
Algorithm and Software for Simulation of Spiking Neural Networks
on the Multi-Chip SpiNNaker System

Xin Jin, Francesco Galluppi, Cameron Patterson, Alexander Rast, Sergio Davies,

Steve Temple, and Steve Furber

Abstract— This paper presents the algorithm and software
developed for parallel simulation of spiking neural networks on
multiple SpiNNaker universal neuromorphic chips. It not only
describes approaches to simulating neural network models, such
as dynamics, neural representations, and synaptic delays, but
also presents the software design of loading a neural application
and initial a simulation on the multi-chip SpiNNaker system.
A series of sub-issues are also investigated, such as neuron-
processor allocation, synapses distribution, and route planning.
The platform is verified by running spiking neural applications
on both the SoC Designer model and the physical SpiNNaker
Test Chip. This work sums the problems we have solved and
highlights those requiring further investigations, and therefore
it forms the foundation of the software design on SpiNNaker,
leading the future development towards a universal platform
for real-time simulations of extreme large-scale neural systems.

I. INTRODUCTION

Parallel simulations of biological-realistic spiking neural

network models have been of much interest to computa-

tional neuroscientists to tackle the constrain of simulation

speed. Many different attempts have been made towards

this objective, using supercomputer-based systems, such as

IBM Blue Gene/L [1] or Beowulf cluster [2]. These systems

are powerful and easy to use, in the cost of large power

consumption and the huge size, which in turn make these

solutions difficult to be applied in the filed of embed-

ded intelligent systems such as robots. Dedicated hardware

solutions, based on FPGAs [3], analogue circuits [4] or

hybrid analog-digital VLSI [5], lacks flexibility in choosing

neuronal dynamics, synapse models or learning rules. Due

to the experimental nature of the neural modeling caused

by the “unknowns” in neuroscience, neuromorphic hardware

needs not be hardwired to a specific neural model to provide

flexibility, but should be also capable of delivering high

computational power.

The SpiNNaker system is proposed in this context. It is a

scalable massive parallel computing system under develop-

ment with the aim of building a general-purpose platform for

the real-time parallel simulation of large-scale spiking neural

systems [6], [7]. Each SpiNNaker chip contains 20 identical

ARM968 subsystems to provide the processing power and

are flexible enough to modeling a variety of neuronal dy-

namics and synapses. The 6 external links associated with

each chip allow chips to be arranged in a hexagonal mesh

with bidirectional connections to 6 neighbors. The multi-cast

The authors are with the School of Computer Science, The University of
Manchester, Manchester, UK (email: {jinxa}@cs.man.ac.uk)

mechanism, self-timed asynchronous inter-connections, and

the distributed on-chip and off-chip memory system, together

allow virtual synaptic connections which enable the ability

of re-wire neural connections [8]. The parallel simulation of

neural networks on SpiNNaker provides the possibility to

guarantee the necessary processing power by adding more

chips into the system when the scale of the neural network

simulated increases.

For such a system, well-defined modeling algorithm needs

be to investigated for efficient mapping neural networks. An

easy-to-use software system is also required for target users

to instantly configure the system and run their existing neural

models. This paper explores solutions to these issues by

going through the flow to run spiking neural applications

on both a four-chip SpiNNaker SoC Designer model [9] and

a single physical SpiNNaker Test Chip. Depending on their

own features, the feasibility of applying spike-based learning

algorithms have to be investigated individually. A good

example of implementing spike-timing dependant plasticity

(STDP) on SpiNNaker can be found in [10].

The rest of the paper is organized as following: The

approaches to modeling the Izhikevich neuronal dynamics,

neural representations, and delays are presented in Section

II and III. The event-driven scheduler used to organize

the different tasks and events is described in Section IV.

Solutions for and results from the multi-chip simulation of

spiking neural network applications are presented in Section

V. Related issues are discussed in Section VII which is

followed by a conclusion in the final section.

II. MODELING NEURONAL DYNAMICS

SpiNNaker has been developed to be a generic neural sim-

ulation platform, which in turn requires to support multiple

neuron models. The neural dynamical models describe the

neuron behavior in response to input stimuli and the process

of producing output spikes. The model itself is usually

stand alone and independent from other parts of the neural

network, for instance the connectivity, coding scheme and

learning. Since neurons are only simulated on processors, it

decouples the implementation of neuronal dynamical model

from the implementation of the network. This allows us to

switch easily between different neuronal models – either

conductance- or phenomenological-based.

For this prototype system, the Izhikevich model [11] is

chosen as an example for real-time simulation with 1 ms

resolution. 16-bit fixed-point arithmetic is used in the imple-

mentation to save both processing power and storage space.



Fig. 1. The routing key

A dual-scaling factor scheme, which applies two different

scaling factors to convert floating- to fixed-point numbers

(large floating numbers with a small scaling factor and small

floating numbers with a large scaling factor), is used to

reduce the precision lost during the conversion [12]. The

performance is also optimized by:

1) Expanding the width from 16-bit to 32-bit during the

computation to achieve better precision.

2) Transformation of the equations to allow using some

efficient ARM specific instructions.

3) Adjusting the parameters and doing as much pre-

computation as possible.

4) Programming in assembler language.

In our implementation, one iteration of Izhikevich equa-

tions takes 6 fixed-point mathematical operations plus 2 shift

operations, which is more efficient than the original imple-

mentation which takes 13 floating-point operations [11]. In a

practical implementation, the whole subroutine for Izhikevich

equations computation can be performed by as few as about

20 instructions if the neuron does not fire, otherwise, it

takes about 10 more instructions to reset the value and send

a spike event. The detailed implementation, precision and

performance analysis can be found in [12].

III. MODELING NEURAL REPRESENTATIONS USING EAM

SCHEME

The high density of one-to-many (high fan-out) transmis-

sions of packets in neural network, leads to inefficient com-

munication on conventional parallel hardware. To achieve

low communication overhead, an event-address mapping

(EAM) scheme is used on SpiNNaker [12].

A. Spike propagation

The EAM scheme keeps synaptic weights at the post-

synaptic end and set a relationship (in the lookup table)

between the spike event and the address of the synaptic

weight, hence no synaptic weight information needs to be

carried in a spike event. When a neuron fires, identical
packets, also referred to as routing keys with the format

shown in Figure 1, are sent by efficient multicast to post-

synaptic neurons. Each packet propagates through a series

of multicast routers according to the pre-loaded routing table

in each router, and finally arrives at the destination fascicle

processors.

Each router entry contains a key value, a mask and an

output vector. When a packet arrives, the routing key encoded

in the packet is compared with the key in each entry of the

MC table, after being ANDed with the mask. If it matches,

the packet is sent to the ports contained in the output vector

of this entry, otherwise, the packet is sent across the router

by default routing, normally via the port opposite the input.

�

�

Fig. 2. The hierarchical structure of synaptic weight storage, where each
circle denotes a neuron.

Fig. 3. The Synaptic Word.

The routing operation is performed using parallel associative

memory for matching efficiency.

B. Synaptic weight storage

The EAM scheme employs two memory systems, Data-

Tightly Coupled Memory (DTCM) and SDRAM, for efficient

storing synaptic connections. DMA operations are used to

transfer each Weight Block from the SDRAM to the local

DTCM, before processing.

The SDRAM used for synaptic weight storage has the

hierarchical structure as shown in Figure 2:

• The memory comprises a number of Banks, each is

associated with one of the processors (while rectangle)

on the chip.

• Each Bank comprises a number of Groups, each con-

tains the synaptic weights of all connections from a

source fascicle to this local fascicle.

• Each Group comprises a number of Blocks, each con-

tains a number of Synaptic Words for all connections

from one pre-synaptic neuron (on the corresponding

source fascicle) to post-synaptic neurons in this fascicle,

a one-to-many connection scenario.

• Each Synaptic Word represents one synapse, as shown

in Figure 3 (“0” is a bit not used).

C. Finding the synaptic Block

A processor can easily find the associated synaptic weights

to the fired neuron by matching the incoming spike packet

with entries in the routing table, as shown in Figure 4.

The lookup table organized in a binary tree maintains the

mapping between the routing key and the Synaptic Block in

the SDRAM.

D. Modeling the delay and input current

Biologically, a spike generated by a pre-synaptic neuron

takes time measured in milliseconds to arrive at a post-

synaptic neuron. In an electronic system, the communi-

cation delay is uncertain depending on the distance and

the network workloads. Electronic delays, however, ranging



Neuron 
1

Neuron 
3

Neuron 
2

Neuron 
...

N

X

… …

4

2

Fascicle 2

Fascicle 3

Fascicle 1

……
SourceFascicle [0..n-1]{

int SFascAddr;
int SFascMask;
int SFascPtr;
adr NxtSFasc;

}

Input
SFascAddr Neuron

SpiNNaker Chip

0-4b-delay- -11b-index--16b-weight-

Block1

...
A 32-bit synaptic word

SDRAM

Block2

X 1

Blocksize = 12

Start addr. Of the 
Group for input X

Lookup tbl

DMA transfer

Fig. 4. Finding the synaptic Block.

from nanoseconds to microseconds, are much smaller than

biological delays. Hence the electronic delay can be ignored,

and the packet arrival time can be considered as the neuron

firing time. However, delays play an important role in neural

modeling. Hence it is necessary to put delays back into the

system, but using another approach, to enforce an agreement

between biological and electronic time. The four most signif-

icant bits are used in a Synaptic Word to represent the delay

of the connection, allowing us to simulate a delay up to 15 ms

with 1 ms resolution. The electronic packet arrival time must

be increased by a delay value to generate the real “biological”

time, before applying the “weight update” process.

Weights in the Synaptic Block transferred to the DTCM

will be loaded into an 16 elements circular input array

(corresponding to synaptic delays of 0 ms – 15 ms). Each

element represents the amplitude of all inputs applied to this

neuron at a certain time. A pointer “DelayPtr” points to the

element at the current time (0 ms) and moves forward one

element per 1 ms with wraparound after 15 ms. The 4-bit

delay is fetched and used to determine which element the

weight will be updated into. The updating of the weight is

reconfigurable and can be designed according to the type

of synapse. In this system, a linear accumulate operation is

used, in accordance with the synapse model used in most

current neural network models.

IV. SCHEDULER

An event-driven model is proposed to schedule the multi-

task system, as shown in Figure 5:

1) Incoming packet event is set to the first priority to re-

ceive a packet as soon as possible to avoid congestion,

and triggers a software interrupt.

2) 1ms Timer event is set to the second priority and

assigns values to several global variables: system-

TimeStamp (the number of millisecond simulated) is

increased by 1; the delay pointer DelayPtr is increased

by 1 to point at the next element in the input array;

Fig. 5. The event driven model.

newTimeFlag is set to indicate that the system is

moving into a new millisecond.

3) The DMA done event is set to the third priority and

performs updating of input array after the Synaptic

Block has been transferred from the SDRAM to the

DTCM.

4) The software INT event is set to the fourth priority. It

retrieves a packet from the communication buffer and

then processed to start the DMA operation.

5) The “updating neuron states” task is performed in the

main loop. If all neuron state have been updated, the

processor goes to sleep. The sleep mode is interrupted

by an event to execute the corresponding ISR. Then

the processor either performs the “updating neuron

states” task or goes back to sleep mode, depending on

the newTimeFlag status. The “updating neuron states”

task firstly resets the newTimeFlag, and then updates

neuron states. If newTimeFlag is detected as set during

the updating, the task will be interrupted compulsorily

to skip the remaining neurons, and a new iteration will

be started.

V. MULTI-PROCESSOR SIMULATION

SpiNNaker chip can be easily expanded to support neural

networks in larger-scale. In this section we investigate the

approach to run a multi-processor/chip simulation. A series

of issues involved are investigated. Algorithms and software

(called “InitLoad”) are developed to solve them.

A. Input and output files

As shown in Figure 6, InitLoad provides two options: a

random mode and a pre-defined mode. The random mode

generates a random neural network according to statistic

parameters; the pre-defined mode loads a user defined neural

network. They both have three files to describe the system:

“SpiNNaker.ini”, “Neurons. txt”, and “Connections.txt”. The

SpiNNaker.ini file is used to describe a SpiNNaker system,

and the basic information of the neural network. Neurons.txt



Fig. 6. The InitLoad flow chart

file contains a list of the neurons composing the network

with their specific parameters. Connections.txt contains the

neuron connection information. The description file can also

be easily extended using some standard format such as XML.

The input files are loaded and output files, including

neuron data files, synaptic weights files, lookup table files

and routing table files, are produced according the mapping

rule previously discussed.

1) Chip IDs: SpiNNaker chips have wrap-around connec-

tions (or they can be disabled to create a non-toroidal model);

thus it is always possible to take the host chip (attached to

the Host PC) as the origin (0,0), and the rest of the chips

sitting in the first quadrant (I) can be indexed accordingly

using (x, y) as shown in Figure 7.

2) Linear neuron-processor mapping: A linear mapping

algorithm is used, where neurons are uniformly allocated to

processors in order:

• SpiNN.nuroPerFasc = SpiNN.numNuro/(numfasc-1)

• SpiNN.nuroPerFasc = SpiNN.numNuro%(numfasc-1)

B. Synapse allocation

Synapses (connections) kept in the SDRAM need to be

distributed to every chip according to the linear mapping

Fig. 7. Route planning

and the EAM scheme. The AllocConnections() function in

InitLoad is designed to handle this task. Meanwhile, the

lookup tables associated will also be created by this function.

C. Routing table generation

Routing tables are generated by the generateRout-

ingTable() function, according to the neuron connections.

The routing is planned based on the order of the pre-synaptic

neurons.

1) Routing table compression: Initially, a raw routing

table will be generated, which simply stores one route for

one pre-synaptic neuron and thus it is very big. However,

what usually happens is that most packets from the neurons

in the same pre-synaptic fascicle will be sent through the

same routes. In this case, the MASK of the entry can be set

properly to compress the routing table and reduce the number

of entries. A third-party Logic Minimization Software –

Espresso is used for the compression.

2) Route planning: The route planning algorithm we used

guarantees to find a short path between two neurons as shown

in Figure 7. Assuming a packet is transmitted by a neuron

in chip (0,0), if the destination is in the first quadrant (I)

or the third quadrant (III), the packet will firstly be sent

in the diagonal direction. When it reaches the chip with

the same x-coordinate or y-coordinate as the destination

chip, it then goes straight towards the destination following

the x-coordinate/y-coordinate vertically/horizontally. If the

destination is in the second quadrant (II) or fourth quadrant

(IV), the packet firstly goes horizontally following the x-

coordinate. When it reaches the chip with the same x-

coordinate as the destination chip, the packet then goes

vertically towards the destination following the y-coordinate.

The findMcRouting() function is used for route planning.

VI. SIMULATION

A. Initialization

We verify the implementation based on a four-chip SpiN-

Naker SoC Designer model [9] as shown in Figure 8. The

application code and neural data need to be downloaded to

SpiNNaker chips to start the simulation. The semihosting

functions provide by SoC designer allow users to access files



spinnakerchip[0,0] (Sp ...
i

Rx0

Rx1R
x2

Rx3

Rx4

R
x5

Tx0

Tx1

Tx2

Tx3

Tx4 Tx5

phyTxPort

spinnakerchip[0,1] (Sp ...
i

Rx0

Rx1R
x2

Rx3

Rx4

R
x5

Tx0

Tx1

Tx2

Tx3

Tx4 Tx5

phyTxPort

spinnakerchip[1,0] (Sp ...
i

Rx0

Rx1R
x2

Rx3

Rx4

R
x5

Tx0

Tx1

Tx2

Tx3

Tx4 Tx5

phyTxPort

spinnakerchip[1,1] (Sp ...
i

Rx0

Rx1R
x2

Rx3

Rx4

R
x5

Tx0

Tx1

Tx2

Tx3

Tx4 Tx5

phyTxPort

Fig. 8. A four chip model in SoC Designer

Fig. 9. The fascicle and monitor processors during initialization.

on the hard disk of the Host PC directly, making the code and

data downloading easy. Dumping simulation results (spike

raster, single neuron activity, and so on) is also easy during

the simulation. The output data is written to files on the Host

PC and plotted in the Matlab.

There are two processors (the same number of processors

as in the SpiNNaker test chip), a Fascicle and a Monitor

Processor, in each chip of the four-chip model. The Fascicle

and the Monitor Processor load the same code at startup, as

shown in Figure 9, each processor then performs a series of

initialization processes. The Fascicle Processor mainly loads

its private data set, while the Monitor Processor loads public

data, such as synaptic weights and routing tables, which is

shared by all the Fascicle Processors on the same chip.

The timer on the Fascicle Processor is started after all

other initialization processes (in both Fascicle and Monitor

processors) complete, since the timer interrupt triggers the

neuron state update, which requires all the data to be loaded.

To avoid confliction, a handshake procedure is introduced

to synchronize between the monitor processor and fascicle

processor(s).

(a) 4000-neuron floating-point Matlab simulation.

(b) 4000-neuron fixed-point arithmetic Matlab simulation.

(c) 4000-neuron SpiNNaker simulation.

0 200 400 600 800 1000
-100

-80

-60

-40

-20

0

20

40

States of Neuorn ID 0

Time (ms)

m
V

electrical current
membrane potential

(d) States of neuron 0 (excitatory)

Fig. 10. Spike raster of 4000 neurons on SpiNNaker.



Fig. 11. The Doughnut Hunter model drawn by Arash Ahmadi.

Fig. 12. The platform for the Doughnut Hunter application.

B. Simulation result

The test involves a simulation of a 4,000-neuron network

(1,000 neurons per fascicle limited by the processing power

[12]) with an excitatory-inhibitory ratio at 4:1. Each neuron

is randomly connected to 26 other neurons. 72 excitatory

and 18 inhibitory neurons are randomly chosen as biased

neurons, each receiving a constant input stimulus of 20 mV.

The simulation results are compared between the floating-

point arithmetic Matlab simulation (Figure 10(a)), fixed-point

arithmetic Matlab simulation (Figure 10(b)), and 4-chip SoC

Designer based SpiNNaker simulation (Figure 10(c)). The

spike timings in the floating-point and fixed-point arithmetic

Matlab simulations are different, however, they show the

same rhythm of 4Hz. The 4-chip SpiNNaker simulation

matches the fixed-point arithmetic Matlab simulation. Figure

10(d) shows the activity of an excitatory neuron (ID 0)

produced in the SpiNNaker simulation.

Each processor in a SpiNNaker chip is modeling 1,000

neurons, indicating that to model a human brain with 100

billion (1011) neurons, at least 5 million full SpiNNaker chips

with 20 processors per chip will be required.

C. The Doughnut Hunter on a real SpiNNaker chip

The Doughnut Hunter application was originally devel-

oped by Arash Ahmadi at Southampton and was ported onto

Fig. 13. The test chip diagram.

SpiNNaker for testing. The model requires two application

components, as shown in Figure 12: a server on the Host PC

and a client on the SpiNNaker:

1) The server runs a GUI application modeling the envi-

ronment with a doughnut and a hunter. The doughnut

appears at a random location on the screen, and the

hunter moves on the screen to chase the doughnut.The

server detects the location of the doughnut and of the

hunter, and provides the visual stimuli to the hunter

at a certain frequency. These signals will be converted

and sent to the client as input stimuli.

2) The client application runs on the SpiNNaker chip and

models the neural network of the hunter: visual inputs

is received from the server, and is propagated to the

motor neurons through a simple neural network (as

shown in Figure 11). The motor signal will be sent

back to the server, used to control the hunter movement

and update the hunter position. The connection be-

tween the server and client is via the Ethernet interface.

The Hunter neuron network is composed by 51 Fast

Spiking Izhikevich Neurons, connected as shown in Figure

11; the application was successfully tested on the SpiNNaker

Test Chip (two processors per chip) released in December

2009 as shown in Figure 13.

VII. DISCUSSION

A. Real-time

SpiNNaker aims to simulate spiking neural networks in

real-time with 1ms resolution. As a result, all the tasks must

complete before the deadline – a new millisecond Timer

Interrupt. Our assumption is the system should not be fully

loaded to avoid losing real-time performance. This can be

achieved by tuning the number of neurons or connections

simulated on each processor.

In the scheduler we proposed as shown in Figure 5, a hard

real-time 1 scheme is used, where the Timer INT is set to the

1The completion of an operation after its deadline in a hard real-time
system is considered useless, and may ultimately cause a critical failure of
the complete system.



second priority (or even to the first priority) and is very slim;

this ensures that the Timer Interrupt request is responded to

as soon as possible to guarantee the correctness of system

timing. However, if an Timer Interrupt comes before the

completion of all tasks, the processor is forced to move on

to the new millisecond with the remaining tasks discarded,

which leads to precision lost. Potential improvements can be

made by using some algorithm to deal with the un-handled

tasks. For instance:

1) Instead of simply clearing the packets in the communi-

cation buffer, they can be pushed into a history buffer

associated with an old time stamp, and continue to be

processed during the new millisecond with deferred

timing.

2) Instead of skipping un-updated neurons, they can be

updated with a reduced time resolution of 2 ms (so

only 1 update is performed every 2ms), or with some

simplified dynamics.

B. Neuron-processor mapping

The allocation of neurons to processors is an essential

problem which affects the efficiency of both the communica-

tion and the synaptic weight storage. This problem, however,

deserves further investigation. In principle, locality issues

have to be taken into consideration to allocate relatively

highly-connected nearby neurons onto the same or nearby

processors as much as possible. There are three aspects that

need to be taken into consideration for the neuron-processor

mapping:

• Chip index. SpiNNaker chip IDs are purely software

defined. The physical distance information needs to be

included in the index for a well-defined mapping model.

Each SpiNNaker chip contains up to 20 processors. The

index of processors in the same chip does not matter

since it takes the same time for them to communication

to other chips.

• Neuron index. Neuron IDs are usually allocated ran-

domly when a neural network is built, ignoring their

“distances”. Here the “distance” denotes the biological

distance – how far a pair of neurons are apart from

each other. A long axonal delay usually implies a long

distance. For a well-defined neuron-processor mapping

model, the “connectivity” and “distance” need to be

considered when neurons are indexed.

• Building relations between the chip IDs and the neuron

IDs. The principle is that neurons nearby (at a short

distance) or with high connectivity need to be mapped

on to the same or neighboring SpiNNaker chips.

The development of the neuron-processor mapping model

for spiking neural networks relies on knowledge of a variety

of spiking neural networks, and a well-defined mathematic

model of mapping.

C. Load balance and synchronization problem

Because the clock domain of each chip is decoupled and

each chip is expected to run in real-time, the SpiNNaker

system doesn’t have a synchronization problem. However,

this requires a uniform distribution of workloads to guarantee

that even the heaviest loaded processor won’t lose real-time

performance. Otherwise it cause precision lost as discussed

above.

D. Code and data downloading

On a physical SpiNNaker machine, the downloading pro-

cess will become a major issue involved in the Boot-up Pro-

cess [13]. One difficulty is caused by the limited bandwidth

between the SpiNNaker system and the Host PC, as Chip

(0,0) is the only chip connected to the Host PC via Ethernet.

Other chips will rely on their neighboring chips to receive

data. To address this problem, a flood-fill mechanism is

proposed where during the inter-chip flood-fill process, each

chip sends one 32-bit word at a time by Nearest Neighbor

packets to its 6 neighboring chips. The receiving chips then

forward the data to their neighbors, so in this way, the data

is propagated to all the chips in the system.

The application code is identical for every chip and proces-

sor, and therefore can be handled efficiently by the flood-fill

mechanism. The neural data, on the other hand, is different

for each chip or processor. The size of the data also increases

when the system is scaled up. For a small system the flood-

fill mechanism is capable to download neural data produced

by the InitLoad software. For a large system, however, the

huge amount of neural data results in an inefficient process.

An alternative on-line data generation scheme is therefore

required to send only statistical information of a neural net-

work by the flood-fill mechanism. Each processor generates

the real neural data as well as routing tables on-line according

to the statistical information. This involves another potential

research topic requiring a number of related issues to be

solved, including how to produce the statistical information

for a given neural network, how to modify routing tables

dynamically, how to generate the synaptic weights for the

event-address mapping scheme, and so on.

E. Data dumping

It is probably not feasible to dump the state of every

neuron from the human brain. Usually, the state of a single

neuron is not of direct interest, but the global output (for

example the human language or behaviors) of the brain is of

concern. If neuronal behaviors in a certain brain region are

of interest during neuronal study, they can be observed using

techniques such as glass electrodes, MRI or PET.

The SpiNNaker system is somewhat like the human brain

in this respect. It is difficult to observe the activity of all

neurons in the system because of the limited bandwidth

between the Host PC and the SpiNNaker connection and

the huge data flow. Users are still allowed to view the

states of certain number of neurons in a certain time span

however. One possible way to do this is for a user to send

an observation request from the Host PC, which will be

passed to the destination chips via the Host Chip (0,0).

When the request is received by the Monitor Processor on

the destination chip, it gathers the required information from



Fig. 14. The software architecture for SpiNNaker

local Fascicle Processors, and transmits the information to

the Host PC, again via the Host Chip.

F. Software architecture for SpiNNaker

A good system requires not only high performance hard-

ware but also an easy-to-use software system. Target users

of the SpiNNaker system may not have sufficient time or

skill to program such a complicated system. It will be more

efficient to provide a system which is ready to use, without

requiring the neural model to be changed.

Based on previous study, a software model is proposed as

shown in Figure 14. the neural network model lies at the

top-level where it is parsed by a generic API, PyNN for

instance, which is a simulator-independent language for the

neural network model. The generic API supports a variety of

neural simulators such as NEURON, Brain, PCSIM, NEST,

and SpiNNaker. This allows a user to write code for a model

once, and run it on different models.

The Host PC provides mid-layer support to the generic

API obtaining output information from the generic API, and

converting the information to the format which can be loaded

by the SpiNNaker system. The Host PC is also responsible

for providing debugging facilities and GUI support to help

users monitor system behavior. The SpiNNaker system lies

at the bottom layer, shown in the blue square. From the top

down, the SpiNNaker system comprises a neural API layer,

a hardware driver layer, a bootup process, and hardware.

The neural API layer includes libraries used to maintain

the neural network model on SpiNNaker, such as updating

neuron states, processing spike events, modeling synaptic

plasticities and so on. The neural API layer requires low

level support from hardware drivers. The bootup process is

responsible for booting the system, checking the status of

components, downloading application codes and so on.

By using this or similar software architecture, the hardware

details of the SpiNNaker system can be hidden in a black box

for end users, which makes it easier for users to run their code

on a SpiNNaker system and to observe the results. Of course,

there is much work required to fulfill this objective. The

work presented so far mainly concerns the mapping software

development, and the neural API implementation. Aspects

of the hardware drivers and the bootup process development

were also involved.

VIII. CONCLUSION

Modeling large scale neural networks on dedicated hard-

ware opens new challenges. This paper made up a minimum

system for testing and verifying the SpiNNaker system when

simulating spiking neural networks. Potential issues found

through this work are highlighted and discussed, leading the

further development of SpiNNaker system towards simula-

tion of larger scale networks with more complicated and

meaningful neural models, on more chips.

ACKNOWLEDGMENT

We would like to thank the Engineering and Physical

Sciences Research Council (EPSRC), Silistix, and ARM for

support of this research.

REFERENCES

[1] H. Markram, “The blue brain project,” Nat Rev Neurosci., vol. 7, pp.
153–160, 2006.

[2] E. M. Izhikevich and G. M. Edelman, “Large-scale model of mam-
malian thalamocortical systems,” PNAS, vol. 105, pp. 3593–3598,
2008.

[3] L. Maguire, T. McGinnity, B. Glackin, A. Ghani, A. Belatreche,
and J. Harkin, “Challenges for large-scale implementations of spiking
neural networks on fpgas,” Neurocomputing, vol. 71, no. 1-3, pp. 13
– 29, 2007.

[4] M. Glover, A. Hamilton, and L. S. Smith, “An analog vlsi integrate-
and-fire neural network for sound segmentation,” in Seventh Inter-
national Conference on Microelectronics for Neural, Fuzzy and Bio-
Inspired Systems, 2009.

[5] P. A. Merolla, J. V. Arthur, B. E. Shi, and K. A. Boahen, “Expandable
networks for neuromorphic chips,” in IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMSł, February 2007.

[6] S. Furber and A. Brown, “Biologically-inspired massively-parallel
architectures - computing beyond a million processors,” in Proc.
ACSD’09, 2009.

[7] A. Rast, X. Jin, F. Galluppi, L. Plana, C. Patterson, and S. Furber,
“Scalable event-driven native parallel processing: The spinnaker neu-
romimetic system,” in ACM International Conference on Computing
Frontiers 2010, 2010.

[8] A. Rast, S. Yang, M.Khan, and S. Furber, “Virtual synaptic in-
terconnect using an asynchronous network-on-chip,” in Proc. 2008
International Joint Conference on Neural Networks, HongKong, 2008,
inproceedings.

[9] M. Khan, E. Painkras, X. Jin, L. Plana, J. Woods, and S. Furber,
“System level modelling for spinnaker cmp system,” in Proc. 1st Inter-
national Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools (RAPIDO’09), 2009.

[10] X. Jin, A. Rast, F. Galluppi, S. Davies, and S. Furber, “Imple-
menting spike-timing-dependent plasticity on spinnaker neuromorphic
hardware,” in Proc. 2010 International Joint Conference on Neural
Networks, 2010.

[11] E. M. Izhikevich, “Which model to use for cortical spiking neurons,”
IEEE Trans. Neural Networks, vol. 15, no. 5, pp. 1063– 1070, 2004,
article.

[12] X. Jin, S. Furber, and J. Woods, “Efficient modelling of spiking
neural networks on a scalable chip multiprocessor,” in Proc. 2008
International Joint Conference on Neural Networks, Hong Kong, 2008,
inproceedings.

[13] M. M. Khan, “Configuring a massively parallel cmp system for
real-time neural applications,” Ph.D. dissertation, Computer Science,
University of Manchester, 2009.


