
Built-In Self-Testing of Micropipelines

 O. A. Petlin, S. B. Furber
Department of Computer Science

University of Manchester
Manchester, M13 9PL, UK

email: {oleg, sfurber}@cs.man.ac.uk
tel. +44 (0161) 275-3547
fax +44 (0161) 275-6202

Area 5: Design & Test

Abstract - The micropipeline approach offers a good engineering framework to design com-
plex asynchronous VLSI circuits. An asynchronous ARM6 microprocessor (AMULET1),
implemented using a two-phase signalling protocol, has proved the practical feasibility of
the micropipeline design approach. A built-in self-test (BIST) micropipeline design based
on an asynchronous BILBO register is presented in this paper. All the stage registers of the
micropipeline are implemented using the proposed asynchronous BILBO register which
can operate in four modes: normal operation, shift, linear feedback shift register (LFSR)
and signature analyser mode. The test procedure described in this paper provides for the
detection of all single stuck-at faults in the micropipeline. It is shown that delay faults in the
combinational logic blocks of the BIST micropipeline can be tested by using BILBO regis-
ters of a doubled size.

Key words - micropipelines, single stuck-at fault model, delay fault model, built-in self-test,
BILBO register, random testing, linear feedback shift register, signature analysis.

1. Introduction

Asynchronous design methodologies are a subject of growing research interest since they

appear to offer benefits in low power applications, promise greater design modularity and

exhibit typical case performance rather than worst-case performance [Lav93, Brzo95]. An

asynchronous ARM6 microprocessor (AMULET1) has been designed by the AMULET

research group at the Department of Computer Science in the University of Manchester and

fabricated by GEC Plessey Semiconductors Limited. The AMULET1 microprocessor was

designed using the micropipeline approach based on two-phase signalling. The design expe-

rience obtained from the AMULET1 microprocessor has shown the practical feasibility of

the micropipeline design style [Furb94, Pav94]. However, before the advantages of asyn-

2

chronous circuits can be exploited commercially, it must be shown that they can be tested

effectively for fabrication faults in volume production [Hulg94].

2. Micropipelines

Micropipelines were described by Sutherland in his Turing Award lecture [Suth89]. The

micropipeline design approach is based on three fundamental principles:

• the pipelined organization of the computation;

• transition signalling;

• the bundled-data interface.

The data stream moves through the micropipeline stages controlled by signal transitions.

Each micropipeline stage can operate as either a sender or receiver. When the data is ready

to be transmitted the sender produces a ‘request’ event to the receiver; the receiver accepts

the data and sends an ‘acknowledge’ event to the sender (this is a ‘bundled data’ interface).

This handshake protocol is repeated every time the next data produced by the sender is

ready to be transmitted.

There are two basic signalling protocols: two-phase and four-phase. Micropipelines intro-

duced by Sutherland operate according to the two-phase protocol where both rising and fall-

ing transitions are events and have the same meaning. Thus, when the sender is ready to

send the data, a rising or falling request event is sent to the receiver which acknowledges

the receipt of the data by generating a rising or falling acknowledge event. In four-phase

signalling both request and acknowledge signals must be reset before new data can be trans-

mitted.

Figure 1 : A micropipeline with processing

Rin Rout

Ain Aout

Event
Reg1

Rin Rout

Ain Aout

Event
Reg2

Logic1

delay Rin Rout

Ain Aout

Event
Reg3

Logic2

delay

Logic3

delay

DataIn DataOut

Rin Rout

Ain Aout

3

2.1 Micropipeline structures

Figure 1 illustrates a three-stage micropipeline with processing [Suth89, Birt95]. In the ini-

tial state all the event registers of the micropipeline are transparent. A data value is sent to

the left event register (Reg1) by the environment. Once a request event is generated on con-

trol line Rin the data is copied into registerReg1 which then signals events on itsRout and

Ain outputs. In this state event registerReg1 holds the data stable until it receives an

acknowledge signal on itsAout input. The request signal generated by registerReg1 is

delayed for enough time to allow the data on the outputs of the following logic block

(Logic1) to be stable. After receiving a request signal on inputRin the second event register

(Reg2) latches the data, acknowledges it by signalling an event on itsAin output and gener-

ates a request signal on itsRout output for the next event register. As a result, event register

Reg1 is set to the transparent mode where it is ready to accept new data from the environ-

ment. The data processing procedure described above is repeated for the rest of the micropi-

peline stages. The output data produced by the micropipeline can be read by the

environment when a request signal is generated on itsRout output. Once the output data is

latched an acknowledge signal is sent to inputAout of the micropipeline. Every micropipe-

line stage works in parallel and sends data to the neighbouring stage only when the data is

ready to be processed.

2.2 Micropipeline latch control

There are different ways to control the latching and storing of the data in the micropipeline

registers. For example, event-controlled latches described by Sutherland are controlled by a

pair of control signals such as “pass” and “capture” [Suth89].

In the initial state all the register latches can be either transparent or in the capture mode

depending on the latch transition controlling protocol. Figure 2 illustrates the design of the

event latch widely used in the AMULET1 microprocessor [Furb94, Day95, Birt95]. The

design of the latch follows the two-phase transition signalling protocol. The XOR gate

together with the toggle element converts the two-phase signalling into a four-phase proto-

4

col. This is because the latch is level-sensitive and is transparent when theEn signal is low

and opaque whenEn is high.

Initially, the latch is transparent and all the control wires are reset. When a rising event is

sent to inputRin the output of the C-element goes high and the latch is closed, latching the

input data. The toggle element steers the rising event to its ‘dotted’ output. A rising event on

inputAout makes the latch transparent resetting itsenable input (En). A falling event on the

input of the toggle element causes a rising event to be generated on its ‘blank’ output prim-

ing the C-element. The operation of the latch is identical when a falling request signal is

subsequently sent to its inputRin. Different latch structures and their control in two-phase

and four-phase micropipelines are discussed elsewhere [Pav94, Day95].

The use of ‘normally closed’ latches is preferable from the power consumption point of

view since no transitions in the data paths can occur unless new data has been latched by the

stage register [Furb94, Birt95]. Figure 3 shows an implementation of the normally closed

latch structure which uses two-phase signalling. In the initial state the outputs of the toggle

element and the C-element are reset. When the data is stable on the inputs of the latch a

request signal is sent to inputRin setting the data enable input (De) of the latch to high. As a

result, the latch becomes transparent storing the data into its memory. The toggle element

Figure 2 : AMULET1 event latch structure

to
gg

le

DataIn

DataOut Rout

latchEnC

Ain

Aout

Rin

to
gg

le

DataIn

DataOut

Rin Ain

latch
De

Figure 3 : Two-phase control for a normally closed latch

C

Aout Rout

5

steers a rising event to its dotted output causing the data to be latched in the latch memory.

The second rising event is steered by the toggle element to its blank output producing a

request signal (Rout) for the next stage register and an acknowledge signal (Ain) for the pre-

vious stage of the micropipeline. A rising signal arriving at inputAout primes the C-element

and the latch is ready to repeat the sequence described above when a falling event is gener-

ated on itsRin input.

Figure 4 shows an n-type single-phase latch which can be used for storing the data in the

micropipeline registers. The latch is transparent when the data enable input (De) is high and

it is opaque when the data enable input is low. When transparent, input data is propagated

through the latch to its output. Once the enable signal is reset the data is prevented from

flowing to the inverter and the weak data retention circuit. As a result, the data is stored and

any signal changes on the data input will have no effect on the stored data. Single-phase

latch designs are investigated elsewhere [Yuan89].

3. Testing micropipelines

3.1 Fault model

A number of works have already addressed the testing of micropipelines for single stuck-at

faults [Pag92, Khoc94, Pet95a, Pet95b]. The stuck-at fault model is widely used to describe

the fault behaviour of the circuit under test. According to this fault model a circuit line is

stuck-at one or zero if it is disconnected from any other circuit’s wires and connected to the

power supply or ground respectively.

wk

Out

In

De

wk

Figure 4 : Single-phase static latch

6

3.2 Faults in micropipelines

Stuck-at faults in micropipelines can be divided into three classes [Pag92]:

• faults in the latchcontrol part;

• faults in the combinationallogic blocks;

• faults in the latches.

Faults in the latch control

Stuck-at output faults in the latch control circuits (see Figures 2 and 3) cause the faulty

micropipeline to halt. The micropipeline moves through at most one step and then halts in

the presence of a stuck-at input fault in its control part [Pag92]. Thus, such stuck-at faults

can be identified easily during normal operation mode.

Faults in the processing logic

It was assumed that all the latches of the micropipeline are transparent initially [Pag92].

This allows the processing logic to be treated as a single combinational circuit. To detect

any of the single stuck-at faults in such a circuit test vectors can be obtained using any

known test generation technique [MClus86, Russ89].

Therefore, the test procedure for the micropipeline consists of two major steps:

1) the micropipeline is emptied, i.e. all the latches are transparent;

2) the test vectors are applied to the inputs of the micropipeline and the responses of the

combinational logic blocks are compared with good responses.

This test algorithm has been adapted to the detection of stuck-at faults in the processing

logic of a micropipeline with normally closed latches [Pet95a, Pet95b].

7

Faults in the latches

Single stuck-at faults. Any stuck-at fault on the input or output of a latch is equivalent to a

corresponding fault in the combinational logic.

Single stuck-at-capture faults. A single stuck-at-capture fault in a latch causes a register bit

of the latch to remain permanently in the capture position. For example, a stuck-at-0 fault

on theenable input of the latch shown in Figure 3 sets the faulty latch in capture mode per-

manently. As an effect of this fault, the faulty bit can be detected as a constant logic one or

zero. When all the latches of the micropipeline are transparent this fault is equivalent to an

appropriate stuck-at fault on a line of the combinational logic. Thus, stuck-at-capture faults

can easily be detected using standard tests for stuck-at faults in combinational networks.

Single stuck-at-pass faults. These faults set a register bit of a latch in pass mode perma-

nently. A stuck-at-1 fault on the enable input of the latch illustrated in Figure 3 makes the

faulty latch transparent permanently. It has been shown that a two pattern test is required to

detect this kind of fault [Pet95a, Pet95b].

3.3 Scan testing of micropipelines

An elegant scan test approach has been proposed by Khoche and Brunvand [Khoc94]. The

micropipeline can act in two modes: normal operation and scan test mode. The micropipe-

line performs to its specification in normal operation mode. In test mode, all the latches are

configured into one shift register where each latch works as an ordinary master-slave flip-

flop. The stage registers of the micropipeline are clocked through the control lines where

the Aout input is used as a clock input. The C-elements pass their negated inputs onto the

outputs forming a clocking line for the scan path. As a result, the test patterns are loaded

from the scan-in input into all the latches of the micropipeline. Afterwards the micropipe-

line is returned to normal operation mode in which only one request signal is generated. To

observe the contents of the register latches the micropipeline is set to scan test mode. The

contents of all the latches are shifted out to the scan-out output. The test technique

described allows the detection of all the stuck-at faults and bundling constraint violations in

8

micropipelines. The proposed scan test interface uses clocks produced by a clock generator

which is not always available in asynchronous VLSI designs.

A method to design and test micropipelines and sequential circuits based on the micropipe-

line design style has been reported [Pet95a, Pet95b]. The test approach is implemented

using specially designed scan latches manipulated by the scan test control logic. The pro-

posed scan test procedure allows single stuck-at and delay faults in the combinational logic

blocks to be detected. However, the results reported so far do not address the built-in self-

testing (BIST) of micropipeline structures. In this paper, an asynchronous BIST micropipe-

line design based on the built-in logic block observation (BILBO) approach is considered.

4. Asynchronous BILBO register design

In BIST VLSI designs the test patterns are generated by a circuit included on the chip and

the response analysis is also fulfilled by on-chip circuitry. There are two possible realiza-

tions of self-testing:InSitu andExSitu self-testing [Russ89].InSitu self-test structures use

system registers to generate and compact test data whereas theExSitu design uses registers

external to the system function to generate tests and analyse the responses of the circuit.

Figure 5 : CMOS implementation of the BILBO register latch

L1

L2

Reset

En

Din

Dout1

Dout2

Set

wk

wk

wk

wk

9

A classical example ofInSitu self-test is the BILBO technique [MClus86, Russ89]. This

technique is based on the use of a BILBO register which can be reconfigured to act as a

pseudo-random pattern generator or as a signature analyser within a VLSI circuit. The

BILBO technique uses signature analysis in conjunction with a scan path technique.

The CMOS implementation of one of the latches from which an asynchronous BILBO reg-

ister may be built is illustrated in Figure 5. The latch design consists of two latchesL1 and

L2 connected together. The implementation ofL1 is similar to the single-phase static latch

shown in Figure 4. In addition, latchL1 has an active lowset input to set theDout1 output to

high. LatchL2 is a single-phase static latch which is transparent when its enable input is low

otherwise it is opaque.L2 has an active lowreset input which holds its output at zero regard-

less of whether it is transparent or opaque.

Initially latch L1 is closed andL2 is open due to a low signal applied to theEn input. When

the data is stable on theDin input ofL1 theEn input is set high, making the latchL1 trans-

parent andL2 opaque. The input data stored in the memory ofL1 is passed to theDout1 out-

put and to the data input ofL2. When the enable input is reset, latchL1 is closed andL2 is

transparent, storing the data fromL1 in its memory. As a result, the data stored inL1 is

passed to theDout2 output of the register latch. The procedure of storing data in the register

latch is similar to that of a master-slave flip-flop. Note that whenEn=0 theDout1 output can

be set high by an active low signal applied to theset input ofL1.

An asynchronous implementation of a 4-bit BILBO register is illustrated in Figure 6. The

Qi outputs of theLi1 latches (i=0,1,2,3) are used as the outputs of the BILBO register. The

Dout2 outputs of the register latches (see Figure 5) are connected through the XOR gates to

theDin inputs of the corresponding latches. Thescan-in input (Sin) is coupled through the

multiplexer (MX) and one of the inputs of the XOR gate to theDin input of the first register

latch. TheDout2 output of the last register latch is used as a scan output from the register.

The register latches can be enabled byscan anddata enable clocks applied to theSc input

of the register and theDe input of the OR gate respectively. TheDe clocks are generated by

the latch control circuit which is similar to the one shown in Figure 3.

10

The BILBO register shown in Figure 6 can act in four distinct operation modes depending

on the control signals C1 and C2: normal, shift, LFSR and signature analyser operation

modes. Table 1 contains the values for the control signals and the corresponding operation

modes of the BILBO register.

Normal operation mode. In this mode C1=1 and C2=0. As a result, the reset signal is set

low holding the outputs of latches Li2 (i=0,1,2,3) at zero permanently. The set input is high.

The inputs Sin and Sc are kept low during this operation mode.

When the input data is stable on the In inputs of the register the control inputs of the latch

control block are activated by the environment. Thus, clock signals are produced on the De

Table 1: Operation modes of the BILBO register in Figure 6

C1 C2 Set Reset Mode
1 0 1 0 Normal

0 0 1 1 Shift

0 1 0→1 1 LFSR

1 1 0→1 1 SA

Figure 6 : Asynchronous BILBO register structure

Sout

Sc

Sin

C1

C2

En

MX
F

T

Set

L01

L02

L11

L12

L21

L22

L31

L32

In0

Q0 Q1

In1 In2 In3

Reset

Q2 Q3

to
gg

le

Rin Ain/Rout
DeCAout

Latch Control

11

output by the latch control circuit. The data is passed to the outputs of theLi1 latches and

latched in their memories.

Shift register mode. Control signalsC1 andC2 are reset in the shift register operation mode

of the BILBO register. In this mode theset andreset signals are set to high. The register

latches act as D-type flip-flops configured in a 4-bit shift register. The shift register is

clocked from theSc input. Note the latch control block is not active in this mode, holding its

De output at zero permanently.

When the scan data is ready on theSin input it is transmitted through the multiplexer to the

input of the first flip-flop. A clock signal is applied to theSc input of the register. As a result,

the scan data is stored in the first flip-flop and passed to the input of the second flip-flop.

The next bits of the scan data are shifted into the register latches in the same manner as a

normal shift register. The shift register passes the scan data on itsSout output from where

the data is read by the environment.

LFSR operation mode. The BILBO register operates as an LFSR whenC1=0 andC2=1. In

this mode, thereset signal is set high and theSc input is reset. Note that the data from theIn

inputs of the BILBO register is blocked by a zero signal applied to itsC1 input (the outputs

of the corresponding AND gates are reset). Thus, the BILBO register (see Figure 6) can per-

form as the 4-bit LFSR illustrated in Figure 7a. This LFSR is designed using the following

primitive polynomial . The pseudo-random sequences of maximal

period () are generated on the register outputs.

Initially, theset input of the register is reset, setting theQi outputs and the outputs of latches

Li2 (i=0,1,2,3) high. When the register outputs are stable theset input is set high. As a

result, the ‘all ones’ state is the initial state of the LFSR. The LFSR generates a new output

vector every time a new clock signal is produced by the latch control block on itsDe output.

Note that the state of ‘all zeros’ is illegal for the LFSR shown in Figure 7a since it stays in

this state forever.

Signature analyser operation mode. When the control signalsC1 andC2 are set to high the

BILBO register can operate as a signature analyser. In this mode, thereset signal is set high

ϕ X() 1 X
3

X
4

+ +=

M 15=

12

and the Sc input is reset permanently. Note that the data from the In inputs of the register is

enabled by a high signal applied to the C1 input.

In the initial state, the outputs of the signature analyser are set high by a low signal applied

to the set input of the BILBO register. When the outputs of the signature analyser are stable

the set signal is set high. Once the data is ready on the In inputs, the signature analyser is

clocked from the De output of the latch control block. As a result, the current contents of the

register are mixed with the new input data.

The design of the asynchronous BILBO register shown in Figure 6 is similar to the synchro-

nous BILBO design. As a consequence, the testability properties of the asynchronous

BILBO register with respect to stuck-at faults are the same as that of the synchronous one.

Note that all stuck-at faults in the BILBO register, including faults on either the control

lines or its data paths, can be detected when the register is forced to perform in all its opera-

tion modes. Stuck-at faults in the latch control circuit (see Figure 6) manifest themselves by

causing the circuit to halt [Pet95a].

5. Micropipeline structure with BIST features

Figure 8 shows a two-stage micropipeline structure with BIST features. The stage registers

of this micropipeline are built from the register illustrated in Figure 6. The outputs of the

micropipeline can be connected to its inputs depending on the Boolean Bist which is high in

BIST mode and low in normal operation mode. The BIST control unit is activated by a high

Figure 7 : Four-bit pseudo-random pattern generator

DFF

D Q0

DFF

D Q1

DFF

D Q2

DFF

D Q3

Clk

Rst

DFF

D Q0

DFF

D Q1

DFF

D Q2

DFF

D Q3

Clk

Set

S S S S

a) b)

R R R R

13

signal applied to the Bist input of the micropipeline allowing the BIST control signals to be

generated. The RSin, ASin, RSout and ASout control signals are used in an asynchronous

interface to shift the data in and out of the stage registers. An implementation of the scan

control block is shown in Figure 9 [Pet95a].

Normal operation mode

The micropipeline is set to normal operation mode when Bist=0 and RSin=ASout=0. As a

result, the control signals Ci1 and Ci2 (i=1,2) of the control unit are set high and low respec-

tively. Its Set and Sc outputs are also set high and low respectively. In this mode the micro-

pipeline acts in the manner described in section 2.

BIST mode

In BIST mode the Boolean signal Bist is set high, enabling the control unit to produce con-

trol signals for the stage registers of the micropipeline.

Figure 8 : A two-stage micropipeline with BIST features

Din

Rin

Ain
Sin Sout

Rout

Aout

Dout

SoutSin

Reg2

Sc

C1

C2

BIST Control Unit
RSin

ASin ASout

RSout

Rin Rout

Ain Aout

SoutSin

Reg1

Sc

C1
C2

Rin Rout

Ain AoutSet Set

C
L1MX

F

T

Bist

C11 C12 C21 C22 Set Sc

C
L2

Scan control block

to
gg

le

RSin RSout
De

CASout
ASinB

Figure 9 : Scan control block

14

The micropipeline shown in Figure 8 can be tested for stuck-at faults using the following

test algorithm:

1. Testing for stuck-at faults in the register latches involved in the shift operation. The shift

operation is tested by setting the stage registers into the shift register mode and applying

an alternating test to theSin input of the micropipeline. Since the stage registers are

united in one shift register, the alternating test is passed through all the register latches.

Note that the shift operation is controlled by clock signals generated on theSc output of

the scan control block.

2. Testing for stuck-at faults in the combinational circuits. The combinational circuitCL1 is

tested when registerReg1 is set to the LFSR mode andReg2 is set to the signature ana-

lyser mode. The latches ofReg1 andReg2 are set to high initially (see Figure 6). After

the generation of a request signal on theRin input of the micropipeline, the LFSR applies

a new random test vector to the inputs ofCL1 and its responses are collected by the sig-

nature analyser. TheRin input is triggered enough times for the LFSR to generate the

required number of random test vectors on the inputs ofCL1. The number of random

tests can be calculated using known expressions reported elsewhere [Savir84, Wag87].

The combinational circuitCL2 is tested in the way described above withReg2 acting as

the LFSR andReg2 as the signature analyser. The responses fromCL2 are passed

through the multiplexer to the inputs ofReg2. Note that the signatures produced by the

signature analysers are shifted out to theSout output of the micropipeline every time the

testing of each combinational circuit has completed.

3. Testing for stuck-at faults on the Din inputs and Dout outputs. Stuck-at faults on theDout

outputs of the micropipeline can be tested by observing the responses fromCL2 during

its testing. Stuck-at faults on theDin inputs are tested in normal operation mode

(Bist=0). In this mode, the ‘all zeros’ and ‘all ones’ tests are applied to theDin inputs of

the micropipeline (two request signals are applied to theRin input). Note that the con-

tents ofReg1 are shifted out after the application of each test.

15

The use of the above test algorithm allows most of the stuck-at faults in the micropipeline to

be detected. Note that stuck-at-1 faults on thereset inputsin the register latches (see Figure

5) cannot be identified in BIST mode whereas they can be tested in normal operation mode.

The test algorithm is simple:

1. Set the micropipeline in normal operation mode.

2. Set all the latches of the micropipeline to high (Set=1).

3. Set=0 and apply a test to theDin inputs of the micropipeline.

4. Generate one request signal on theRin input.

5. Shift the contents of the stage registers out to theSout output.

In the presence of a stuck-at-1 fault on thereset input in thei-th latch of thej-th (j=1,2)

stage register the response bit latched in its (i+1)-th latch will be inverted (see Figure 6).

6. Testing for delay faults

Data is latched in each micropipeline stage register after a certain delay matching the signal

propagation delay through the longest path in the corresponding combinational block. In the

presence of a delay fault in the combinational circuit the corresponding path delay is

extended. As a result, the output data of the faulty combinational circuit can be latched by

the corresponding micropipeline stage register when it is not yet stable, violating the bun-

dled-data constraint. Thus, the latched data may or may not be correct depending on the par-

ticular change in the propagation signal delay along the faulty path.

In principle, a pair of test vectors applied sequentially to the inputs of the combinational cir-

cuit are required to detect a delay fault [Pram90]. The first test settles the combinational cir-

cuit and the second one activates its faulty path, propagating a falling or rising event

through it. The circuit’s response is latched from the outputs of the combinational circuit

after a specified time. If the latched outputs do not match the correct ones then the circuit is

16

faulty. Using the micropipeline structure shown in Figure 8 delay faults in its combinational

circuits can be tested.

Let us consider the LFSR shown in Figure 7b. A NOR gate is added to the design of the

LFSR in order to allow it to go through all its possible states. The output sequence of this

LFSR has the following property:

All possible pairs of 2-bit binary vectors can be found sequentially on the odd or even

outputs of the LFSR [Pet94].

Table 2 contains the states of the 4-bit LFSR shown in Figure 7b. Columns T0 and T1 repeat

the outputs Q1 and Q3 respectively. After the period of the LFSR all the possible combina-

tions of 2-bit vectors can easily be found in the 2-bit output sequence (columns T0 and T1).

For instance, the combinations: 11 11, 11 01, 11 10, 11 00 can be found in this sequence.

Lemma. Let the pseudo-random pattern generator be built using the ()-bit LFSR which

goes through all possible binary states. Every k-th output of the LFSR is used as an output

of the generator so that it has exactly n outputs. All possible combinations of any k n-bit

binary vectors chosen sequentially can be found in the output sequence of the pseudo-ran-

dom pattern generator after it has passed through all its states.

Proof. The prove of this Lemma is trivial for k=1 since the LFSR is assumed to produce all

possible ()-bit binary vectors on its outputs.

Table 2: State sequence of the 4-bit LFSR

State Q0 Q1 Q2 Q3 T0 T1 State Q0 Q1 Q2 Q3 T0 T1

0 0 0 0 0 0 0 9 1 0 1 0 0 0

1 1 0 0 0 0 0 10 1 1 0 1 1 1

2 0 1 0 0 1 0 11 1 1 1 0 1 0

3 0 0 1 0 0 0 12 1 1 1 1 1 1

4 1 0 0 1 0 1 13 0 1 1 1 1 1

5 1 1 0 0 1 0 14 0 0 1 1 0 1

6 0 1 1 0 1 0 15 0 0 0 1 0 1

7 1 0 1 1 0 1 16 0 0 0 0 0 0

8 0 1 0 1 1 1 17 1 0 0 0 0 0

k n×

k n×

17

Let us prove this Lemma whenk=2. Hence, the LFSR has 2n outputs.

Let the even outputs of the LFSR be the outputs of the generator. Figure 10a shows the

mechanism for generating pseudo-random vectors on the even outputs of the LFSR. Let us

choose a certain pair ofn-bit vectors. The first vector from this pair of vectors is read

directly from the even outputs of the LFSR after the application of a clock signal at timet

(see Figure 10a). Since the LFSR acts as a shift register the second vector is shifted from its

odd outputs after it is clocked at timet+1. As a result, there is a unique 2n-bit vector which

must be generated by the LFSR in order to produce the required pair of vectors. Since the

LFSR can go through all possible states the required vector can be derived. This

proof can be repeated for any other pairs ofn-bit vectors.

The mechanism for generating pseudo-random vectors on the odd outputs of the LFSR is

illustrated in Figure 10b. Let us fix a certain pair ofn-bit vectors. The first vector from this

pair is produced on the odd outputs of the LFSR at timet. After the application of the next

clock the contents of the even flip-flops of the LFSR are shifted into the odd ones (see Fig-

ure 10b) producing the second vector. The content of the first output is derived by XORing

the outputs of some flip-flops including the last one. Note that the number of inputs of the

XOR gate and the flip-flops which feed its inputs depend on the derivation polynomial of

the LFSR. Regardless the outputs of those flip-flops which are connected to the inputs of the

XOR gate, the content of the first flip-flop can be inverted (when the output of the last flip-

flop is a one) or can be unchanged (when the output of the last flip-flop is a zero). As a

2
n k+

q1(t) q2(t) q3(t) qn(t)

qn(t+1)q3(t+1)q2(t+1)q1(t+1)

1 2 3 4 5 6 2n2n-1

q1(t) q2(t) q3(t) qn(t)

qn(t+1)q3(t+1)q2(t+1)q1(t+1)

1 2 3 4 5 6 2n2n-1

a) b)

Figure 10 : Mechanisms for generating pseudo-random vectors using a) even and
b) odd outputs of the LFSR

2n-2

18

result, there is a unique state of the LFSR which allows the required pair of vectors to be

generated on its odd outputs.

A similar proof can be continued easily for anyk more than 2. ❑

Thus, the result of the Lemma can be used for testing delay faults in the combinational cir-

cuits of the BIST micropipeline. For this purpose the number of latches in the BILBO regis-

ters (see Figure 6) must be doubled by adding one extra D-type flip-flop after each register

latch. Note that the outputs of the extra flip-flops are held at zero during normal operation

mode. The linear feedback of the BILBO register must be changed according to the new

derivation polynomial for the LFSR with the double length. As a result, the BILBO register

operating in the LFSR mode generates all possible pairs of binary combinations on the

inputs of the corresponding combinational circuit. After the period of such a LFSR all pos-

sible paths inside the combinational circuit can be tested which, in turn, guarantees the

detection of bundled-data violations in the corresponding stage of the BIST micropipeline.

7. Analysis of the BIST micropipeline structure

The BIST technique for micropipelines presented in this paper has advantages and disad-

vantages.

Advantages

• The BIST micropipeline structure shown in Figure 6 allows the generation of random

tests and the collection of the test results on the chip.

• The combinational circuits of the micropipeline are tested separately at the normal cir-

cuit speed, making possible the application of a large number of tests to their inputs.

• The asynchronous BILBO register design described in this paper has the same properties

as that of its synchronous counterpart. As a result, the BIST control unit can be imple-

mented in a similar way to the one for the synchronous BIST design.

19

• The BIST micropipeline design allows the testing of its combinational circuits either for

stuck-at or delay faults.

Disadvantages

• The implementation of the micropipeline with BIST features requires the use of BILBO

registers. As a consequence, the BIST version of the micropipeline imposes a certain

degree of area overhead which depends on the complexity of its combinational part.

• The performance of the BIST micropipeline is degraded in normal operation mode since

some extra logic elements are added in its data paths. For instance, the input data arriv-

ing at theIn inputs of the BILBO register (see Figure 6) comes through extra AND and

XOR gates before being latched in theLi1 latches. These extra delays must be taken into

account to ensure the proper bundled data interface.

8. Conclusions

A micropipeline design with BIST features has been introduced in this paper. The proposed

BIST micropipeline design is based on the well-known BILBO register which asynchro-

nous implementation has been discussed. The use of the asynchronous BILBO register

allows stuck-at faults inside both the combinational logic blocks and stage registers of the

micropipeline to be detected. It has been shown that doubling the size of the BILBO register

provides for the detection of both stuck-at and delay faults in the combinational circuits of

the micropipeline. Finally, the proposed micropipeline with BIST features can be used in

asynchronous VLSI circuits where the pseudo-random pattern generator and the signature

analyser are placed on the chip.

Acknowledgements

The authors would like to express their gratitude to John Brzozowski for his useful com-

ments and discussions on the topic of this paper.

20

References

[Birt95] G. Birtwistle, A. Davis (Eds), “Asynchronous digital circuit design”, Springer,
1995.

[Brzo95] J. A. Brzozowski, C-J. H. Seger, “Asynchronous circuits”, Springer-Verlag New
York, Inc., 1995.

[Furb94] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, J. V. Woods, “AMULET1: A micro-
pipelined ARM”, Proc. IEEE Computer Conf., March 1994.

[Day95] P. Day and J. V. Woods, “Investigation into micropipeline latch design styles”, IEEE
Trans. VLSI Systems, vol. 3, no. 2, June 1995, pp. 264-272.

[Hulg94] H. Hulgaard, S. M. Burns, G. Borriello, “Testing asynchronous circuits: A survey”,
TR-FR-35, Department of Computer Science, University of Washington, Seattle,
WA, USA, 1994.

[Khoc94] A. Khoche, E. Brunvand, “Testing micropipelines”, Proc. Int. Symposium on
Advanced Research in Asynchronous Circuits and Systems (Async94), Utah, Nov.
1994, pp. 239-246.

[Lav93] L. Lavagno, A. Sangiovanni-Vincentelli, “Algorithms for synthesis and testing of
asynchronous circuits”, Kluwer Academic Publishers, 1993.

[MClus86] E. J. McCluskey, “Logic design principles: with emphasis on testable semicustom
circuits”, Prentice/Hall International Inc., 1986.

[Pag92] S. Pagey, G. Venkatesh, S. Sherlekar, “Issues in fault modelling and testing of
micropipelines”, First Asian Test Symposium, Hiroshima, Japan, Nov. 1992.

[Pav94] N. C. Paver, “The design and implementation of an asynchronous microprocessor”,
PhD Thesis, University of Manchester, Manchester, UK, June 1994.

[Pet94] O. A. Petlin, “Random testing of asynchronous VLSI circuits”, MSc Thesis, Uni-
versity of Manchester, 1994.

[Pet95a] O. A. Petlin, S. B. Furber, “Scan testing of asynchronous sequential circuits”, Proc.
5th Great Lakes Symposium on VLSI, New York, March 1995, pp. 224-229.

[Pet95b] O. A. Petlin, S. B. Furber, “Scan testing of micropipelines”, Proc. 13th IEEE VLSI
Test Symposium, Princeton, New Jersey, USA, May 1995, pp. 296-301.

[Pram90] A. Pramanick, S. Reddy, “On the design of path delay fault testable combinational
circuits”, Proc. 20th Fault Tolerant Computing Symp., June 1990, pp. 374-381.

[Russ89] G. Russell, I. L. Sayers, “Advanced simulation and test methodologies for VLSI
design”, Van Nostrand Reinhold (International), 1989.

[Savir84] J. Savir, P. H. Bardell, “On random pattern test length”, IEEE Trans. on Computers,
vol. C-33(6), June, 1984, pp. 467-474.

[Suth89] I. E. Sutherland, “Micropipelines”, Communications of the ACM, Vol. 32, no. 6,
June 1989, pp. 720-738.

[Wag87] K. D. Wagner, C. K. Chin, E. J. McCluskey, “Pseudorandom testing”, IEEE Trans.
on Computers, C-36(3), March, 1987, pp. 332-343.

[Yuan89] J. Yuan, C. Svensson, “High-speed CMOS circuit technique”, IEEE Journal on
Solid-State Circuits, vol. 24, no. 1, Feb., 1989, pp. 62-70.

