis, The Universioty of Manchester, 1997.

[6] B.W.Y. Wei and C.D. Thompson, “Area-Time Optimal
Adder Design”, IEEE Trans., C-39(5), May 1990, pp. 666-675.

[7] T. Lynch and E.E. Swartzlander Jr, “A Spanning Tree Carry
Lookahead Adder”, IEEE Trans., C-41(8), August 1992, pp. 931-
939.

[8] R.P. Brent and H.T. Kung, “A Regular Layout for Parallel
Adders”, IEEE Trans., C-31(3), March 1982, pp. 260-264.

[91 S. Segars, “The ARM9 Family - High Performance Micro-
processors for Embedded Applications”, Proc. ICCD ’98, Austin,
October 1998, pp. 230-235.

[101 N.T. Quach and M.J. Flynn, “High-speed Addition in
CMOS”, IEEE Trans., C-41(12), December 1992, pp. 1612-
1615.

[111 W.J. Bainbridge and S.B. Furber, “Asynchronous Macrocell
Interconnect using MARBLE”, Proc. Async’98, San Diego, April
1998.

[12]A. Bardsley and D.A. Edwards, “Compiling the Language
Balsa to Delay Insensitive Hardware”, PIVC. CHDL‘97, Toledo,
April 1997. Published in Woos, C.D. and Cemy, E. (eds.) Hard-
ware Descriptions Languages and their Applications, IFIP &
Chapman Hall. ISBN 01412 78810 1, 1997 pp. 89-91.

123

