

Fault Tolerant Delay Insensitive Inter-Chip Communication

Yebin Shi, Steve B. Furber, Jim Garside and Luis A. Plana
School of Computer Science, University of Manchester

Oxford Road, Manchester, M13 9PL, UK
e-mail: shiy@cs.man.ac.uk, steve.furber@manchester.ac.uk, {jdg,lplana}@cs.man.ac.uk

Abstract—Asynchronous interconnect is a promising

technology for communication systems. Delay Insensitive (DI)
interconnect eliminates relative timing assumptions, offering a
robust and flexible approach to on- and inter-chip
communication. In the SpiNNaker system - a massively parallel
computation platform -a DI system-wide communication
infrastructure is employedwhich uses a 4-phase 3-of-6 code for
on-chip communication and a 2-phase 2-of-7 code for
inter-chip communication. Fault-tolerance has been evaluated
by randomly injecting transient glitches into the off-chip wires.
Fault simulation reveals that deadlock may occur in either the
transmitter or the receiver as handshake protocols are
disrupted. Various methods have been tested for reducing or
eliminating deadlock, including a novel phase-insensitive
2-phase to 4-phase converter, a priority arbiter for reliable code
conversion and a scheme that allows independent resetting of
the transmitter and receiver to clear deadlocks. Simulation
results confirm that these methods enhance the fault tolerance
of the DI communication link, in particular making it
significantly more resistant to deadlock.

I. INTRODUCTION
 As technology shrinks, more IP cores are integrated onto a

single chip to implement more complicated and efficient
on-chip system solutions. To save wiring resource and power
consumption and to increase communication performance,
extensive research has been conducted into network-on-chip
(NoC) systems [1][2]. The NoC approach particularly suits
communication-dominant on-chip systems. Asynchronous
NoCs have been proposed to eliminate the clock for global
communication [3][4], providing better power efficiency and
higher modularity compared to synchronous NoCs.

The robustness of asynchronous circuits to transient
glitches or permanent faults is a growing challenge in the face
of reducing feature sizes and increasing on- and off-chip
communication speeds. Moreover, factors such as alpha
particles, cosmic radiation, cross-talk and power bounce can
cause soft errors in on- or inter-chip interconnects.

The behaviour of inter-chip link interfaces in the presence
of transient faults is of particular interest in their role of
communication in multi-chip systems and the vulnerability of
asynchronous protocols to glitches. Moreover, inter-chip
interfaces may incorporate complex conversion circuits
between the different on-and inter-chip asynchronous
protocols and delay-insensitive codes. The asynchronous
interface circuits are smaller but more complex than the other
components that form the asynchronous communication
fabric, which generally has a regular architecture and a larger
scale. The inter-chip wires are also more vulnerable as they
reside in a noisy environment.

Previous work [5] investigated the impact of glitches on
the inter-chip links. The common symptoms resulting from the
glitches are missing and superfluous symbols causing corrupt
packets and, in some cases, deadlock in different parts of the

circuit. Though the causes of deadlock vary, they always result
from failures in the handshake protocols. Some techniques
were developed to increase the robustness of asynchronous
interconnects to transient glitches.

This paper proposes various techniques, based on the
original design of the interface circuits for the inter-chip links,
which increase the resilience of the delay insensitive circuit to
transient glitches. These techniques are designed to avoid
deadlock and to minimize the impact of errors on the
inter-chip links. The paper is organized as follows: after a
brief introduction to the SpiNNaker system, the inter-chip
link interface is described. Section IV shows examples of the
error-tolerant circuits used and describes some of their
evolution. Sections V and VI describe the simulation
performed on two variants of the interfaces: the first is a
'robust' design from earlier work, the second is described and
evaluated here for the first time. Section VII concludes the
paper.

II. THE SPINNAKER SYSTEM
SpiNNaker [7] is a massively-parallel computation

platform based on chip multi-processors and a
packet-switched communications fabric, aimed at modelling
large-scale systems of spiking neurons in real time. Each chip
in this system integrates twenty microprocessor cores, various
system-support peripherals and a communication
infrastructure and is connected with other chips through six
duplex links, as shown in Fig 1. The system employs three
primary communication infrastructures: the AMBA
AHB/AXI bus to connect each processor to its associated

1,2 2,2

2,1

2,0

1,10,1

0,0 1,0

0,2
Chip

SpiNNaker

SDRAM

Fig 1 Mesh topology of the SpiNNaker system

system blocks, the self-timed System NoC - built using the
CHAINworks tool [3] - to connect each microprocessor
subsystem to a shared off-chip SDRAM, and the

2009 15th IEEE Symposium on Asynchronous Circuits and Systems

1522-8681/09 $25.00 © 2009 IEEE

DOI 10.1109/ASYNC.2009.21

77

Authorized licensed use limited to: The University of Manchester. Downloaded on June 2, 2009 at 08:57 from IEEE Xplore. Restrictions apply.

Communications NoC - a delay insensitive on-chip and
inter-chip communication network that connects the
synchronous microprocessor islands and is used primarily to
carry neuron spike events. The last two communication
infrastructures are both based on packet-switched networks.

This paper focuses on the interface circuit that bridges
between on-chip and off-chip interconnects in the
Communications NoC. This is a serial network transmitting
short packets around and between chips. In SpiNNaker
packets are short and come in two sizes, 5 and 9 bytes which
are typically represented as 10 and 18 4-bit flits, respectively.
As packet size varies, the packet length is indicated with an
end-of-packet (EoP) marker.

Fig 2 an off-chip link

The communication infrastructure comprises two parts:
on-chip 4-phase or Return-To-Zero (RTZ) asynchronous
interconnects and off-chip 2-phase or Non-Return-to-Zero
(NRZ) interconnects as shown in Fig 2. To increase the power
efficiency and throughput of the communication links, the
off-chip interconnect employs the 2-phase asynchronous
protocol as this reduces the number of transitions, saving half
of the power consumed by the RTZ protocol and incurring
only half the round-trip cycle delays per symbol. However,
due to the higher complexity of pipelines based on the NRZ
protocol, the on-chip interconnect uses the 4-phase protocol.
Moreover, a 3-of-6 encoding is used for on-chip interconnects
and a 2-of-7 code for off-chip interconnects. The two codes
are both capable of transferring 4-bits of data per symbol, with
the 3-of-6 code needing one fewer wire and the 2-of-7 code
one fewer transition per symbol.

Table 1 2-of-7 and 3-of-6 flit coding

Decimal 2-of-7 code 3-of-6 code

0 001_0001 11_0001
1 001_0010 10_0011
2 001_0100 10_0101
3 001_1000 10_1001
4 010_0001 01_0011
5 010_0010 11_0010
6 010_0100 10_0110
7 010_1000 10_1010
8 100_0001 01_0101
9 100_0010 01_0110

10 100_0100 11_0100
11 100_1000 10_1100
12 000_0011 01_1001
13 000_0110 01_1010
14 000_1100 01_1100
15 000_1001 11_1000
EoP 110_0000 N/A

SpiNNaker employs two DI coding schemes, one 2-of-7
and the other 3-of-6 [6]. These are incompletely used: 2-of-7
coding can support 21 symbols, of which 17 are used here;
3-of-6 supports 20 codes, of which 16 are used. The extra
symbol in the 2-of-7 code signifies end-of-packet (EoP) for
the inter-chip communication; a dedicated channel is used to
carry EoP symbols over the 3-of-6 on-chip links.

Table 1 lists the data symbols used. To design efficient
completion detection (CD) circuits both codes can be grouped
into smaller M-of-N codes with fewer wires, which leads to
CD circuits with lower area and delay [6]. Their
implementation details are ignored here, however it should be
noted that CD circuits supporting incomplete DI code sets -
while leading to efficient CD module designs - may be unable
to detect invalid symbols which are not defined in the code set.

III. INTERFACE CIRCUITS
This section gives an architectural view of the inter-chip

link interfaces. Some detailed circuit examples are developed
in the subsequent section.

A. Transmitter
The function of the transmitter is to take 4-bit flits from a

CHAIN link and output them on the off-chip connection. The
input link comprises six wires conveying data as a 3-of-6 code
and a separate, parallel 1-of-3 code which specifies the flit
type, together with their acknowledge signals. Only two flit
types are implemented here, namely 'normal' and
'end-of-packet' (EoP). The output has a single channel so
seventeen symbols are carried, sixteen data symbols plus an
EoP marker. The transmitter therefore needs to insert an extra
symbol to mark EoP when the input flit has been tagged
accordingly. This reduces the available external bandwidth
slightly but reduces the pin count significantly, from 11 (10
used) wires from the CHAIN link to 8 on the chip boundary.
As there are six duplex links this saves 36 pins on each chip.

The translation is pipelined (Fig 4): in the first stage
latches hold the input values for data and control
independently. In the subsequent stage the code translation is
performed; normally this stage discards the control
information but if the control indicates EoP then it is cycled
again to generate the output EoP flit before its input is
acknowledged. Up to this point the symbols are held as RTZ
codes in simple C-element latches (Fig 3).

Fig 3 a simple C-element 1/2 latch

The final stage of the transmitter performs the two-phase
conversion and outputs to the pins. This stage is kept as simple
as possible because the off- and on-chip delays limit the
interconnection bandwidth so circuit overheads need to be
minimised.

The transmitter does not need many fault tolerant features
as it is assumed that the majority of problems occur off chip.

78

Authorized licensed use limited to: The University of Manchester. Downloaded on June 2, 2009 at 08:57 from IEEE Xplore. Restrictions apply.

The only signal considered to glitch is therefore the off-chip
acknowledge ('ack2'). This is protected by its phase converter
which expects a single acknowledge transition but is able to
ignore any additional transitions until the next flit is sent. A
glitch on this line may therefore result in the next flit being
sent prematurely - with the consequence that it may not be
received correctly - but will not deadlock the link providing
this is tolerated by the receiver. As the transmitter has no way
of discriminating a glitch transition from a genuine
acknowledgment, this is unavoidable.

When the transmitter is reset it assumes that it has had all
preceding flits acknowledged. Therefore it is able to transmit

as soon as it receives an input flit. If this assumption is wrong
and a spurious acknowledgment arrives it is simply ignored. In
order to do this it is important that no assumption is made
about the direction of the acknowledge transition; the phase
converter solves this problem by converting arbitrary changes
into whatever level is required internally. This facility means
that the chip containing the transmitter can be reset (for
whatever reason) without resetting the receiver chip. As all the
chips are interconnected by the same asynchronous network
this is an important consideration in the fault recovery of parts
of the system in the event of, for example, a watchdog reset.

Fig 4 Transmitter block diagram

Fig 5 Receiver block diagram

A. Receiver
The receiver reverses the transmission process, converting

the 2-of-7 NRZ symbols into 3-of-6 RTZ flits and stripping
the 2-of-7 EoP symbols, replacing them with a parallel flit
type-identifier for the downstream CHAIN link. Anticipating
errors, extra transitions in the input symbols can be absorbed
without causing deadlock.

Like the transmitter, the receiver (Fig 5) is pipelined to
increase potential throughput. The first stage receives a
symbol and, when it is complete, returns an acknowledge
transition to the sender. In this stage a symbol is complete

when transitions have occurred on at least two different wires.
In the absence of glitches there should be exactly one
transition on each of two wires.

The second pipeline latch provides some extra buffer
space. In the implementation the latches are simple C-element
latches (Fig 3) and thus hold either a data element or a null
'spacer'. The added capacity allows the receiver to hold two
input flits simultaneously without impeding the operation of
the time-critical external link. This is necessary for the
protocol conversion back to the CHAIN link; before a flit can
be dispatched it must be determined if it is a 'normal' or an
'EoP' flit; a flit is 'normal' if the following 2-of-7 input does not

79

Authorized licensed use limited to: The University of Manchester. Downloaded on June 2, 2009 at 08:57 from IEEE Xplore. Restrictions apply.

indicate EoP so the subsequent input is needed for the majority
of outputs. The first flit of a packet is sent after the second is
received and so forth with the last data being freed by the input
EoP symbol.

The third pipeline stage converts the 2-of-7 input into a
legal 3-of-6 output. For error tolerance the input is, in practice,
a 2-or-more-of-7 code and this must be coerced into a code
which will not deadlock the later flow. For simplicity the
2-of-7 code is first translated into a 'one hot' code by
examining all possible legal pairs of inputs. Because the error
model only adds transitions the receiver can rely on a legal
combination being present before trying to process a symbol;
however it is quite possible to have more than one legal pair of
input bits in this stage. These are filtered using a priority
encoder (Fig 10); the chosen 'priority' is arbitrary but ensures
that only one code is chosen. The single, chosen 1-of-17 code
can then be ORed into its appropriate 3-of-6 data symbol or
signal EoP.

The last stage of the pipeline has already been alluded to.
This retains a data symbol until pushed out by the subsequent
symbol which is used to determine its type. Because EoP
accompanies data on the output side the receiver does not stall
between packets.

A final protective feature of the receiver (Fig 5) is that it
produces a single acknowledge transition when its local reset
is removed; this is injected after the acknowledge 4- to
2-phase conversion toggle flip-flop. This means that, if the
receiver is reset during reception of a flit it will still appear to
acknowledge it when reset is removed. This prevents the
off-chip link deadlocking in the state where both the
transmitter and receiver are each waiting for a signal from the
other. If both sides of the link are reset - for example on
power-on – then both transmitter and receiver start off 'ready';
the receiver immediately acknowledges an imagined input and
the transmitter receives an 'erroneous' acknowledgment -
which it is designed to ignore safely.

In operation it is conceivable that a transient fault may
cause a single chip to crash; a watchdog recovery mechanism
is in place to reset the faulty device which will probably
disrupt the inter-chip handshaking protocol. However the link
can recover from this in the same way. The glitch resistance
therefore also aids significantly in recovering from larger
system faults.

In the SpiNNaker system no packet can be more than 18
flits long; introducing a longer packet could cause problems in
the on-chip network. By accepting glitches as potentially legal
symbols extra flits may be introduced, producing a packet
which could not be accommodated in a later buffer. To
prevent this the receiver output is sent through a flit counter
whose job is to insert an EoP marker if one has not been
received within the last 18 flits. This may 'corrupt' a packet -
actually it has already been damaged – but ensures that the
input stream cannot deadlock units further downstream.

IV. CIRCUIT DESCRIPTIONS
The fault-tolerant circuits that make up the inter-chip

interfaces have undergone considerable evolution as they were
developed. This section gives a brief description of the most
developed circuits, in some cases with some earlier
incarnations used to illustrate particular problems.

A. Phase conversion
Phase conversion is performed in both interfaces because

both have input and output wires. The phase converters are
kept as close as possible to the chip boundary because
handling 2-phase signals in CMOS logic is typically quite
onerous. The major concerns are with the 2-to-4 phase
conversion as this is the incoming interface and the one
assumed to be prone to errors.

Fig 6 shows a simple phase converter for the transmitter.
When a valid symbol is input the latch is closed via the toggle
element and it remains so until an external acknowledge is
received. The data phase conversion can be provided by a set
of seven toggle flip-flops, which change as data bits arrive.
This unit only expects valid input symbols so this suffices. The
biggest potential problem with this circuit is that it relies on
alternating input and acknowledge (ack2) stimuli, which
cannot be guaranteed if the input acknowledge glitches, nor if
the receiver is reset at some random time.

Fig 6 Transmitter phase converter

Fig 7 Receiver phase converter

Fig 7 shows an initial design for the receiver's phase
converter. This comprised a master-slave latch in which the
master is initially transparent to incoming transitions. In this
design, when sufficient transitions have arrived the
completion detector (cd) acknowledges the flit, closing the
master latch and opening the slave latch, thus 'cancelling' the
input via the exclusive-OR gate.

In a 'clean' environment this works satisfactorily; it will
also tolerate the majority of glitches which will briefly alter
the level of an input wire. However there can be a problem if
an input glitch occurs coincidentally with the completion
detector's firing.

Figure 7 illustrates a deadlock scenario; only three of the
input wires are shown - the others are assumed to remain '0'
and the buses are annotated with binary patterns, not the
symbols' values. The input starts as '0' and two symbols, '6'
and '5' are transmitted as transitions. The first symbol is
successfully recognized by the subsequent C-gate pipeline
stage. Unfortunately a glitch occurs on data wire din[0] at
about the same time as the acknowledge signal acki arrives.
The phase converter now holds the false pattern value '7'

80

Authorized licensed use limited to: The University of Manchester. Downloaded on June 2, 2009 at 08:57 from IEEE Xplore. Restrictions apply.

where three transitions have been captured. When the second
symbol ('5') enters the converter it is interpreted as '4' by the
XOR gate because the previous data held in the converter is '7'
rather than '6'. The converter deadlocks because '4' has only a
single transition so no Acknowledge token is issued.

glitch

0 6 7 3

0 7

6 'H 0 4

6 0 4

din[0]

din[1]

din[2]

lat0_out[6:0]

lat1_out[6:0]

xor_out[6:0]

c_out

dout_cd
Fig 8 Deadlock timing in the receiver

The problem occurs because half a glitch is incorporated
(as an error) in the first flit but the other half glitch appears in
the subsequent flit. This does not deadlock if the next data
transitions are on different wires, only if the glitched wire
carries a valid transition in the next flit and this arrives first.
The only recovery from this would be to await another glitch
on a third data wire; it does not seem sensible to rely on this!
Among others, this problem was highlighted by the intensive
simulation, described later.

To combat this problem a different phase converter was
designed which is purely sensitive to transitions (Fig 9). This
comprises a parallel pair of RS flip-flops, with dominant reset
inputs, whose outputs are logically ANDed. In operation the
flip-flops are forced reset by an acknowledge pulse which is
then released. At this time one of the flip-flops is set by the
data input; the other remains reset. Any change on the data
input will set the second flip-flop and the output will then go
to, and remain, set until the next acknowledge pulse. The
circuit is therefore truly phase insensitive responding only to
the first input change.

a

b
rstn

clrn

dout

(4-ph)

din

(2-ph)

Fig 9 novel phase converter

In operation glitch edges can arrive at any time, including
during the reset pulse. In this latter case the edges will be
ignored. However data transitions always occur between reset
pulses and are always a single level change, so they could,
conceivably, be delayed by an ill-timed glitch but cannot be
removed. Data transitions can never be lost, thus preventing
deadlock from this cause, and the phase converter will filter
out some of the spurious glitch transitions.

This style of phase converter can be used both at the
receiver and for the acknowledgment entering the transmitter.
It should not deadlock providing that its clear pulse has
completed before the next genuine data transition occurs. This
can be guaranteed by sending the acknowledgment (or data)
on the falling edge of this pulse. In the first realisation this

safety is compromised slightly - at least in theory - by sending
the acknowledgment as the clear pulse is asserted. The clear
pulse is self-timed locally whereas for an off-chip link the
external pad delays are considerably larger and are incurred
twice in the round-trip time. Pragmatically this is a very safe
race condition and allowing an earlier output makes the
interface cycle time – the slowest link in the chain - noticeably
faster.

B. Symbol conversion
Transient glitches on the inter-chip wires may produce an

illegal symbol in the receiver. Four of the possible 2-of-7
codes are not used and codes with more than two set bits are
clearly illegal. In particular an invalid symbol must not be
interpreted as both a data and EoP symbol. The output stream
from this stage should consist of data packets, each
accompanied by a type marker indicating they are 'normal' or
'EoP'. So, having obtained a 2-or-more-of-7 4-phase code this
must be coerced into a legal symbol. This is done during the
translation to a 3-of-6 code.

Fig 10 derived from [8] shows the key circuit in this stage.
Inputs are fed to C-elements in pairs with the expectation that
the first legal symbol to arrive will fire one element; this is
akin to a DIMS circuit [9][10]. Assuming a correct input
symbol this travels forwards to its corresponding output and is
used to assert exactly three of the data output wires or the EoP
indicator.

Fig 10 a priority arbiter

In the event of a corrupt input it is possible that two or
more of the input C-elements may fire at about the same time.
The first one to do so will begin the assertion of the req signal
through the large OR gate - actually a tree structure owing to
the considerable fan-in. The delay through this gate and its
subsequent fan-out is exploited in the circuit operation in that
the first DIMS term is assumed to reach its mutual exclusion
element (mutex) before req has switched; it therefore wins that
particular race. This input, by holding the mutex, blocks all the
lower output paths in the daisy chain and waits to be output
from the daisy chain when req is valid.

Later switching elements may also win through their
respective mutex; however at some time later req prevents
further changes. When req appears it begins to ripple down a

81

Authorized licensed use limited to: The University of Manchester. Downloaded on June 2, 2009 at 08:57 from IEEE Xplore. Restrictions apply.

chain, pausing when it finds an undecided mutex and quitting
when it finds its first legal code signal. Although this is a serial
search, and therefore quite slow, it is adequate to keep up with
the off-chip cycle time. If higher performance was required it
would be relatively simple to add a 'carry look ahead' style
optimisation to this chain.

The output C-elements provide both an AND function on
the forward cycle and prevent output glitches during the
return-to-zero phase, where races from the inputs can
otherwise - in principle - expose a 'lower priority' request
briefly if the inputs are zeroed with significant skew.

C. Flit counter
In the presence of glitches, missed EoP symbols or

additional false symbols in a packet can lead to framing errors.
The communications NoC fabric may run out of buffer space
if an over-length packet arrives and occupies all available
buffer space, causing deadlock over the input links of the
on-chip router. Packets in the SpiNNaker system have two
valid lengths: 10 flits and 18 flits. The receiver needs to check
the length of any received packets ensure an EoP is signalled
at least every 18 flits and generate a framing error signal to tag
the packet in cases where the EoP symbol is missed or
superfluous data are received.

Fig 11 Flit counter

The flit counter (Fig 11) counts 'normal' input flits and is
reset when an 'EoP' is received. If an eighteenth successive
'normal' input is received the output is changed to an EoP and
the counter is reset. This results in splitting an input packet but
that packet is already corrupt because extra flits must have
been inserted. The 'truncated' packet can be marked as such to
a downstream unit which could log and discard it. The counter
does not have to be a high-performance unit it is counting at
the flit rate. The chosen design (Fig 11) is based on van
Berkel's handshake circuit modulo-N counter [11].

V. FAULT SIMULATION
In the absence of a formal methodology to verify the

effectiveness of a circuit's tolerance to transient glitches,
extensive circuit simulation is essential. A fault simulation
platform based on the injection of random glitches is
necessary to observe the effects of errors on the asynchronous
circuits in the communications NoC and to provide automatic
detection of deadlock and verification of the results. The
platform includes a sub-module to generate transient glitches
with configurable duration and frequency, which are
randomly injected onto the inter-chip wires (including the
acknowledge wire). By specifying different glitch injection
frequencies, a large number of random and densely-spaced
glitches are injected onto the inter-chip wires during the
transfer of one million packets. Whilst not a rigorous proof,
extensive simulation based on this platform is sufficient to
assess the impact of transient glitches on the asynchronous
inter-chip links and to estimate effectiveness of
glitch-resistant circuits. Such high density glitches are
unlikely to occur in real circuits.

The (post-synthesis, back annotated) circuit has been
simulated in the presence of a large number of high density
random glitches (on average a glitch inserted roughly for each
two packets) during the transfer of one million packets.
Glitches are induced on both the forward data path and the
acknowledge signal. As a result, invalid symbols - including
incorrect end-of-packet (EoP) codes - can appear and
acknowledge wires can transition unexpectedly, leading to
link faults and, possibly, deadlocks as described previously.
Flit insertion and corruption is unavoidable - glitches could
contrive to emulate both a valid flit and its acknowledgment -
and their correction can be left to a higher level protocol. The
important issue for the asynchronous link is to avoid deadlock.

A mixture of 10- and 18-flit packets containing random
data was transmitted. This size reflects the packets used within
the SpiNNaker network although their contents are intended
more as a test of the link than as operationally representative
data. Their content was protected by a CRC and a packet was
regarded as received successfully if its CRC was correct on
reception. Whilst this is not a perfect test of 'successful'
reception - occasional false positives are possible - it gives a
good indication of the actual error rates.

In order to observe the robustness of the link, glitch
duration was varied, as was the length of the external delays
used to emulate the propagation time across a PCB. As there
are some timing assumptions used in the design, it is a good
idea to try to establish the limits of operation.

VI. SIMULATION RESULTS
The first simulation results showed that most deadlocks

occurred at the 2-phase to 4-phase converter in the receiver.
This prompted the development of the phase converters
described earlier in this paper.

The post synthesis fault simulation results in Table 2
confirm the effectiveness of the proposed interface circuits.
With a similar density of injected glitches, the first generation
circuits – using the conventional phase converter, code
conversion and completion modules - have a moderate risk of
deadlock. Through hardening the circuits with all the proposed
techniques the new interface circuits exhibit a much better
tolerance to transient glitches and, under anything
approximating to expected operating conditions, are deadlock
free.

Table 2 simulation results for the interface designs

Items \ Designs Original I/F Proposed I/F
Glitches 478,280 390,357
Successfully
Received Packets

916,684 863,182

Deadlock 7,632 7
Performance
(ns/symbol)

17 15

Area(um2) 8219.7 8555.7
In some extreme circumstances simulation revealed an

unpredicted deadlock model for the new circuit. This
corresponds to a glitch ‘removing’ a genuine data (or
acknowledge) transition and not, subsequently providing
another transition on that wire. The mechanism for this is as
follows (Fig 12): a glitch begins within a data symbol and
injects a spurious edge which is accommodated, possibly
corrupting a flit but not causing deadlock; the 'glitch' persists

82

Authorized licensed use limited to: The University of Manchester. Downloaded on June 2, 2009 at 08:57 from IEEE Xplore. Restrictions apply.

for a considerable time, its second edge corresponding closely
with the following, valid transition; the glitches later edge and
the data edge occur close together - and in opposing directions
– effectively cancelling each other out.

 gl i tch

><0din

><1din

><2din

cl rn

><0nrt_rtz_dout

><1nrt_rtz_dout

><2nrt_rtz_dout
Fig 12 Timing diagram showing long-glitch fault

For this to occur a 'glitch' must be at least as long as the
round-trip time on the data link, so that its leading edge can be
filtered and its falling edge coincide with genuine activity.
This must be a single glitch: two glitches on the same wire will
expose transitions between them and, although these are
erroneous, the link will continue to operate. As the anticipated
cycle time is >10ns is seems unlikely that this failure mode
will occur in reality; it was exposed only by simulations with
artificially short delays and long glitch times.

Successful packet reception, as judged by a correct CRC,
was monitored for the two designs. The earlier design had a
notably higher number of packets received successfully than
the one which avoids deadlock. This is probably due to its
lower sensitivity to random edges; a transition which might
corrupt a flit is readily accepted in the later design but it is
prevented from causing a deadlock. The earlier design is less
sensitive to corruption but will deadlock much more easily.

The reset mechanism was also verified by simulation by
resetting both the transmitter and receiver at independent,
random times. This did not caused corruption but not deadlock
in the transmission link, as expected.

Flit throughput is important in system operation. The
critical cycle time is the external link due to the on- and
(especially) off-chip pad delays. These are minimised by using
a 2-phase protocol but the circuit efficiency can also influence
this noticeably. The new circuit cycles about 10% faster than
its predecessor, some of which, however is attributable to
'conventional' circuit improvements.

Although the size of the interfaces is a small part of a
SpiNNaker chip it is still desirable to keep overheads down as
much as possible. Sample layouts have been constructed in a
130nm UMC process which indicates that the highly glitch
resistant interface is about 4% larger than its predecessor. This
is not a high price to pay for the considerable increase in
reliability.

VII. CONCLUSIONS
This paper described some fault tolerant circuits intended

to reduce the consequences of transient glitches on the
asynchronous inter-chip interfaces in SpiNNaker. In particular
the intent is to reduce the potential for deadlock; providing the
link continues to run other error correction schemes may be
used to verify data integrity.

By analyzing the reasons for deadlock and comparing
different 2-phase to 4-phase conversion circuits, fault tolerant
implementations of the inter-chip interfaces were devised.

There are three major fault-trapping stages. The greatest
benefit was conveyed by the phase-insensitive data and
acknowledge converters; the second, code conversion, stage
with priority arbitration ensured that only legal symbols can
reach the on-chip network; finally a counter ensures that
packet size is limited to within the size of later buffers.

The extensive simulation results show that the
implementation has a very high resistance to deadlock and is
able to not only keep running but successfully convey packets
for a high proportion of the time despite artificially rather
intense noise. Although the current circuit corrupts somewhat
more packets than its predecessor this is due to glitches being
translated into symbols rather than deadlocks. Deadlock
avoidance is regarded as the most important consideration.

Under any circumstances reasonably close to the expected
operating conditions it is believed that the links are now
deadlock free. The only deadlocks that have been found were
achieved by mixing artificially long 'glitches' with artificially
short inter-chip delays. The probability of glitch durations
approximating the link's cycle time (or greater) and then,
coincidentally cancelling a real signal is regarded as
exceedingly small. In such an event the link is still recoverably
by a higher-level reset process.

The practical realisations of the circuits described here
contain some delay assumptions. For example, the off-chip
acknowledge is sent before the receiver's phase converter has
completed clearing. This races the inter-chip cycle time with
an on-chip pulse generation and, with the long, off-chip delays
is very safe and speeds up the critical path of the slowest cycle
in the network. It would be a simple matter to alter this to
delay the acknowledge to the falling edge of the clear pulse if,
for example, the 2-phase link had much lower latency, for
example by being entirely on-chip. The 2-of-7 to 3-of-6 code
converter also exploits a delay model; a delay insensitive
circuit using the same principle could be produced but, owing
to significant fan-in and -out would be larger and slower.

In addition to these 'in-line' processes a local reset scheme
allows either end of the link to be reset independently at any
time. Although this could corrupt a packet 'in flight' it -
together with the inbuilt error tolerance - allows the link to
recover normal operation. Thus, if some unpredicted fault
mode causes a link deadlock a higher level process can detect
the lack of activity and reset it. In practice it is thought more
likely that this single chip reset may result from a watchdog
following a software crash; either way it allows system
recovery when a single, faulting chip is reset.

Initial realisation will be in 130nm CMOS as part of the
firstSpiNNaker device and is scheduled for mid 2009.

REFERENCES
[1] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip

Interconnection Networks,” The 38th ACM Design Automation Conf.,
pp. 684-689, 2001.

[2] L. Benini and G. D. Micheli, “Networks on chips: a new SoC
paradigm,” Computer, vol. 35, pp. 70-8, 2002.

[3] J. Bainbridge, and S. B. Furber, “CHAIN: A delay-insensitive chip
areaInterconnect,” IEEE Micro., 2002, 22, (5), pp. 16–23.

[4] A. Lines, “Asynchronous interconnect for synchronous SoC design,”
IEEE Micro, 2004, 24, (1), pp. 32–41.

[5] Y. Shi and S. B. Furber, ‘‘Error Checking and Resetting Mechanisms
for Asynchronous Interconnect,’’ Proc. 18th UK Asynchronous Forum,
University of Newcastle upon Tyne, 2006, pp. 24-27,
http://async.org.uk/ ukasyncforum18/.

83

Authorized licensed use limited to: The University of Manchester. Downloaded on June 2, 2009 at 08:57 from IEEE Xplore. Restrictions apply.

[6] W.J. Bainbridge et al., ‘‘Delay-Insensitive, Point-to-Point
InterconnectUsing M-of-N Codes,’’ Proc. 9th IEEE Int’l Symp.
Asynchronous Circuits and Systems (ASYNC 03), IEEE CS Press,
2003, pp. 132-140.

[7] L. A. Plana, S. B. Furber, et al., “A GALS Infrastructure for a
Massively Parallel Multiprocessor,” IEEE Design & Test of Computers,
Volume: 24 , Issue: 5, pp. 454 - 463, Sept.-Oct. 2007.

[8] T. Felicijan, W. J. Bainbridge, and S. B. Furber, “An asynchronous
lowlatency arbiter for Quality of Service (QoS) applications”. 15th
IEEE International Conference on Microelectronics (ICM'03), Cairo,
Egypt, Dec 2003, pp. 123-126.

[9] D. E. Muller, “Asynchronous logics and application to information
processing,” Proc. Symp. Application of Switching Theory in Space
Technology, H. Aiken and W. F. Main, Ed. , pp. 289-297, 1963

[10] J Sparsø, S. B. Furber, "Principles of Asynchronous Circuit Design",
Kluwer, pp.67-69, 2001.

[11] K. V. Berkel, “Handshake circuits: an asynchronous architecture
forVLSI programming,”, Cambridge University Press, 1993, pp.35-38.

84

Authorized licensed use limited to: The University of Manchester. Downloaded on June 2, 2009 at 08:57 from IEEE Xplore. Restrictions apply.

