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Martin Grymel and Steve B. Furber, Fellow, IEEE

Abstract—A new hardware scheme for computing the transi-
tion and control matrix of a parallel cyclic redundancy checksum
is proposed. This opens possibilities for parallel high-speed cyclic
redundancy checksum circuits that reconfigure very rapidly to
new polynomials. The area requirements are lower than those
for a realization storing a precomputed matrix. An additional
simplification arises as only the polynomial needs to be supplied.
The derived equations allow the width of the data to be processed
in parallel to be selected independently of the degree of the
polynomial. The new design has been simulated and outperforms
a recently proposed architecture significantly in speed, area, and
energy efficiency.

Index Terms—Cyclic redundancy checksum (CRC), error de-
tection, parallel, programmable, digital logic.

I. INTRODUCTION

THE integrity of data being stored or transmitted over
noisy channels can be protected by means of codes for er-

ror detection. A widely adopted code is the cyclic redundancy
checksum (CRC), first introduced by Peterson and Brown
in 1961 [1]. The popularity of CRCs has led to a number
of different software and hardware implementations [2], [3].
Speed requirements usually make software schemes imprac-
tical and demand dedicated hardware. The generic hardware
approach uses an inexpensive linear feedback shift register
(LFSR), which assumes serial data input. In the presence of
wide data buses, the serial computation has been extended
to parallel versions that process whole data words based on
derived equations [4], [5], [6], [7] and on cascading the LFSR
[8]. Various optimization techniques have been developed that
target resource reduction [9] and speed increase [10], [11].

The error detection capabilities of CRCs depend greatly on
the polynomial used [12], [13], [14]. The performance of a
certain polynomial is affected by the data, its length as well
as the anticipated error patterns. Different applications might
therefore favor different polynomials.

This work is motivated by SpiNNaker [15], a spiking neural
supercomputer architecture, which aims to mimic aspects of
the functionality of the human brain. The project will incorpo-
rate more than a million embedded processors. A single SpiN-
Naker chip will unite up to 20 ARM968 cores and provide ac-
cess to a dedicated 1 Gb mobile DDR SDRAM memory. Each
processor is accompanied by a DMA controller, managing
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transfers of neural connectivity data between the processor’s
local memory and the SDRAM. The data is protected by
a CRC, which needs to be calculated without affecting the
transfer. Restricting the CRC to a certain polynomial would
imply a limitation of the performance as applications, and thus
data, in SpiNNaker will vary.

In order to accommodate these requirements, a reconfig-
urable parallel CRC unit is desired that can easily adapt to new
polynomials without slowing down the data communication.
There is always a tradeoff between speed and area. In this
particular scenario, there are two dimensions to the speed of
a CRC calculation unit: the time necessary to process a data
word, and the time that is required to reconfigure to a new
polynomial.

This work directly extends the parallel CRC realization by
Campobello et al. [6] based on state space representation
in several ways. First, restrictions between the width of the
data processed in parallel and the order of the polynomial
are lifted. Second, a novel scheme is presented allowing the
inexpensive computation of the CRC transition and control
matrix in hardware. This leads to a programmable parallel
CRC implementation that offers an improved balance between
area and both dimensions of speed.

The structure of this paper is as follows. The basic concepts
of the CRC are reviewed briefly in Section II. The formula
for the parallel CRC realization is then derived in Section III.
In Section IV, a new scheme is proposed that transforms the
realization into a programmable version. Simulation results
and the performance analysis of the new circuit are presented
in Section V. Subsequently, the architecture is compared to
previous work in Section VI, and conclusions are drawn in
Section VII.

II. CRC

The CRC is a short fixed-length datum (checksum) for an
arbitrary data block. It will accompany the data and can be
validated at an endpoint through recalculation. Differences
between the two CRC values indicate a corruption in either
the data or the received CRC itself.

A k-bit message can be considered as the coefficients of a
polynomial B(x) = bk−1x

k−1 + ...+ b1x
1 + b0x

0. The most
significant bit bk−1 leads the data stream. Furthermore, an
(m+1)-bit generator polynomial P (x) = xm+pm−1x

m−1+
... + p1x

1 + p0x
0 of order m is selected. Calculations are

performed in modulo-2 arithmetic. The CRC is the remainder
R(x) of the division of xmB(x) by P (x) and will be appended
to the message. It can be verified that xmB(x) + R(x) is
divisible by P (x). If the receiver does not agree on this fact,
data corruption must have occurred.
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Fig. 1. LFSR for polynomial P (x) = x4 + x3 + x1 + x0.
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Fig. 2. LFSR2 for polynomial P (x) = x4 + x3 + x1 + x0.

The CRC calculation can be realized in hardware with
an LFSR in Galois configuration as shown in Fig. 1. The
polynomial determines the size and the taps of the shift
register. In order to obtain the CRC, the register needs to be
cleared in a first step. Then, after injecting the message and
m additional zeros, the register will hold the desired CRC.

A receiver can verify the received message with its ap-
pended CRC by simply applying the same procedure, with the
difference that the CRC will be shifted into the circuit instead
of the zeros. If the register finally equals zero, no error has
been detected.

The circuit can be modified according to Fig. 2, where the
message is combined with the most significant register bit to
form the feedback. An advantage arises as no zeros need to
be shifted in at the end, and thus the CRC can be obtained
m clock cycles earlier. Following Campobello et al. [6] this
circuit is referred to as LFSR2 in contrast to the first version,
which is referred to simply as LFSR.

III. FROM SERIAL TO PARALLEL

Where systems use wide data buses, it is advantageous for
the CRC circuits to operate on data words. Many approaches
have been made to address this issue. Albertengo and Sisto
[5] derived equations in 1990, for LFSR2 based on the Z-
transform. A simpler method utilizing state space transforma-
tion leading to basically the same circuit was published two
years later by Pei and Zukowski [4]. In 2003, Campobello
et al. [6] developed a similar proof for LFSR, under the
assumption that the order of the polynomial and the length
of the message are both multiples of the number of bits to
be processed in parallel, and reported a recursive formula for
calculating powers of the state transition matrix.

In this section, the equations for the LFSR2 circuit are
derived. The principle of the derivation is very similar to
LFSR. Furthermore, the proof is extended in such a way that
there will be no restriction on the order m of the polynomial
or the number of bits w that are to be processed in parallel.
Both parameters are unrelated. It is only assumed that the k-
bit message can be split into data words of w bits, which will
usually be the case in computer systems.

The following considerations are made in Galois Field
GF(2) where addition and multiplication correspond to the
bitwise XOR and AND operators. As the LFSR2 circuit is

a discrete time-invariant linear system, it can be expressed as:

C[i+ 1] = FC[i] + Pu[i] (1)

where

F =

[
P

∣∣∣∣Im−1

0

]
=


pm−1 1 0 · · · 0
pm−2 0 1 · · · 0

...
...

...
. . .

...
p1 0 0 · · · 1
p0 0 0 · · · 0

 . (2)

Im−1 denotes the identity matrix of size m − 1 and P =
[pm−1pm−2 . . . p1p0]

T is the vector composed of the polyno-
mial coefficients. C = [cm−1cm−2 . . . c1c0]

T is the state of the
system and corresponds to the CRC register value whereas u
is the scalar input. In each time step i, one message bit is
shifted into the system, and thus u[0] = bk−1, u[1] = bk−2

and so forth. It can be verified that the solution for system (1)
takes the following shape:

C[i] = F iC[0] + [F i−1P . . . FP P ][u[0] . . . u[i− 1]]T , (3)

with C[0] being the initial state of the CRC register.
A simplified way exists to obtain F i from F i−1:

F i = F i−1F

= F i−1

[
P

∣∣∣∣Im−1

0

]
=

[
F i−1P

∣∣∣∣F i−1 Im−1

0

]
, (4)

where i starts from 2. Expanding F to the power of w with
the help of (4) leads to :

Fw =


[
Fw−1P . . . FP P

∣∣∣∣ Im−w

0

]
if w ≤ m[

Fw−1P . . . Fw−mP
]

otherwise.
(5)

The columns of Fw that drop out in the case where w exceeds
m are combined in the auxiliary rectangular matrix

Fw :=
[
Fw−m−1P . . . FP P

]
.

In order to obtain the CRC register value after w bits
have been processed, C[w] simply needs to be evaluated.
For this purpose the w-dimensional data input vector D[t] =
[bk−1−t . . . bk−w−t]

T is introduced. Then (3) becomes

C[w] = FwC[0] +
[
Fw−1P . . . FP P

]
D[0]. (6)

Two basic cases can be differentiated:
Case w ≤ m:

C[w] = FwC[0] +

[
Fw−1P . . . FP P

∣∣∣∣Im−w

0

][
D[0]

0

]
= FwC[0] + Fw

[
D[0]

0

]
.

Considering additionally that the system is time-invariant, the
behavior of the circuit can be described as:

C[t+ w] = Fw

(
C[t] +

[
D[t]

0

])
. (7)
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Fig. 3. Programmable parallel CRC circuit with w = m for CRC bit ci
utilizing control latches.

The special case of w = m leads to the compact form:

C[t+ w] = Fw(C[t] +D[t]). (8)

Case w > m:

C[t+ w] = FwC[t] + [Fw|Fw]D[t]. (9)

The result of (7) and (9) can be condensed into a single
equation:

C[t+ w] = [Fw|Fw]

([
C[t]

0

]
+

[
D[t]

0

])
. (10)

As an example, polynomial P (x) = x4 + x3 + x1 + x0 is
selected. It is intended to process 4 bits in parallel (w = 4).
Consequently

F =

 1 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0

 , F 4 =

 0 0 1 1
0 0 1 0
1 0 0 1
0 1 1 1

 . (11)

According to (8), the necessary logic can be directly assembled
with the help of (11). Matrix entries of Fw are numbered from
m − 1 to 0, where the top left most element is denoted by
(m − 1,m − 1). Thus, an entry fi,j in matrix Fw indicates
that cj XOR dj is an input to the XOR forming the new value
of ci one clock cycle later.

IV. FROM STATIC TO PROGRAMMABLE

The parallel CRC architecture from the previous section can
be transformed into a programmable entity that is no longer
bound to a specific CRC polynomial P (x). A polynomial
directly affects the transition and control matrix [Fw|Fw] of
system (10). Programmability can be achieved by introducing
an AND gate with a controlling latch for each signal that may
be a potential input to an XOR function as illustrated in Fig.
3. Flipflops can be utilized as well, but will have in general
higher demands in terms of area, which may become crucial
as mw bits need to be stored.

The derivation of the matrix necessary to set up all the
latches can be performed in software. As the data bus width
imposes a limitation on the transferable data, the matrix may
need to be communicated line by line, which requires m clock

cycles. Additionally, the software function itself relies on a
processor. Many scenarios may even imply a dedicated core
for this task, if the polynomial needs to be changed frequently
and faster than the matrix can be communicated over the data
bus.

A. Proposed Method

The chosen approach is to outsource the matrix derivation
into hardware. As there is no computational effort involved in
order to obtain the identity matrix in (5) for the case w < m,
it is assumed that w ≥ m, and thus

[Fw|Fw] =
[
Fw−1P . . . FP P

]
.

A new recursive formula for a column F iP with i ≥ 1 is
established

F iP = FF i−1P

=

[
P

∣∣∣∣Im−1

0

]
F i−1P

= PeT1 F
i−1P +

[
0

∣∣∣∣Im−1

0

]
F i−1P (12)

where e1 = [1 0 . . . 0]T is the unit vector. Hence, each column
element (F iP )j can be easily computed with the help of the
previous column F i−1P and P :

(F iP )j =

{
pj(F

i−1P )m−1 + (F i−1P )j−1 if j 6= 0,

pj(F
i−1P )m−1 otherwise.

(13)

For an implementation in hardware, an (m− 1)-bit register
needs to be provided to hold the coefficients of the polynomial.
This register already forms the right-most column of [Fw|Fw].
Each other column can then be obtained with m AND gates
and m − 1 XOR gates. The column element (F iP )0 of a
column i can be obtained through an AND gate that takes
as inputs the polynomial coefficient p0, and the column
element (F i−1P )m−1 of the previous column. For every
other element (F iP )j of column i, polynomial coefficient pj
and (F i−1P )m−1 need to be fed into an AND gate, before
combining its result with column element (F i−1P )j−1 in an
XOR gate.

It is possible to reduce the area with equivalent logic as
illustrated in Fig. 4, which additionally shows the attached
CRC circuitry. Apart from the column storing the polynomial,
each other column requires m−1 NAND gates, m−1 XNOR
gates and 1 AND gate. The controlling AND gates have been
replaced with NAND gates under the assumption that w is
even. Inverting an even number of inputs to an XOR function
does not affect the result of the function.

A circuit dimensioned for a certain polynomial degree m
can be used to calculate CRCs for a polynomial of smaller
degree n. This can be achieved by providing the polynomial
premultiplied by xm−n. Additional multiplexing circuitry is
required in order to switch between different data input widths,
as the most significant bits of the data D and the state of the
system C need to be aligned, when being combined by the
bitwise XOR function according to (10).
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Fig. 4. Programmable parallel CRC circuit for the case w > m. Correspond-
ing elements of [Fw|Fw] are indicated with black pixels in the rectangular
representing the matrix.

V. FROM THEORY TO SILICON

With the scheme from the previous section it is possible to
replace each latch of the programmable CRC circuit (except
for the first column that holds the polynomial) with a NAND
and XNOR gate, which can compute the necessary value of the
latch. The w− 1 latches corresponding to the least significant
CRC bit can be replaced with only an AND gate. Several 130-
nm standard cell libraries indicate a saving of about 6−7% in
logic gate area for a NAND plus XNOR gate in comparison
to a latch. Further savings arise from the much smaller AND
gate area and irrelevant latch select logic.

In order to assess the performance of the new circuit in Fig.
4, it is necessary to consider two different paths. Assuming that
the polynomial P is already set up, the logic gate delay for
the data (from d to c) adds up to

TDC = (dlog2 we+ 1) TXOR + TNAND, (14)

where T is a logic gate or path delay. Changing the polynomial
on the other hand, affects a longer path. The difference
between TP and TDC accounts for

4 TP = TLATCH + (w − 1)(TXNOR + TNAND)− TXOR.
(15)

Appending a CRC value to a message will typically require
a data stream to stall for at least one clock cycle. Hence, this
clock cycle can be used to provide a new polynomial for the
subsequent message. This means that the polynomial has two
clock cycles to propagate through the entire circuit.

The same behavior can be achieved on the message receiv-
ing side. Instead of inputting the received CRC as the last
data word into the circuit, and checking the result for 0, the
received and calculated CRC value can be compared directly.
Again, this would free up an extra clock cycle that can be
used to set up a new polynomial.

TABLE I
IMPLEMENTATION COMPARISON

Cell Array [16] Novel Circuit Result

Clock Frequency 154 MHz 481 MHz
Data Throughput 4.92 Gbps 15.38 Gbps +212.70%

Reconfiguration 33 clock cycles 4 clock cycles
214.29 ns 8.32 ns −96.12%

Core Area 0.150 mm2 0.033 mm2 −78.00%
Core Utilization Not specified 96.13%

Total Power 5.70 mW 6.37 mW
Internal Power 3.42 mW 3.69 mW
Switching Power 2.19 mW 2.67 mW
Leakage Power 0.0896 mW 0.0077 mW
Energya 63 nJ/word 14 nJ/word −77.78%

a Based on the setup of a polynomial with a subsequent CRC calculation
for 47 data words.

Without any further clock cycles, the frequency of the circuit
would be limited to fworst = 1/max(TDC ,4TP ). In order
to achieve best case frequency fbest = 1/TDC , additional
d4TP fbeste − 1 clock cycles would be necessary between
messages to propagate P . Alternatively, the number of clock
cycles can be reduced by providing s columns of matrix
[Fw|Fw] instead of only one in order to split up 4TP . This
requires more area as these columns need to be stored in
latches again. In the extreme case the individual paths have a
length of 4TPi = iTDC for i = 1..s.

The design has been implemented for m = w = 32
targeting 130-nm high-speed standard cell technology. The
simulation results in Table I were obtained assuming a typical-
typical process corner and operating conditions of 1.2V and
25 ◦C. These are compared to a previous design [16], which
will be discussed in the following section. Better performance
is anticipated with a full-custom design that will further exploit
the regular structure of the circuit.

VI. COMPARISON

A programmable parallel CRC architecture was recently
proposed [16], which is referred to as the cell array archi-
tecture. It incorporates additional circuitry in order to switch
between two different data input widths, which is considered
in the following critical path and area analysis.

The main component of the cell array is a configurable
array of mmax(m,w) cells, each consisting of an XOR, two
multiplexers, and a configuration register. A preliminary stage
of XOR gates combines data with the current CRC value,
which is then fed into the array. Furthermore, a configuration
processor is integrated, which performs matrix multiplications
in order to obtain the state transition matrix for a provided
polynomial. The matrix is transferred row-wise into the con-
figuration registers of the array.

For the basic CRC calculation, both architectures require
the same number of two-input XOR gates. The present work
however, also allows the utilization of wider and proportionally
smaller XOR gates that will assemble m trees each with w
inputs.
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Considering the logic that is necessary for programmability,
each cell in the array constitutes two multiplexers and one
register. In the new design, this corresponds to two NAND
and an XNOR gate, in w− 1 cases only one NAND plus one
AND gate, and in m cases one NAND gate and one latch. In
all cases this is typically less than for a cell in the cell array
design. More area is saved as there is no need for a processor.

The worst case data path in the cell array can be specified
as follows:

TDC2 = w(TXOR + TMUX).

This linear growth is inferior to the logarithmic growth of TDC

(14), which has also a reduced scaling factor by TMUX .
The reconfiguration time of the new circuit accounts for

4TP (15). For the cell array, a reconfiguration time of w +
1 clock cycles is indicated. The operating frequency of the
circuit is limited to fbest2 = 1/TDC2. This means that

4TP2 ≈ w(w + 1)(TXOR + TMUX).

Consequently
4TP2

4TP
∈ O(w).

This suggests that the new design reconfigures in the order
of approximately w times faster than the cell array with the
configuration processor.

Both designs have been implemented targeting 130-nm
standard cell technology, and are compared in Table I. The new
design can be operated at a more than three times higher fre-
quency than the cell array, and has a corresponding increased
data throughput. It can reconfigure to a new polynomial 25
times faster than the cell array, while occupying only 22% of
its area. Similarly, the energy consumption dropped by about
78%.

An alternative approach in realizing at least partial pro-
grammability, is to multiplex between several CRC modules
dedicated to fixed polynomials. This method is beneficial if
only a few polynomials come into consideration, for which
each module can be specifically optimized in terms of speed.
Beyond a certain number of different polynomials however,
which depends on the polynomials and their realization, the
area requirements will exceed those for the proposed architec-
ture. Furthermore, the multiplexing overhead will offset the
speed advantage if too many polynomials are involved.

VII. CONCLUSION

An existing proof [6] for the derivation of parallel CRC
circuits has been extended to any polynomial size m and
data width w. The proof has been conducted for the LFSR2
realization, which avoids inserting a final zero data word.

A simple method has been presented to incorporate pro-
grammability into the circuit through latches, allowing the
polynomial to be changed during runtime.

Furthermore, a novel scheme has been proposed to compute
the state transition and control matrix of the CRC circuit easily
in hardware. The scheme is based on a new recursive formula
and offers a range of advantages over existing techniques.

First of all, it is only necessary to provide the desired
polynomial, instead of a complete matrix for the CRC core.

A preliminary matrix calculation in software is no longer
required. Second, the logic area requirements are lower than
those for a realization that stores the matrix in latches. A
recently proposed architecture [16] has significantly higher
demands in terms of area as it incorporates a configuration
processor, and more core logic in comparison to the latch
variant. Third, the data path grows only logarithmically with w
in contrast to the existing architecture where it grows linearly
with w with a higher scaling factor. This implies a faster
CRC calculation. Most importantly however, the new circuit
reconfigures approximately w times faster than the previous
circuit.

Implementation figures support the theoretical results show-
ing a significant improvement in speed, area and energy
efficiency.
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