The Leaky Integrate-and-Fire Neuron: A Platform for Synaptic

Model Exploration on

the SpiNNaker Chip

A. D. Rast, F. Galluppi, X. Jin and S.B. Furber

Abstract— Large-scale neural hardware systems are trend-
ing increasingly towards the “neuromimetic” architecture: a
general-purpose platform that specialises the hardware fo
neural networks but allows flexibility in model choice. Sine the
model is not hard-wired into the chip, exploration of different
neural and synaptic models is not merely possible but provids
a rich field for research: the possibility to use the hardwareto
establish useful abstractions of biological neural dynanus that
could lead to a functional model of neural computation. Two
areas of neural modelling stand out as central: 1) What level
of detail in the neurodynamic model is necessary to achieve
biologically realistic behaviour? 2) What is role and effet
of different types of synapses in the computation? Using a
universal event-driven neural chip, SpiNNaker, we developa
simple model, the Leaky-Integrate-and-Fire neuron, as a tol for
exploring the second of these questions, complementary the
existing Izhikevich model which allows exploration of the fist of
these questions. The LIF model permits the development of ntu
tiple synaptic models including fast AMPA/GABA-A synapses
with or without STDP learning, and slow NMDA synapses,
spanning a range of different dynamic time constants. Its snple
dynamics make it possible to expand the complexity of synajut
response, while the general-purpose design of SpiNNaker rkes
it possible if necessary to increase the neurodynamic accacy
with Izhikevich (or even Hodgkin-Huxley) neurons with some
tradeoff in model size. Furthermore, the LIF model is a
universally-accepted “standard” neural model that provides
a good basis for comparisons with software simulations and
introduces the minimal risk of obscuring important synaptic
effects due to unusual neurodynamics. The simple models run
thus far demonstrate the viability of both the LIF model and of
various possible synaptic models on SpiNNaker and illustriz
how it can be used as a platform for model exploration. Such
an architecture provides a scalable system for high-perfanance
large-scale neural modelling with complete freedom in mode
choice.

I. UNIVERSAL NEURAL HARDWARE: THE NEED FOR
MODEL LIBRARIES

What is the purpose of dedicated neural network har
ware? In the past, the answer was easy: model acceleration
However, rapid progress in standard digital hardware oft
outpaced the development cycle for first-generation neurg.
chips, so that by the time they were available software sim
lators could outperform them anyway [1]. FPGA implemen-
tations offered hardware-like performance gains with tiyea
reduced design time [2], and added a new dimension: tf%e
ability to implementdifferent models on the same platform
and explore various architectural tradeoffs [3]. However
power and routability limitations with FPGAs effectively

restricted their role to model prototyping [4]. Today, hawe
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Fig. 1.

SpiNNaker test chip

the rate of progress in standard digital hardware is flaitpni
out, and the configurable-model concept that the FPGA
introduced has given rise to new neural devices that offer
various levels of model configurability without the scalepi
problems of the FPGA: “neuromimetic” chips [5]. These
chips alter the nature of the research question: now it is not
simply a matter ohow to scale a neural model to large sizes
but what model to scale.

The question of which neural network models are the
“right” ones depends rather critically on what the purpofe o
the model is. A “one-size-fits-all” hardware neural model is
thus unrealistic and somewhat irrelevant. Different regea
groups, with different goals, may want to use the hardware
in different ways, and it is unrealistic to expect them to
have, or even to acquire, the low-level hardware familjarit
Jlecessary to develop efficient models for universal neu-
romimetic chips. Configuring such chips can involve careful
?Ptimisation: the mapping of model to chip may be unusual
apd require intimate hardware knowledge [6]. Rather, the
u_ardware developers should provide a library of different
reference models, giving experimenters at minimum some
models to get started with, and more generally a reference
template that third-party developers could use to deveitip s
urther models and expand the hardware’s model support.
The beginnings of a model library are therefore a crucial
step in the adoption of neuromimetic hardware for neural
simulation.

With the SpiNNaker chip (fig. 1), we have introduced
a neuromimetic platform for large-scale neural modelling
ideal for exploring the effects of different models. Preusty,
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Fig. 2. SpiNNaker Architecture. The dashed box indicates ektent of
the SpiNNaker chip. Dotted grey boxes indicate local menagas.

we have introduced basic models for neural [7] and synap-
tic [8], [9] dynamics that illustrate the basic functiorigli

of the device. However, these models dtestrative rather
than prescriptive; having developed them we now wish
to introduce further models to build a neural library and
provide further examples to third-party developers of how
to configure SpiNNaker. We have focussed on an important,
popular neural model - the leaky-integrate-and-fire (LIF)
model, and used it as a platform to develop other synaptic
models, notably an NMDA synapse with slow voltage-gated
dynamics. These models introduce a variety of techniques
not yet demonstrated in the original reference models,ewvhil
using and extending important core techniques from those
models that show their general nature. Developing differen
neural models is a useful way not only to extend hardware ca-
pabilities, but to establish principles of efficient comgttidn

- a basis for approaching the question of what abstractions
of neural function are useful.

II. THE SPINNAKER ASYNCHRONOUSEVENT-DRIVEN
ARCHITECTURE

The SpiNNaker chip (fig. 2) is a universal neuromimetic
platform containing programmable processing blocks embed
ded in a configurable asynchronous interconnect. Processor
and interconnect are generic and configurable, but have a
structure and function optimised for neural computation.
SpiNNaker therefore shares features both with completely
general-purpose FPGA's and dedicated fixed-model devices
while being distinctly different from either. The primary
features of the architecture are:

Native Parallelism:

There are multiple (2 in the present implementa-
tion, 20 in a forthcoming version) general-purpose
ARM968 processors per device, each operating
completely independently from each other(on sep-
arate clocks). Each processor has its own private
subsystem containing various devices to support
neural functionality: a communications controller
that handles I/O traffic in the form of AER packets,
a DMA controller that provides fast virtual access
to synaptic data residing off-chip in a separate
(SDRAM) memory, and a Timer to generate fixed
time steps where models need them. This “process-
ing node” uses only local information to control
execution and operates asynchronously from other
processing nodes.

Event-Driven Processing:

SpiNNaker's communications fabric is a con-
figurable packet-switched asynchronous intercon-
nect using Address-Event Representation (AER) to
transmit neural signals between processors. AER is
an emerging neural communication standard [10]
that abstracts spikes from neurobiology into a single
atomic event, transmitting only the address of the
neuron that fired. SpiNNaker extends the basic
AER standard with an optional 32-bit payload. This
fabric implements the support infrastructure for the
event-driven model.

Incoherent Memory:

Any processor may modify any memory location
it can access without notifying or synchronising
with other processors. SpiNNaker processors have
access to 2 primary memory resources: their own
local “Tightly-Coupled Memory” (TCM) and a
global SDRAM device, neither of which require
or have support for coherence mechanisms. The
TCM is only accessible to its own processor and
contains both the executing code (in the 32KB
“Instruction TCM” (ITCM)) and local variables
(in the 64KB “Data TCM” (DTCM)). The global
SDRAM contains the synaptic data (and possibly
other large data structures). The processor's DMA
controller handles synaptic data transfer, making
the synapse appear virtually local to the processor
by bringing it into DTCM when an incoming packet
arrives [11].

Incremental Reconfiguration:

The structural configuration of the hardware can
change dynamically while the system is running.
SpiNNaker uses a distributed routing subsystem
to direct packets through the Comms NoC. Each
chip has packet-switching router that can be re-
programmed in part or in full by changing the

routing table, thus making it possible to reconfigure
the model topology on the fly. Under the AER

format, the router uses a source routing protocol to



direct traffic. Previous work ( [12], [13]) describes These constraints allow us to form a general specification fo
the design of and configuration procedure for th&piNNaker neural models using a set of design guidelines in

Comms NoC.

IlIl. LIF M ODEL IMPLEMENTATION

combination with an abstract processing model.

B. Implementation Rules

To meet SpiNNaker's hardware constraints with an effi-
cient, accurate model we introduce a set of design rules that

Implementation of the LIF model must consider SpiN-help to define the model implementation. These rules are
Naker's hardware architecture. In particular, the follogvi indicative but not forcing, so that while models generally
details of the hardware act as model design constraints: obey this pattern they can in specific details deviate from it

Defer event processing with annotated delays

A. Implementation Constraints

Elementary mathematical operations only

Limited time to process a neuron

The ARM968 has basic add and subtract, logical,
shift, and multiply operations, but does not have
native support for division, transcendental func-
tions, and other nonlinear computations. Therefore,
the model must express its processing in terms of
simple polynomial mathematical operations.

32-bit fixed-point representation

Similarly, the ARM968 has no floating-point unit.

The deferred-event model [8] is a method to al-
low event reordering. Under this scheme we only
perform minimal processing at the time of a given
event, storing state information in such a way as to
be available to a future event, so that processes can
wait upon contingent future eventSuture events
thus trigger state update relevant to tbarrent
event.

Models therefore cannot use floating-point notation, Solve differential equations using the Euler method

at least not without significant loss of efficiency.

The model needs to translate any floating-point
guantities into fixed-point numbers, while determin-
ing a position for the decimal point, hence assigning
a fractional precision.

Limited local memory

With 64k data memory and 32k instruction memory
per processor, SpiNNaker’s individual processors
must operate within a limited memory space. If the

The Euler method is the simplest general way to
solve nonlinear differential equations. In it, the
processor updates the equations using a small fixed
time step. The method then simply uses the formula
X(t+1) = X(t) + €(t + 1). The time step is
programmable (nominally 1 ms in our models), so
modellers can choose finer time steps for better
precision or coarser ones for more relaxed timing
margins (and potentially more complex models).

processor is modelling a large number of neurons, Represent most variables using 16-bit values

this means perforce a minimal number of param-
eters, and arrays can become costly very quickly.
This effectively prohibits having synaptic data local
at all times. Memory management must therefore
attempt to store as much information as possible on
a per-neuron rather than per-synapse basis.

To stay within the real-time update requirement,
each neuron must be able to update its state be-
fore any external inputs could arrive that depend
upon the updated state, and before any outputs
consequent upon the updated state would occur.
If a processor is modelling multiple neurons, in
particular, this means updating at Worstji;'Rmaz,
where N is the number of neurons modelled and
R,.q2 is the maximum event rate.

Synaptic data only available on input event

Because of the limited memory, SpiNNaker stores

Various studies indicate that 16-bit precision is ad-
equate for most neural models [14], [15]. Since the
ARM contains efficient 16-bit operations it makes
sense to conserve memory space and use 16-bit
variables throughout. Intermediate values, however,
may use 32 bits to avoid unnecessary precision loss.

Precompute constant parameters where possible

By an astute choice of representation, it is often
possible to transform a set of parameters in a
neural equation into a single parameter that can
be precomputed. Furthermore, it is often possible
to choose this representation in a way that further
simplifies the computation remaining. For example,
in the expressionz(t) = Ae*, we can use the

substitution log,b = fz(% choose 2 for ¢ and

arrive atz(t) = A(20°%29%t) which allows us
to precompute a new constant = klogse and
determine x with simple shift operations.

synaptic data off-chip and brings it to the local pro- Compute non-polynomial functions by lookup table

cessor only when an input event arrives. Processes
that depend on the synaptic value, therefore, can
only occur in the brief window to process the new
event. This means that synapse processing must be
scheduled for a fixed time after the input, and can
only depend on information knowable at the time
the input arrived.

Lookup tables provide a simple, and in fact tirdy

general way of computing an arbitrary function.
The ARM takes at most 2N instructions to compute
a LUT-based function with N variables. Memory
utilisation is a concern; even a 16-bit lookup table
requires 64K entries (the entire DTCM) and is
therefore impractical. However, an 8-bit lookup
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expressible as multiply and accumulate operations. Thesedan form the Fig. 4. SpiNNaker Neuron Binned Input Array. Inputs arriwoi the bin

input to lookup table evaluation for more complex functioflynomial  ¢qrresponding to their respective delay. Output is comtpditem the bin
interpolation improves achieved precision where necgssad then finally pointed to by “Now”.

the differential equation solver can evaluate the expoesgvia Euler-
method integration). Each of these stages is optional (aluates to the
identity function).

event, the Timer event, that recovers the total current tioen
bin. At the same time, the neuron retrieves its associased st
table occupies only 256 entries (512 bytes if thesglock, containing the voltage variable and the parameters
are 16-bit values) and can access the value in a sip= (rest voltage)V;, (threshold voltage)V, (reset voltage),
gle ARM instruction. Where models need greateRr (membrane resistance), am’g(: %) (naturaj frequency)
precision we implement various interpolations.  Note that we precompute this last value from time constant
Exploit “free” operations such as shifting 7 in order to avoid division.
Most ARM instructions can execute conditionally, 2) polynomial Evaluation: The basic LIF neuron equation
many can shift an operand before doing the inis [16]
struction, and there are built-in multiply-accumulate dv
instructions. Taking advantage of such “free” op- ar
erations is an obvious optimisation. An extreme]_
example is the SMLAWX instruction. This performs
a 32-bit * 16-bit multiply, truncates the low-order
16 bits of the 48-bit result, then accumulates it with
a 32-bit value. If, then, the 16-bit value is a numbe

fn(Vi =V +1IR)

he right-hand side is a simple polynomial, which we can
easily compute (in 3 instructions using 2 SMLAxx multiply-
ccumulates). It is possible also to incorporate condweetan
ased synapses into this evaluation; the function then be-

representing a fraction with implied leading 1, byComes

choosing it to represent the reciprocal of an integer av — (Ve =V + T@)(V = V,)) + IR)

it is possible to performs = % + z in a single dt " "

Instruction. where T(t) is the synaptic “transmissivity”, a value that

Using these rules, we can build up a generalised functiqicorporates the values of maximum synaptic conductance
pipeline to represent a neural process that is adequate fgid specific membrane resistivity into the release protpabil
most models (fig. 3). by precomputing and storing the weights as this aggregate
C. The LIF Model quantity. V,, is the synaptic rest voltage.

3) Look-up table: For the “normal” LIF neuron there is

The LIF model uses this instruction pipeline. Many of thﬁwo need for a lookup table function since the differential

techniques it uses are common .to the referencg Izhikevic guation is polynomial. However, if we include conductance
model we have described earlier [7]. The basic approa

applies to virtually any spiking model with voltage-variab sed NMDA synapses, there s a voltage gating term [16]:

differential-equation dynamics: an illustration of theiuer- G = 1
sal design of the software as well as the hardware. We will 1+ 1;4_%?;@(1533)
walk through the function pipeline stage by stage. '

1) Variable Retrieval: Like the Izhikevich neuron, the LIF whereMg™" is the magnesium ion concentration. This func-
neuron uses the deferred-event model to place input spikégn will use a (256-entry) LUT to compute its value.
into a circular array of current buffers representing thialto  4) Interpolation: Likewise in the standard LIF model
input in a given time step (fig. 4). At the actual time ofthere is no need for interpolation since the function can
arrival of an input, the model does nothing more than triggdre computed exactly. If the model uses NMDA synapses,
a DMA operation which retrieves a source neuron-indexegnd if the model requires better than 8-bit precision in the
synaptic row. Once this row has been retrieved, a deferrggting factor, however, we have implemented a spline-based
event, DMA complete, triggers a second stage of deferral bgterpolation. While efficient, it is not computationallyet,
finding the delay associated with a given synapse and placirgguiring 48 cycles.
the synaptic weight (representing the current injection i 5) Differential Equation Solver: The Euler-method pro-
the bin in the circular array representing the delay valueess evaluates the differential equation at each Timerteven
Finally, when that delay expires, it triggers another defgr Timer events occur each millisecond. After evaluating the




equation, it also tests whether the potential has excedued aind second, how to implement the voltage gating process. 2
thresholdV;. If it has, it resets V tdV. properties of NMDA synapses make it possible to implement
The LIF computation requires 10 instructions if the neuromn efficient algorithm. First, the decay of the current eithib
does not fire, 21 if the neuron fires, and 38 if the neuron fires linear kinetic, therefore instead of using sampled Euler-
and synapses have spike-timing-dependent plasticity B3TD method evaluation it is possible to precompute the update
The high efficiency of this model makes it an ideal test-betbr each input. Second, voltage gating is multiplicativel an
for exploring different synaptic models. depends on thpost-synaptic potential, thus the net contribu-
tion from all synapses with NMDA-mediated dynamics can
V. SYNAPTIC MODELS be computed by multiplying their aggregate activation by th

Spiking neura] neMorks can cpntain various diﬁerenbating factor on a per (postsynaptic) neuron basis.
synapse types W|th different d_ynam|cs. At present the rble 0 Precomputing the synapse open probability uses a variety
different synaptic types remains an area of intense researg techniques. NMDA synaptic currents reach their maximum
interest [17]. Equally significantly, the level of biophgal \41ye quickly, usually within 1.5 ms of spike arrival. This
realism necessary to achieve useful behaviour or modedictyows us to neglect the effects of rise-time dynamics and
brain dynamics is unclear. For instance, in the case of thgnnly incorporate it into the delay. The current then decay
well-known STDP plasticity rule, while many models existgyyonentially with a slow time constant We can accomo-
describing the behaviour [18], [19], the actual biologidata yate this slower dynamic by adding a second set of activation
on STDP is noisy and of low accuracy. Observed STDRBjns o each neuron that rotate everyns. Precomputing the
modifications exhibit a broad distribution for which the,,5,e to place in each successive bin after the inifigl.(,)
nominal functional form of STDP models_gsua_\lly constituteyin is trivial by exploiting the exponential property of &rig
an envelope or upper bound to the modification [20], [21]ang ysing precomputed parameter scaling: shift the “weight
This suggests that high repeatability or precision in STDBigred in the synaptic block, right by one place for each
models is not particularly important. successive bin.

While SpiNNaker is capable of modelling synapses with a; egch (1ms) time step, the neuron then multiplies the

biophysical realism down to the molecular level if necegsar ¢ ,rent NMDA bin (representing aggregate NMDA stimulus)
such high biological fidelity is computationally expensiveby the voltage gating factor and adds it to that of the normal
In view of the observed synaptic variability exact biolagic ¢5q¢ (AMPA/GABA-A) bin using the previously-described
replication, or fidelity to a precise functional form, apf®a | yT.pased scheme. Once again this function can exploit
to be unnecessary for understanding their computationgiensive precomputation to simplify the LUT evaluation.
properties. This gives considerable latitude for expentme The neuron also needs to test whether the NMDA bin
ing with different synaptic models in order to investigateshomd rotate, based on the system timg,. A series of

various tradeoffs between computational cost and funationy.;nsformations allows us to computg, REMr efficiently
accuracy. Using the LIF model gives not only a defaulf, orger to perform this test.

“reference” model with _known apd easily tqned dynam_ics The complete process then functions as follows:
that expose the syngptlc dynamics clearly, |F glso prov{dq:srewnaptic input event

a very-low-computational-cost model, minimising machine
cycles to allow more time for complex synaptic models. We
are using the LIF model to test 2 different models.

The first model has been the reference model for SpiN-
Naker development and is a temporally accurate STDP
model. Details of the technique and algorithm are in [8], [9]
This model demonstrates 2 important techniques: use of the
deferred-event model to reorder processes, and exploiting
the ARM’s bit-shifting logic to maximise computational ef-
ficiency. In the deferred-event model, the processor pergor )
the synaptic update only upon receipt of a new presynapfiteuron timer event
spike, using a pair of time stamps to record presynaptic 1) Get the current system time.
and postsynaptic events so that the processor can track?) Calculate whether the NMDA bin should rotate by
postsynaptic spikes happening after a given input. It can th computingts,s REM7T < 5-.
retroactively apply the weight changes that would have hap-3) If the bin should rotate, advance it and clear the
pened to the synapse between the last input and the current Previous bin.
input, using shift-and-add operations, before transmgjtthe ~ 4) Compute the gating factor by LUT.
spike through the synapse. 5) Multiply the current NMDA bin by the gating factor.

The second model adds NMDA-mediated synapses ex-6) Add to the (fast AMPA/GABA-A) activation.
hibiting voltage gating with slow dynamics. This model The NMDA synaptic model takes advantage of the low
presents 2 challenges: first, how to model the slow dynamiasstruction count of the LIF process. Updating the NMDA
without having to retrieve the synaptic values multipledan dynamics in a neuron requires 22 instructions. Thus thé tota

1) Retrieve the synaptic row corresponding to the presy-
naptic neuron.

2) Calculate the effective bin delay (position of i, ,.)
using Traz = 5w(%), where ¢,, is the real-time
annotated delay in the synaptic weight.

3) Precompute the synaptic contribution (effective open
probability) for each future bin.

4) Distribute the contributions into each bin by accumu-
lating them with the current bin value.
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Fig. 5. Single neuron dynamics. We inject 4 pulses of curiett the
neuron. Traces compare the membrane potential of the dipnuleun on
SpiNNaker (continuous line) with the same neuron implemerih Brian
(dashed line).

instruction count rises only to 32 if the neuron does not fire,
43 if the neuron fires. This remains well within timing limits

to permit~1000 neurons per processor. Fig. 7. Network Structure. Arrows represent connectiorts/éen neurons.
Values at the end of each arrow represent synaptic delayacserding to
V. SIMULATING VARIOUS SPIKING MODELS ON detector placement (cf. fig. 6). P ynap i 9
SPINNAKER

A. Single Neuron Dynamics o ) ) .
To test the LIF model, we started with a single neuronto discriminate the inter-pulse interval between the fising

We tested single neuron dynamics by injecting short pulsg neurona anq neuronb with m|II|secqnd precision by
of current into a neuron with the following parameterspmduc'ng a spike from the corresponding detector neuron.

Vo = V. = —75mV, V. = —66mV, fu — tms 1, This result confirms the millisecond precision of the LIF

3 : )
R = 8, V, = —56mV. HereV; is the reset voltageV, module implementation.

is the rest voltagef,, is the natural frequency Q;) Risthe ¢ Oscillatory Network Activity

membrane resistance, ahgis the threshold voltage. To test . . .
the accuracy of our implementation we compared it with the We tested network dynamics by simulating the network

same neuron implemented with Brian [22], driving it withi" fig- 9: the network contains 1100 n_eluron%(: Vs =
the same input current. Results are in fig. 5: the difference o™V VT = _6,5mV' fa = 1M k=38 =
in the spiking region is due to the fact that we artificially se ~267?V) divided into 80 excitatory neurons and 20 in-

V = 30mV when a neuron crosses the threshold in order tJaibitory neurons. Each neuron in the excitatory group con-
have a self-evident spike. nects to 56 (70%) excitatory neurons and 2 (10%) inhibitory

neurons with random delay between 1 and 8 ms. Each

B. Spike Propagation inhibitory neuron connects to every excitatory neuronl (ful

In order to test the time precision of spike generation angonnection - 100%) with a delay of 1 or 2 ms. We selected
propagation processes we implemented a network capa@iéeurons from the excitatory group to be input neurons and
of detecting inter-pulse interval between spikes gendraye injected them with a constant current of 3 nA, making them
two neurons, reproducing the results in [23] (Section 2)o Twfire approximately every 10 ms. Excitatory weights are set
input neurons (transponders) connect to 7 output neurotisorder to build up the background activity of the network
(detectors) with a delay proportional to the distance (fig. 6Slowly. Once there is sufficient activity, the whole exatat

The weights are set so that a detector will fire only ifgroup starts firing, causing the inhibitory neurons to firew f
two coincident spikes arrive within a millisecond interval ms later (due to the dense connectivity). Inhibitory wesght
detector neurorr; only fires when the inter-pulse interval are set to quench network activity quickly. Fig. 10 presents
t, — tp = i, wheret, andt, are the absolute firing times the results of the simulation.
of neuronsa andb respectively (eg. neuron_s fires when
neuronb fires 3 msea@fter neurona, neuronr, fires when
neuronb fires 2 msedefore neurona etc). Fig. 7 represents
the network structure, specifying the delays. Fig. 8 pressen Implementing the LIF model has made it possible to
the simulation results. It can be seen that the network is abtonsider efficiency limits within the SpiNNaker hardware.

V1. CONSIDERATIONS FOREFFICIENT MODELLING
LIBRARIES
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Inhibitory neurons (ID 80-99) then activate, quenching #uivity of the
network.

neurons/processor, or 910 neurons with NMDA synapses.
Of the various factors the mean spiking rate of the active
population has the greatest impact on performance. This
was particularly noticeable for NMDA synapses where high
firing rates increase the number of iterations necessary to
precompute future NMDA activation; a multiplicative effec
High rates also increase the mean activation, making it more
probable that the NMDA gate will turn on, increasing the
downstream firing rate. The result is a processing cascade -
and at the maximum firing rate of 100 Hz the number of
neurons a processor can model drops drastically.

The LIF model can support more complex synaptic models
that other spiking models such as the “reference” Izhikevic
model or conductance-based models, simply because it has
fewer instructions to perform. This in itself is a stronggea
to make it the model of choice for large-scale studies of
synaptic dynamics, but there is another and equally powerfu
motivation: ease of analysis.

Any research project must of necessity make a definite
choice as to the scope of the researebhat is being
investigated. Unsurprisingly, the majority of investigats
into new synaptic models have used the LIF neuron so as not
to introduce too many experimental variables simultankous
It is ideal because it is very simple, exaustively analysed,
and does not introduce complexities that might obscure the

The core computation time of 10 instructions without spikeffects of a given synaptic model. Developing the LIF model
ing, 21 with, is probably the minimum possible for anyfor SpiNNaker adds it to the “neural library” so that mod-

model with broad acceptance within the spiking neural modellers can insert the neuron as a “drop-in” component withou
community. If we assume a mean activity rate throughout tHeaving to spend any time developing or implementing the
network of1% (number of active neurons in a given procesneurons themselves on SpiNNaker.

sor), and provide for a timing margin of 0.2 ms in a 1 ms Implementing a function pipeline has given us a stan-
Timer (Euler sample) interval, this enables us to examiee tldard “template” for library components. It considers what
maximum number of neurons a single SpiNNaker processtiunctions SpiNNaker can implement efficiently. SpiNNaker’

could model.

processors can easily compute polynomial functions bt it i

For most models, memory capacity rather than processingually easier to implement other types, e.g. exponentials
overhead is the limiting factor: most configurations easilyas a look-up table with polynomial interpolation. This ade-
supported rates in excess of 2000 neurons/ms; considguately covers the right-hand-side of differential equradi
ably over the memory limit of 1724 AMPA/GABA-A-only For very simple cases it may be possible to solve such



equations analytically, but for the general case, the Eulep]

method evaluation we have used appears to be adequate.

Creating a new component for the library is simply a matter
of plugging in appropriate models for the pipeline stages|3]
allowing for extensive software reuse because most of the
support libraries, low-level utilities, and “housekeapicode 4]
can be general across all models. Only the dynamics need
change. The library therefore takes the form of a genera?ﬂ
infrastructure with model-specific core routines.

VII. CONCLUSIONS

The LIF model we have created is an important reference’)
model for developing new synaptic models, and has been
instrumental in creating and refining the function pipeliag
a base standard for neural and synaptic libraries. Devadopi Y
more models for these libraries on SpiNNaker is one of our
major research foci. We are currently reworking the library(8l
into a series of C++ template classes, where the template
parameters can indicate the model type. This will furtherg]
simplify future model development and provide a specifica-
tion for third-party model building. The other major area of
research is in increasing the scale of neural models. We dre)
creating a large-scale neural model, based on the LIF neuron
with AMPA/GABA-A and NMDA synapses, to simulate
attentional control and response, with future developmént [11]
short- and long-term memories. Such a system should form
an effective, scalable demonstration network for a muitich [12]
SpiNNaker system.

In a larger context, the function pipeline model we de-
veloped may be a useful abstraction for neural hardwarﬁg]
regardless of platform. To create the function pipeline we
attempted to decompose the general form of neurodynamic
state equations into platform-neutral components thad-har
ware can typically implement easily. Digital hardware can
readily implement memories to form variable retrieval andtS]
LUT stages, and both analogue and digital hardware have
effective blocks for polynomial evaluation and interpaat
Both DSPs and various analogue blocks offer efficient contitél
putation of differential equations. Thus one could build #17]
neural system in building-block fashion, by chaining tdgpet
various components using AER signalling, allowing for the
construction of hybrid systems in addition to integrateé;L 8l
approaches like SpiNNaker. More than anything else, SpiN-
Naker is valuable as a test bed for hardware architectures 16°]
neural models.
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