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Evaluating Rank-order Code Performance Using A
Biologically-Derived Retinal Model

Basabdatta Sen and Steve Furber

Abstract— We propose a model of the primate retinal gan-
glion cell layout corresponding to the foveal-pit to test rank-
order codes as a means of sensory information transmission
in primate vision. We use the model for encoding images in
rank-order. We observe that the model is functional only when
the lateral inhibition technique is used to remove redundancy
from the sampled data. Further, more than 80% of the input
information can be decoded by the time only up to10% of the
ganglion cells of our model have fired their first spikes.

I. I NTRODUCTION

A Retinal model proposed by VanRullen and Thorpe has
been shown to encode images in the rank-order of firing

of the ganglion cells in such a way that a reconstruction
using only 1% of the encoded data is recognisable [1].
This is consistent with the rank-order code hypothesis that
offers an explanation of the near-instantaneous vision of the
primate eye [2] [3]. Later, the information content of the
decoded image was quantified using an objective metric of
the perceptually-important information in the reconstructed
image relative to the original image [4] [5]. Around70%
information retrieval was achieved by the time20% of the
ganglion cells in the retinal model had fired their first spikes.
To further improve information recovery, different methods
of rank-order decoding [6] and encoding [7] [8] using the
retinal model were suggested.

However, this model is a coarse approximation to the
different size and density of ganglion cells found in the
primate retina. Ganglion cell parameters such as size and
density are found to change considerably as a function of
retinal eccentricity [9] [10] [11]. Moreover, it is understood
now that there are at least fifteen [12] [13] different types
of ganglion cell populating the primate retina with varying
density depending on the function of each type. The most
distinctive feature of the primate retina is the very high
spatial density of the two principal varieties of ganglion cell,
the midget and parasol cells, which constitute 80% and 10%
respectively of the total ganglion cell population [9].ON-
centre andOFF-centre cells of each variety arborise in four
independent layers [12]. This is significantly fewer than the
sixteen layers used in VanRullen and Thorpe’s retinal model
(referred to hereafter as VR & T’s retinal model), the layered
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structure being dyadic in nature. Moreover,ON-centre and
OFF-centre cells of either variety at a certain spatial location
in the primate retina differ in size and sample the image
independently [9]. Again, this is unlike VR & T’s retinal
model where, at a certain spatial location, either anON- or
an OFF-centre cell fires in response to a stimulus, but never
both because, having the same receptive field, only one of
the two can have a net positive input. Thus, a retinal model
with cell parameters and layout emulating those found within
a smaller eccentricity in biology is desirable in the study and
analysis of neural encoding in the early visual pathway. The
goal of this work is to develop such a model and subsequently
use it for rank-order encoding images.

It is said that “a precise description of foveal geometry is
the keystone of any good model of primate retinal topogra-
phy” [14]. The area in the primate V1 representing the fovea
has greater spatial resolution by a factor of more than1000
than that representing the peripheral retina [9] [15] [16]. The
foveal pit is a circular region of about200µm diameter at
the centre of the primate retina [17]. The only photoreceptors
available here are the cones, the connected neurons being
displaced radially outwards [14]. Such an arrangement pro-
vides direct access of incoming light to the cones, making the
foveal-pit the region of highest visual acuity. Retinal ganglion
cell sizes in each layer increase the further they are from the
centre of the fovea [10]. A model based on cell parameters
within a small foveal eccentricity thus gives a model of the
highest resolution region of the visual field. Furthermore,
the displaced amacrine cell count is observed to be close to
zero in regions close to the foveal centre [15], which reduces
errors in ganglion cell count subserved by foveal cones.

In this work, we develop and simulate a model of ganglion
cell layers within a small eccentricity of the retinal foveal-
pit of primates and use it for rank-order encoding images
as was done using VR & T’s retinal model. We observe
that a Filter-overlap Correction algorithm (FoCal) based on
lateral inhibition [8], a technique used by sensory neurons
to remove redundancy from incoming information, is vital
to the working of the foveal-pit model. This reflects the
dependency of retinal neurons on lateral inhibitory circuits
for proper functioning. We observe that on average more than
85% of the perceptually-important information contained in
the input stimulus can be recovered in reconstructed images.
Moreover, this information is retrieved by the time only up
to 20% of the cells in the foveal-pit model have fired their
first spikes. This is an improved performance compared to
an average of70% information retrieval by the time20% of
the ganglion cells in VR & T’s retinal model fire [4]. We
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therefore claim that rank-order codes perform even better
with the foveal-pit model.

The outline of the paper is as follows: We present the
biological background and structure of the foveal-pit model
in Section II. In Section III we discuss the rank-order
encoding of images using the foveal-pit model and show
that FoCal is vital to the performance of the model. In Sec-
tion IV we present a qualitative and quantitative evaluation of
the perceptually-important information preserved in images
reconstructed from rank-order encoded data obtained using
our model. We present our conclusions and suggestions for
further work in Section V.

II. A MODEL OF THE FOVEAL-PIT

A. Biological basis of the model

• Model eccentricity: The primate foveal cones are ar-
ranged in a very dense and fairly regular triangular
mosaic with the maximum density and smallest sizes
found in the foveal pit region, the density decreasing
by around 50% at a radial distance of100µm [10].
We consider a sampling window of radius50µm at
or near the foveal centre, which contains around1500
cones [14] with a minimum centre-to-centre spacing of
2.8 − 3µm [18]. We design our model based on the
characteristics of the foveal cones and their subserved
ganglion cells within this window. The midget and
parasol ganglion cells together constitute90% of the
ganglion cells in the primate retina [19]. Moreover, in
the foveal region the population of midget ganglion cells
is observed to be around95% of the total ganglion cell
population [11]. We find a lack of quantified information
about the exact proportions of other types of ganglion
cell in the primate foveal region [12]. We therefore
consider only midget and parasol ganglion cells in our
model.

• Ganglion cell to cone ratio: The radial displacement of
the ganglion cells subserved by the foveal cones is an
obstacle to the exact tracing of synaptic wiring between
the two classes of neurons in the primate fovea [20].
Cumulative analysis shows the ganglion-cell-to-cone-
count ratio within the primate fovea to be3.34− 4 : 1,
with a possibility of being greater than4 : 1 at the centre
of the fovea [14]. Elsewhere this range is specified as
2.7 − 3.4 : 1 [21]. We employ a ratio of4 : 1 in our
model.

• Ganglion cell size and layout: The mosaics of the
ON- and OFF-centre midget and parasol cells are in-
dependent of each other [9]. On average, the dendritic
field diameter of anON-centre ganglion cell is30%
greater than that of itsOFF-centre counterpart across all
eccentricities in the retina [19] [11]. Adjacent midget
cell dendritic trees in each layer abut one another but
show very little overlap [11]. Parasol cell dendritic trees
show a larger overlap, with a coverage factor1 observed
at 3.4 [19] compared to1 for midget cells [23]. In the

1defined as ‘dendritic field area× cell density’ [22]

Fig. 1. (a) Hexagonal cone lattice mapped on a digital raster.(b) The
midget ganglion cells and (c) parasol ganglion cells mapped on the raster
in triangular lattice. Intercell spacing is1/

√
2 pixel for midget cells and

5/
√

2 pixel for parasol cells.

Fig. 2. The layout of the midget and parasol ganglion cells on a5×5 region
of the raster shown in Fig. 1. TheOFF-centre ganglion cells of each variety
are shown here. TheON-centre cells of both midget and parasol variety are
equal in number to their respectiveOFF-centre counterparts. Thus, the5×5

region of the raster shown here has a ganglion-cell-to-cone count ratio of
≈ 4 : 1 as observed in primate fovea.

central retina, human midget cells outnumber parasol
cells by around30 : 1 [19]. Midget cells in the central
retina have a diameter≃ 5 − 9µm [11] [23], and the
ratio of the dendritic tree diameter of a parasol cell to
that of a midget cell of each type is found to be around
10 : 1 [19].

• Ganglion cell receptive field size: The receptive field
centre (RFC) diameter of a ganglion cell is on average
1.65 times larger than that of its dendritic tree in
the foveal region [24]. This difference is due to the
convergence of signals from other neurons onto the
pathway from the cones to the ganglion cells and is at a
maximum near the fovea [24].The surround of a midget
cell receptive field is on average 6.7 times wider than
its centre, while that of a parasol cell is 4.8 times wider
than its centre [24].

B. Designing the model

We consider a cone layer arranged in a hexagonal lattice
and projected on a digital raster as shown in Fig. 1(a). We
presume the subserved ganglion cell layers to be directly
beneath the cone layer, instead of being laterally shifted, as
the latter does not have any functional implication in our
model. The midget and parasolOFF-centre cells subserved
by the cone layer are arranged on a triangular lattice on this
raster, as shown in Fig. 1(b) and Fig. 1(c) respectively, for
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consistency with the biological layout of the cells and to
maintain the ganglion-cell-to-cone-count ratio as observed
in biology. For a5 × 5 pixel region on the raster shown
in Fig. 2, there are25 cones,50 midget OFF-centre cells
and2 parasolOFF-centre cells. TheON-centre cells for each
variety of ganglion cell are observed to have a lower spatial
resolution than theirOFF-centre counterparts due to their
larger sizes [11] [23]. However, due to the very high density
of cells in the foveal region, this difference is negligible for
all practical purposes. Thus, we consider a similar spatial
resolution of ON- and OFF-centre cells of each variety in
our model. Therefore, the total counts of midget and parasol
cells are100 and 4 respectively against a cone count of
25 in Fig. 2. The ganglion-cell-to-cone-count ratio in our
model is thus≈ 4 : 1 as observed in the primate retina.
Furthermore, midget cells constitute≈ 96% of the ganglion
cell population in our model, while the midget-to-parasol-
count ratio is 25 : 1, both of which are close to their
respective observed figures of95% and30 : 1 in biology.

TABLE I

TABLE SHOWING THE VARIOUS PARAMETERS AND THEIR

SPECIFICATIONS FOR SIMULATING GANGLION CELL RECEPTIVE FIELDS

OF THE FOVEAL-PIT MODEL.

Receptive Field Simulation Parameters
Ganglion Cell Types matrix std. dev. centre width std. dev. sampling

size centre in pixels surroundresolution
(n) (σc) (wc) (σs)

OFF-centre 5 × 5 0.8 3

midget ON-centre 11 × 11 1.04 5 6.7 × σc

1
√

2
≃ (1.3 × 0.8)

OFF-centre 61 × 61 8 33

≃ (10 × 0.8)

parasol ON-centre 243 × 243 10.4 53 4.8 × σc

5
√

2
≃ (10 × 1.04)

The centre-surround structures of ganglion cell receptive
fields are simulated with Difference of Gaussian (DoG)
functions and are defined as:Φ(x) = ± 1

2πσ2
c

exp
[

−||x||2
2σ2

c

]

∓

1
2πσ2

s

exp
[

−||x||2
2σ2

s

]

, where σc is the centre width,σs is the

surround width, andπσ2
c and πσ2

s are used for normalisa-
tion [25] [1]. The midgetOFF-centre cell receptive field is
simulated with a5 × 5 DoG whereσc = 0.8, so that the
RFC diameter for midgetOFF-centre cells iswc = 3 pixels.
As mentioned in Section II-A, the dendritic tree of anON-
centre ganglion cell in the primate retina is observed to be
30% larger than that of itsOFF-centre counterpart. Again,
the RFC width of all midget cells in the foveal region is
1.65 times larger than that of their respective dendritic trees.
Thus, we can say that the RFC of anON-centre midget cell
is 30% larger than that of itsOFF-centre counterpart. The
RFC width of the midgetON-centre cells in our model is
thus set asσc = 1.04. The receptive field surround width
for both theON- and OFF-centre midget cells,σs, is taken
as 6.7 times that of their respective RFC width as found
in biology. Table I shows the various parameters that we

use in simulating the ganglion cell receptive fields in the
foveal-pit model. The matrix sizes representing the DoGs
corresponding to each variety and type of ganglion cell are
adjusted so as to conform to biological specifications while
being computationally convenient. The RFC width of the
parasolOFF- and ON-centre cells is set to10 times that of
their respective midget cell counterparts, while the width of
receptive field surround is taken as4.8 times that of the RFC,
as in biology.

III. T HE FOVEAL-PIT MODEL AS A RANK-ORDER

ENCODER

An M × M imageI is filtered by DoG functions with
matrix size and sampling resolution as shown in Table I.
This generates an arrayCnor consisting of a total ofT
coefficients-of-filtering, whereCnor = 〈Φ(x), I〉 and T ≈
4.16M2. As each DoG represents a ganglion cell, the image
can be thought of as being processed by a total ofT ganglion
cells. The magnitude of each coefficientcnor

j,k ∈ Cnor repre-
sents the strength of activation of a ganglion cell produced
by the contrast at spatial location(j, k) in the imageI. The
relative magnitude of a coefficient simulates the latency of
its firing in a population of ganglion cells. Thus, the larger
of two coefficients corresponds to a ganglion cell which fires
earlier than the cell corresponding to the smaller coefficient.
Rank-order encoding of spikes is simulated by sortingCnor

to obtain {ci ∈ Cor : ci > ci+1∀i = 1 · · ·T } [1] [4].
The rank-ordered coefficients inCor represent the image
I encoded in the latency of each incoming spike from a
population of asynchronously firing ganglion cells. These
coefficients are then used for rank-order decoding to obtain
a reconstructed image:Irec = 〈Φ(x), Cor〉 [1] [4] [6]. This
method of rank-order decoding assumes DoG orthogonality
where〈Φi(x), Φi+1(x)〉 ≈ 0. However, neighbouring RFCs,
as observed in primate retina, are very much overlapping.
Thus they cannot be presumed to be approximately orthog-
onal as was done in VR & T’s retinal model [1] [7]. This
anomaly is reflected in the reconstructed image shown in
Fig. 3(b). In [4], we introduced an objective metricQ to
obtain a quantitative measure of information recovery from
rank-order encoded images. The metric was originally pro-
posed in the image fusion domain and measures perceptually-
important information preserved in fused images in terms of
accuracy in transfer of local gradient information from the
original images [5]. Furthermore, the metric is parametrised
with extensive subjective evaluation [26] and modulated
according to the non-linear contrast sensitivity of the human
visual system. We use Q, as well as Root Mean Square
Error (RMSE), a measure which is commonly used as an
image quality metric, to quantify and compare the original
and reconstructed image qualities. The Q and RMSE plots
in Figures 3(e) and 3(f) for progressive build up of infor-
mation during image reconstruction using each coefficient of
the arrayCor confirms the subjective impression given by
Fig. 3(b).

Significant overlap between neighbouring RFCs gives rise
to redundancy in the rank-order encoded image due to
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(a) original (b) 10% (uncorrected)

(c) 10% (corrected) (d) 20% (corrected)
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Fig. 3. (a) An input stimulus to the foveal-pit model. (b) Reconstruction
with 10% of the rank-order encoded data with no correction for data
redundancy. (c), (d) Reconstruction with10% and 20% of the rank-order
encoded data corrected using FoCal for information redundancy due to
RFC overlap. (e) A comparison of the perceptually-important information
recovery from data without and with redundancy removal using FoCal.
(f) A comparison of the reconstructed image quality compared to the
original using RMSE for images reconstructed from data without and with
redundancy removal using FoCal.
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Fig. 4. (a) Look-Up-Table of weights for decoding images rank-
order encoded using the foveal-pit model in conjunction with FoCal. (b)
Perceptually-important information recovery plot for all sixty-five images
in our data-set during progressive reconstruction using the LUT, shown as
a spread about the mean information recovery plot.

an over-representation of a point in space. Interestingly,
redundancy reduction has long since been described as a
goal of sensory processing for efficient information trans-
mission [27] [28] [29], and is thought to be dealt with
in the primate retina using lateral inhibition [30] [31]: a
mechanism where neighbouring neurons inhibit one another
so as to optimise spatial representation. Moreover, the in-
hibitory effect of several neighbouring cells upon a certain
cell is additive and is expressed quantitatively as [32]:rp =
ep −

∑n

j=1 Kp,j(rj − r0
p,j), wherep = 1, 2, . . . , n, j 6= p,

rp is the firing frequency of a receptor unitp, e is the
excitation supplied by the external stimulus on the receptor,
Kp,j is the coefficient of inhibitory influence of receptor unit
j on p, r0 is the threshold frequency that must be exceeded
before one receptor can exert any inhibition on the other and
rj ≥ r0

p,j . Recently, we have used this relation to propose
a Filter-overlap Correction algorithm (FoCal) [8]. We have
used FoCal to optimise information recovery from rank-order
encoded images using VR & T’s retinal model [8]. In this
work, we use FoCal to correct the high RFC overlap in the
foveal-pit model.

We modify Cor using FoCal: every coefficient{cp ∈
Cor∀p} corresponding to a DoGΦp is corrected for col-
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(a) original (b) 1%

(c) 2% (d) 5%

(e) 10% (f) 10% (coefficients)

Fig. 5. (b)–(e) The image in (a) reconstructed using up to 1%, 2%, 5%
and 10% of the LUT weights. (f) Image reconstructed using 10% of its own
coefficients-of-filtering. The loss during image reconstruction using LUT
can be seen by comparing (e) and (f).

lective overlap with neighbouring filters bycp = cp −
cj .〈Φp, Φj〉 [8]. Cor, thus modified, is then re-ordered to
obtainCmod

or , which is now used to progressively reconstruct
images. The difference in image quality between Figures 3(b)
and 3(c) shows the role of FoCal in redundancy removal from
rank-order encoded data. From the Q plot in Fig. 3(e), more
than90% of the perceptually-important information is seen
to be recovered by the time around20% of the coefficients
are used for image reconstruction. This is also evident from
a comparison of Figures 3(a) and 3(d). The RMSE plot in
Fig. 3(f) is an alternative measure that confirms the trend
shown in the Q plot.

IV. RESULTS

We use a data-bank of65 grayscale images of size
128×128 and consisting of natural and man-made structures.
The images are filtered with the foveal-pit model, and the
coefficients-of-filtering thus obtained are rank-order encoded
applying FoCal. The sixty-five rank-ordered arrays are then
averaged to obtain an arrayR = 1

K

∑K

u=1 Cmod
oru

, where
u represents theuth image in a data-set consisting ofK

images. Thus,R corresponds to a Look-Up-Table (LUT)
of weights that is used to reconstruct a rank-order encoded
image rather thanCmod

or corresponding to the image. This is
same approach as was used to generate a LUT for VR & T’s
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Fig. 6. (a) Perceptually-important information recovery plots for pro-
gressive reconstruction of the image shown in Fig. 5(a) using its own
coefficients-of-filtering against LUT weights. (b) RMSE plots for the same.

retinal model [1]. Thus, the first LUT weight corresponds to
the ganglion cell which is the first in the population to fire a
spike. Further, only the first spike of each cell is considered
for rank-order encoding. Progressive reconstruction usingR
simulates information retrieval with each incoming spike
fired by a ganglion cell at a certain spatial location in the
foveal-pit model. The LUT for our foveal-pit model is shown
in Fig. 4(a). The perceptually-important information recovery
plots of all the images in our data-set usingR are shown in
Fig. 4(b) as a spread about the mean plot. We observe that on
average around85% of the perceptually-important informa-
tion can be recovered from images rank-order encoded with
the foveal-pit model using FoCal. Further, this information is
recovered by the time around15− 20% of the LUT weights
are used for image reconstruction, with more than80% of
the available information already recovered by the time only
around10% of the ganglion cells have fired their first spikes.
This is a remarkable improvement in the speed of information
recovery compared to that displayed by VR & T’s retinal
model [4], and conforms very well to the main goal of
rank-order encoding — fast information retrieval. We do a
qualitative evaluation for an image from our data-set shown
in Fig. 5(a). From Fig. 5(b), we observe that we can fairly
decipher the contents and structure of the original image,
thus demonstrating that a picture from our data-set is also
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Fig. 7. Average perceptually-important information recovery plot using
both the coefficients of filtering as well as the respective LUTs of the foveal-
pit model and VR & T’s retinal model. Progressive information recovery is
measured in terms of the absolute number of rank-ordered coefficients or
weights from the LUT used for reconstruction.

recognisable by the time only1% of the LUT weights are
used for reconstruction. Moreover, we observe that except
for edge enhancement, there is no extra information about
the scene in Fig. 5(e) as compared to Fig. 5(d). Thus, all
the vital information about the scene seems to be present
in the reconstruction in Fig. 5(d) using5% of the LUT
weights, which contains70% of the perceptually-important
information as can be seen in Fig. 6(a). Deterioration in
information recovery and image quality due to reconstruction
using approximate data inR as compared to exact data in
Cmod

or for an image is also shown in Figures 6(a) and 6(b),
while Figures 5(e) and 5(f) are provided for subjective
evaluation of the same.

Due to a coarser sampling resolution used in VR & T’s
retinal model, the total number of coefficients of filtering in
the modelT ′ ≈ 2.67M2, which is approximately50% less
than T as defined in Sec. III. Thus, one might argue that
a one-to-one comparison of information recovery using the
two models against their respective percentage of coefficients
may not be appropriate. In Fig. 7, we present a comparison
of the information recovery for both the models against
the number of coefficients used in progressive information
recovery rather than the percentage. Average information
recovery plots for progressive reconstruction using both the
true coefficients of filtering of the images as well as the
LUTs of the respective models are shown. The results show
a significant improvement in both the quantity as well as rate
of information recovery obtained using the foveal-pit model.

To complete the preliminary testing of the foveal-pit model
as a rank-order encoder, we present our model with three
images shown in Figures 8(a) – 8(c) which were not a part
of our data-set of65 images used to generate the LUT.
We choose these out-of-sample images so as to include text
as in Fig. 8(a), a man-made structure as in Fig. 8(b) and
a natural scene as in Fig. 8(c). We show the respective
reconstructed images using up to10% of the weights from
R in Figures 8(d) – 8(f). The perceptually-important infor-
mation recovery plots for progressive reconstruction using
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Fig. 8. (a–c) Three images which are not a part of the data-set of sixty-five
images used to generateR, the LUT for the foveal model. (d–f) Images in
(a–c) respectively reconstructed using the first10% of the LUT values. (g)
The perceptually-important information recovery plots and (h) RMSE plots
during progressive reconstruction of the images.
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R for each of the three images are shown in Fig. 8(g). We
observe that around85−90% of the available information is
recovered from the rank-order encoded data for all the three
images, and that almost all of this information is recovered
by the time only around20% of the ganglion cells have fired
their first spikes. Further, around80% or more information
is retrieved by the time around10% of the ganglion cells
have fired their first spikes. The corresponding RMSE plots
are also shown in Fig. 8(h). Thus, the foveal-pit model is
shown to perform efficiently with out-of-sample data.

V. D ISCUSSION AND FURTHER WORK

In this work, we have designed a model of the foveal-pit
ganglion cells with the aim of moving an existing retinal
model closer to biology. By so doing, we have developed
a ‘shallow’ but densely packed model which resembles the
retina more closely than a ‘deep’ and sparse model such as
VR & T’s [1]. We showed that the role of FoCal (Filter-
overlap Correction algorithm [8]) is critical for rank-order
encoding using the foveal-pit model in order to deal with
RFC overlap; this is similar to the lateral inhibition mecha-
nism used by sensory neurons to deal with data redundancy
introduced due to oversampling by the overlapping ganglion
cell receptive fields. We also showed that the foveal-pit model
is highly efficient in preserving information about an input
stimulus during rank-order encoding; around80% of the
information is available by the time only up to10% of
the ganglion cells of the model have fired their first spikes,
while vital aspects of the encoded information have already
been retrieved with only the first5% of the ganglion cells
firing. We claim that rank-order codes perform better using
a biologically-derived retinal model. Again, the foveal-pit
model as well as VR & T’s retinal model are not simulated
in real time; rather, spike latencies are being simulated
with a table of average weights. Moreover, the interneurons
in the pre-ganglion retinal layers play a crucial role in
processing the sampled data and in information transmission
pre-spiking. These aspects are to be considered in future
work as an enhancement to the model. We expect that
with only 4 layers of ganglion cell in the foveal-pit model,
information loss during data-processing will be less for real-
time implementation as compared to VR & T’s retinal model
with its 16 layers.

The model is a promising basis for further empirical
studies of information processing in the retina. One such
application would be to use the model for simulating dy-
namic scene perception using eye saccades, the sole purpose
of which is to project a point of interest onto the fovea. The
model can also be used to evaluate other proposed neural
encoding mechanisms, as a basis for comparison with rank-
order codes. An obvious extension to the model is to study
colour vision with foveal cones, and related information
recovery, which is yet to be investigated with rank-order
codes. Furthermore, FoCal introduces lateral inhibition in the
model post-spiking whereas the biological system employs
lateral inhibition in the non-spiking neurons that precede the
spiking ganglion cells in the sensory information flow. It

is likely that pre-spiking lateral inhibition can support even
better information redundancy removal than we have shown
in our model.
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