Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14-19, 2009

Evaluating Rank-order Code Performance Using A
Biologically-Derived Retinal Model

Basabdatta Sen and Steve Furber

Abstract— We propose a model of the primate retinal gan- structure being dyadic in nature. Moreovenmi-centre and
glion cell layout corresponding to the foveal-pit to test rank- ofFr-centre cells of either variety at a certain spatial location
order codes as a means of sensory information transmission in the primate retina differ in size and sample the image

in primate vision. We use the model for encoding images in . . L . , .
rank-order. We observe that the model is functional only when independently [9]. Again, this is unlike VR & T's retinal

the lateral inhibition technique is used to remove redundancy Model where, at a certain spatial location, eithercan or
from the sampled data. Further, more than 80% of the input an OFF-centre cell fires in response to a stimulus, but never

information can be decoded by the time only up tol0% of the  poth because, having the same receptive field, only one of
ganglion cells of our model have fired their first spikes. the two can have a net positive input. Thus, a retinal model
with cell parameters and layout emulating those found within
a smaller eccentricity in biology is desirable in the study and
Retinal model proposed by VanRullen and Thorpe hagnalysis of neural encoding in the early visual pathway. The
been shown to encode images in the rank-order of firingoal of this work is to develop such a model and subsequently
of the ganglion cells in such a way that a reconstructionse it for rank-order encoding images.
using only 1% of the encoded data is recognisable [1]. Itis said that “a precise description of foveal geometry is
This is consistent with the rank-order code hypothesis thate keystone of any good model of primate retinal topogra-
offers an explanation of the near-instantaneous vision of thghy” [14]. The area in the primate V1 representing the fovea
primate eye [2] [3]. Later, the information content of thehas greater spatial resolution by a factor of more the®0
decoded image was quantified using an objective metric ¢fian that representing the peripheral retina [9] [15] [16]. The
the perceptually-important information in the reconstructefbveal pit is a circular region of abo@00.m diameter at
image relative to the original image [4] [5]. Arourith%  the centre of the primate retina [17]. The only photoreceptors
information retrieval was achieved by the ti26% of the available here are the cones, the connected neurons being
ganglion cells in the retinal model had fired their first spikesdisplaced radially outwards [14]. Such an arrangement pro-
To further improve information recovery, different methodssides direct access of incoming light to the cones, making the
of rank-order decoding [6] and encoding [7] [8] using thefoveal-pit the region of highest visual acuity. Retinal ganglion
retinal model were suggested. cell sizes in each layer increase the further they are from the
However, this model is a coarse approximation to theentre of the fovea [10]. A model based on cell parameters
different size and density of ganglion cells found in thewithin a small foveal eccentricity thus gives a model of the
primate retina. Ganglion cell parameters such as size ahighest resolution region of the visual field. Furthermore,
density are found to change considerably as a function tfie displaced amacrine cell count is observed to be close to
retinal eccentricity [9] [10] [11]. Moreover, it is understoodzero in regions close to the foveal centre [15], which reduces
now that there are at least fifteen [12] [13] different type®rrors in ganglion cell count subserved by foveal cones.
of ganglion cell populating the primate retina with varying In this work, we develop and simulate a model of ganglion
density depending on the function of each type. The mostll layers within a small eccentricity of the retinal foveal-
distinctive feature of the primate retina is the very highpit of primates and use it for rank-order encoding images
spatial density of the two principal varieties of ganglion cellas was done using VR & T'’s retinal model. We observe
the midget and parasol cells, which constitute 80% and 10%at a Filter-overlap Correction algorithm (FoCal) based on
respectively of the total ganglion cell population [9]N- lateral inhibition [8], a technique used by sensory neurons
centre andoFrcentre cells of each variety arborise in fourto remove redundancy from incoming information, is vital
independent layers [12]. This is significantly fewer than théo the working of the foveal-pit model. This reflects the
sixteen layers used in VanRullen and Thorpe’s retinal modelependency of retinal neurons on lateral inhibitory circuits
(referred to hereafter as VR & T’s retinal model), the layereébr proper functioning. We observe that on average more than
85% of the perceptually-important information contained in
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therefore claim that rank-order codes perform even better
with the foveal-pit model.

The outline of the paper is as follows: We present the
biological background and structure of the foveal-pit model
in Section Il. In Section Ill we discuss the rank-order
encoding of images using the foveal-pit model and show
that FoCal is vital to the performance of the model. In Sec-
tion IV we present a qualitative and quantitative evaluation of
the perceptually-important information preserved in images
reconstructed from rank-order encoded data obtained using
our model. We present our conclusions and suggestions for

further work in Section V. Fig. 1. (a) Hexagonal cone lattice mapped on a digital ragtgrThe
midget ganglion cells and (c) parasol ganglion cells mapped on the raster
I1. A MODEL OF THE FOVEAL-PIT in triangular lattice. Intercell spacing is/+/2 pixel for midget cells and

. . . 5/+/2 pixel for parasol cells.
A. Biological basis of the model /vze P

« Model eccentricity The primate foveal cones are ar- G- O

\¢
ranged in a very dense and fairly regular triangular @@@i@i@
mosaic with the maximum density and smallest sizes @ :Q: @ )
found in the foveal pit region, the density decreasing ® PO~ H

by around 50% at a radial distance o®0um [10]. @) @ d ’)? @)
We consider a sampling window of radid®um at (6 (\’f.s__ \

or near the foveal centre, which contains arounsd0 C\d;titJ O=E )
cones [14] with a minimum centre-to-centre spacing of @)@) @ @ Q)

2.8 — 3um [18]. We design our model based on the
Chara.CtenStICS Of_th_e foyeal ?Ones and thelll‘ SUbseN%. 2. The layout of the midget and parasol ganglion cells 6x & region
ganglion cells within this window. The midget andof the raster shown in Fig. 1. Therr-centre ganglion cells of each variety
parasol ganglion cells together constit@@% of the are shown here. Then-centre cells of both midget and parasol variety are
ganglion cells in the primate refina [19]. Moreover, in®hal " 1uber o e espectiurrcenre countepars, Trus oo

the foveal region the population of midget ganglion cellss 4 : 1 as observed in primate fovea.

is observed to be arourtb% of the total ganglion cell

population [11]. We find a lack of quantified information

about the exact proportions of other types of ganglion ~ central retina, human midget cells outnumber parasol

cell in the primate foveal region [12]. We therefore  cells by around30 : 1 [19]. Midget cells in the central

consider only midget and parasol ganglion cells in our ~ retina have a diameter 5 — 9um [11] [23], and the

model. ratio of the dendritic tree diameter of a parasol cell to
« Ganglion cell to cone ratioThe radial displacement of that of a midget cell of each type is found to be around

the ganglion cells subserved by the foveal cones is an 10 :1 [19].

obstacle to the exact tracing of synaptic wiring between « Ganglion cell receptive field sizeThe receptive field

the two classes of neurons in the primate fovea [20]. centre (RFC) diameter of a ganglion cell is on average

Cumulative analysis shows the ganglion-cell-to-cone- 1.65 times larger than that of its dendritic tree in

count ratio within the primate fovea to 334 — 4 : 1, the foveal region [24]. This difference is due to the
with a possibility of being greater thain: 1 at the centre convergence of signals from other neurons onto the
of the fovea [14]. Elsewhere this range is specified as ~Ppathway from the cones to the ganglion cells and is at a
2.7 — 3.4 : 1 [21]. We employ a ratio oft : 1 in our maximum near the fovea [24].The surround of a midget
model. cell receptive field is on average 6.7 times wider than
« Ganglion cell size and layoutThe mosaics of the its centre, while that of a parasol cell is 4.8 times wider

ON- and oFFcentre midget and parasol cells are in-  than its centre [24].
dependent of each other [9]. On average, the dendr|t|§' Designing the model

field diameter of anoN-centre ganglion cell i30% ) , ,
greater than that of iteFF-centre counterpart across all We consider a cone layer arranged in a hexagonal lattice

eccentricities in the retina [19] [11]. Adjacent midgetand projected on a digital raste_zr as shown in Fig. 1(a_). We
cell dendritic trees in each layer abut one another blfesume the subserved ganglion cell layers to be directly
show very little overlap [11]. Parasol cell dendritic tree?€n€ath the cone layer, instead of being laterally shifted, as

show a larger overlap, with a coverage fattobserved the latter does not have any functional implication in our
at 3.4 [19] compared tal for midget cells [23]. In the model. The midget and parasoFrcentre cells subserved

by the cone layer are arranged on a triangular lattice on this
1defined as ‘dendritic field area cell density’ [22] raster, as shown in Fig. 1(b) and Fig. 1(c) respectively, for
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consistency with the biological layout of the cells and tause in simulating the ganglion cell receptive fields in the
maintain the ganglion-cell-to-cone-count ratio as observefdveal-pit model. The matrix sizes representing the DoGs
in biology. For a5 x 5 pixel region on the raster shown corresponding to each variety and type of ganglion cell are
in Fig. 2, there are25 cones,50 midget oFrF-centre cells adjusted so as to conform to biological specifications while
and?2 parasolorrcentre cells. ThenN-centre cells for each being computationally convenient. The RFC width of the
variety of ganglion cell are observed to have a lower spatiglarasoloF~ and oN-centre cells is set ta0 times that of
resolution than theirorF~centre counterparts due to theirtheir respective midget cell counterparts, while the width of
larger sizes [11] [23]. However, due to the very high densityeceptive field surround is taken &S times that of the RFC,
of cells in the foveal region, this difference is negligible foras in biology.
all practical purposes. Thus, we consider a similar spatial
resolution of ON- and oFFcentre cells of each variety in

i ENCODER
our model. Therefore, the total counts of midget and parasol

cells are100 and 4 respectively against a cone count of AN M x M imageZ is filtered by DoG functions with
25 in Fig. 2. The ganglion-cell-to-cone-count ratio in ourMatrix size and sampling resolution as shown in Table I.

model is thus~ 4 : 1 as observed in the primate retina.1NiS generates an arra/,,., consisting of a total ofl’
Furthermore, midget cells constitute 96% of the ganglion coeff|C|2ents-of-f|Iter|ng, where,,, = (®(x),7) and T’ ~
cell population in our model, while the midget-to-parasol4-16}/°. As each DoG represents a ganglion cell, the image
count ratio is25 : 1, both of which are close to their €@ be thoughtof as being processed by a totdl gainglion

respective observed figures 9% and30 : 1 in biology. cells. The magnitude of each coefficierf” € .., repre-
sents the strength of activation of a ganglion cell produced

Ill. THE FOVEAL-PIT MODEL AS A RANK-ORDER

TABLE | by the contrast at spatial locatidm, k) in the imageZ. The
TABLE SHOWING THE VARIOUS PARAMETERS AND THEIR relative magnitude of a coefficient simulates the latency of
SPECIFICATIONS FOR SIMULATING GANGLION CELL RECEPTIVE FIELDS its f|r|ng in a popu|ati0n of gang“on Ce”s_ Thus’ the |arger
OF THE FOVEAL-PIT MODEL. of two coefficients corresponds to a ganglion cell which fires
earlier than the cell corresponding to the smaller coefficient.
. __ Receptive Field Simulation Parameters Rank-order encoding of spikes is simulated by sorting,
Ganglion Cell Typgs rr:llx s::de.nctj;v. cei:tr;;:gth Sstfrrgj:df:gmlt?c? to obtain {Ci e Cy Cz > Ci-_HVl = 1-- .T} [1] [4]
(n) () (we) () The rank-ordered coefficients iV, represent the image
oFFcentre] 5 x 5 0.8 3 . 7 encoded in the latency of each incoming spike from a
midget| on-centre | 11 x 11 1.04 5 Tl oo population of asynchronously firing ganglion cells. These
~ (1.3 x 0.8) coefficients are then used for rank-order decoding to obtain
OFF-centre | 61 x 61 8 33 a reconstructed imag€&... = (®(x), C,,) [1] [4] [6]. This
= (10 x0.8) 5 method of rank-order decoding assumes DoG orthogonality
paraso) on-centre 243 x 243 10.4 S S where (®;(x), B, 1(x)) ~ 0. However, neighbouring RFCs,
= (10 x 1.04) as observed in primate retina, are very much overlapping.

Thus they cannot be presumed to be approximately orthog-

The centre-surround structures of ganglion cell receptivenal as was done in VR & T's retinal model [1] [7]. This
fields are simulated with Difference of Gaussian (DoGjnomaly is reflected in the reconstructed image shown in

functions and are defined a®(x) = +5-15exp [fQ\IXZHZ} — Fig. 3(b). In [4], we introduced an objective metrig to

. ] ] _ % obtain a quantitative_measure of information recovery from
5T €D | g2 } , where o, is the centre widthg is the  rank-order encoded images. The metric was originally pro-
surround width, andro? and 702 are used for normalisa- posed in the image fusion domain and measures perceptually-
tion [25] [1]. The midgetoFrcentre cell receptive field is important information preserved in fused images in terms of
simulated with a5 x 5 DoG wheres. = 0.8, so that the accuracy in transfer of local gradient information from the
RFC diameter for midgedbFrcentre cells isw. = 3 pixels. original images [5]. Furthermore, the metric is parametrised
As mentioned in Section II-A, the dendritic tree of an-  with extensive subjective evaluation [26] and modulated
centre ganglion cell in the primate retina is observed to baccording to the non-linear contrast sensitivity of the human
30% larger than that of itsoFFcentre counterpart. Again, visual system. We use Q, as well as Root Mean Square
the RFC width of all midget cells in the foveal region isError (RMSE), a measure which is commonly used as an
1.65 times larger than that of their respective dendritic treesmage quality metric, to quantify and compare the original
Thus, we can say that the RFC of an-centre midget cell and reconstructed image qualities. The Q and RMSE plots
is 30% larger than that of itsoFFcentre counterpart. The in Figures 3(e) and 3(f) for progressive build up of infor-
RFC width of the midgetN-centre cells in our model is mation during image reconstruction using each coefficient of
thus set asr. = 1.04. The receptive field surround width the arrayC,, confirms the subjective impression given by
for both theoN- and oFrFcentre midget cellsgs, is taken Fig. 3(b).

as 6.7 times that of their respective RFC width as found Significant overlap between neighbouring RFCs gives rise
in biology. Table | shows the various parameters that wie redundancy in the rank-order encoded image due to
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Look-Up-Table of Weights

10" 10° 10° 10* 10
Rank of coefficients

(@)

(d) 20% (corrected)

1

0.9

0.8

0.7

1% 5%  10% 15%  20%  25%  30%  35%
Rank of coefficients

o os ®)
o Fig. 4. (a) Look-Up-Table of weights for decoding images rank-
03 order encoded using the foveal-pit model in conjunction with FoCal. (b)
02 o emememTTTITITTTIOITS Perceptually-important information recovery plot for all sixty-five images

.- in our data-set during progressive reconstruction using the LUT, shown as
a spread about the mean information recovery plot.

[
1% 5% 10% 15% 20% 25% 30% 35%
Rank of coefficients

(e)
) an over-representation of a point in space. Interestingly,
0o redundancy reduction has long since been described as a
os goal of sensory processing for efficient information trans-
e mission [27] [28] [29], and is thought to be dealt with

B DT PR S S in the primate retina using lateral inhibition [30] [31]: a
, mechanism where neighbouring neurons inhibit one another
L e e | SO as to optimise spatial representation. Moreover, the in-
hibitory effect of several neighbouring cells upon a certain
cell is additive and is expressed quantitatively as [32]:=
ep — Z?Zl Ky j(rj —13,), wherep = 1,2,...,n, j # p,
rp is the firing frequency of a receptor unjt e is the
e e e excitation supplied by the external stimulus on the receptor,
K, ; is the coefficient of inhibitory influence of receptor unit
. 0 -
Fig. 3. (@) An input stimulus to the foveal-pit model. (b) Reconstructiorr7 onp, r1s the threshold frequen(.:y t.h(’.# must be exceeded
with 10% of the rank-order encoded data with no correction for dat¥€fore one receptor can exert any inhibition on the other and
redundancy. (c), (d) Reconstruction with% and 20% of the rank-order r; > rgj. Recently, we have used this relation to propose
encoded data corrected using FoCal for information redundancy due é"FiIter-’overIap Correction algorithm (FoCaI) [8] We have
RFC overlap. (e) A comparison of the perceptually-important information . . ’
recovery from data without and with redundancy removal using FocakS€d FoC_aI to optlml_se information recovery from rank'ord_er
(f) A comparison of the reconstructed image quality compared to thencoded images using VR & T'’s retinal model [8]. In this
original using RMSE for images reconstructed from data without and WitWork we use FoCal to correct the high REC overlap in the
redundancy removal using FoCal. T
foveal-pit model.

We modify C,, using FoCal: every coefficienfc, €
CorVp} corresponding to a Do@,, is corrected for col-

0.6
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RMSE

0.3

0.2

0.1 ———
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Rank of coefficients
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0.2
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Rank of coefficients

10% (coefficients)

(b)
Fig. 5. (b)—(e) The image in (a) reconstructed using up to 1%, 2%, 5% ) ) )
and 10% of the LUT weights. (f) Image reconstructed using 10% of its owfig- 6.  (a) Perceptually-important information recovery plots for pro-

coefficients-of-filtering. The loss during image reconstruction using LUTdressive reconstruction of the image shown in Fig. 5(a) using its own
can be seen by comparing (€) and (f). coefficients-of-filtering against LUT weights. (b) RMSE plots for the same.

lective overlap with neighbouring filters by, = ¢, — retinal model [1]. Thus, the first LUT weight corresponds to
¢; (®,, @;) [8]. Cor, thus modified, is then re-ordered tothe ganglion cell which is the first in the population to fire a
obtainC™°4, which is now used to progressively reconstrucspike. Further, only the first spike of each cell is considered
images. The difference in image quality between Figures 3(i9r rank-order encoding. Progressive reconstruction u&ng
and 3(c) shows the role of FoCal in redundancy removal fromimulates information retrieval with each incoming spike
rank-order encoded data. From the Q plot in Fig. 3(e), morfired by a ganglion cell at a certain spatial location in the
than90% of the perceptually-important information is seenfoveal-pit model. The LUT for our foveal-pit model is shown
to be recovered by the time arou@% of the coefficients in Fig. 4(a). The perceptually-important information recovery
are used for image reconstruction. This is also evident froplots of all the images in our data-set usiRgare shown in
a comparison of Figures 3(a) and 3(d). The RMSE plot iFig. 4(b) as a spread about the mean plot. We observe that on
Fig. 3(f) is an alternative measure that confirms the trenadverage around5% of the perceptually-important informa-
shown in the Q plot. tion can be recovered from images rank-order encoded with
the foveal-pit model using FoCal. Further, this information is
recovered by the time arourid — 20% of the LUT weights

We use a data-bank o085 grayscale images of size are used for image reconstruction, with more g% of
128 x 128 and consisting of natural and man-made structurethe available information already recovered by the time only
The images are filtered with the foveal-pit model, and tharound10% of the ganglion cells have fired their first spikes.
coefficients-of-filtering thus obtained are rank-order encodethis is a remarkable improvement in the speed of information
applying FoCal. The sixty-five rank-ordered arrays are therecovery compared to that displayed by VR & T’s retinal
averaged to obtain an arraf = %EUK:ng’;Zd, where model [4], and conforms very well to the main goal of
u represents the:’” image in a data-set consisting &  rank-order encoding — fast information retrieval. We do a
images. Thus;R corresponds to a Look-Up-Table (LUT) qualitative evaluation for an image from our data-set shown
of weights that is used to reconstruct a rank-order encodéd Fig. 5(a). From Fig. 5(b), we observe that we can fairly
image rather tha@w™°? corresponding to the image. This isdecipher the contents and structure of the original image,
same approach as was used to generate a LUT for VR & Tthus demonstrating that a picture from our data-set is also

IV. RESULTS
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—— foveal-pit model coefficients
=+ retinal model coefficients
- - foveal-pit model LUT
'_retinal model LUT
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Rank of coefficients

Fig. 7. Average perceptually-important information reagvelot using

both the coefficients of filtering as well as the respective LUTSs of the foveal-
pit model and VR & T'’s retinal model. Progressive information recovery is
measured in terms of the absolute number of rank-ordered coefficients or
weights from the LUT used for reconstruction.

recognisable by the time only% of the LUT weights are
used for reconstruction. Moreover, we observe that except

for edge enhancement, there is no extra information about e W D piuiiteag
the scene in Fig. 5(e) as compared to Fig. 5(d). Thus, all ' -
the vital information about the scene seems to be present
in the reconstruction in Fig. 5(d) using% of the LUT
weights, which contain§0% of the perceptually-important
information as can be seen in Fig. 6(a). Deterioration in
information recovery and image quality due to reconstruction

0.4 )
"

— image ()
b - - image (b)
03 - - image (c)

using approximate data i® as compared to exact data in e
Cmd for an image is also shown in Figures 6(a) and 6(b),
while Figures 5(e) and 5(f) are provided for subjective
evaluation of the same. Do e 1% 1% 2% 2% G0% 5%

Rank of coefficients

Due to a coarser sampling resolution used in VR & T’s

retinal model, the total number of coefficients of filtering in ©
the modelT’ ~ 2.67M?, which is approximatelys0% less 1

thanT as defined in Sec. Ill. Thus, one might argue that 0s

a one-to-one comparison of information recovery using the 08 T image
two models against their respective percentage of coefficients o7} el
may not be appropriate. In Fig. 7, we present a comparison oslt

of the information recovery for both the models against
the number of coefficients used in progressive information
recovery rather than the percentage. Average information
recovery plots for progressive reconstruction using both the
true coefficients of filtering of the images as well as the
LUTs of the respective models are shown. The results show

a significant improvement in both the quantity as well as rate e e e
of information recovery obtained using the foveal-pit model. "

To complete the preliminary testing of the foveal-pit model

as a rank-order encoder, we present our model with thr&®- 8. (a—c) Three images which are not a part of the data-set of sixty-five
images used to generafe, the LUT for the foveal model. (d—f) Images in

) - . i
Images shown in F'gu_res 8(a) - S(C) which were not a pa( —c) respectively reconstructed using the fir8% of the LUT values. (g)
of our data-set of65 images used to generate the LUT.The perceptually-important information recovery plots and (h) RMSE plots

We choose these out-of-sample images so as to include t€%ting progressive reconstruction of the images.
as in Fig. 8(a), a man-made structure as in Fig. 8(b) and

a natural scene as in Fig. 8(c). We show the respective

reconstructed images using up 16% of the weights from

R in Figures 8(d) — 8(f). The perceptually-important infor-

mation recovery plots for progressive reconstruction using

RMSE

02 hETN. TITImmTmEmEes

0.1
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R for each of the three images are shown in Fig. 8(g). Ws likely that pre-spiking lateral inhibition can support even
observe that aroun&bs — 90% of the available information is better information redundancy removal than we have shown
recovered from the rank-order encoded data for all the thrée our model.
images, and that almost all of this information is recovered

by the time only aroun@0% of the ganglion cells have fired

Fhelr fl.rSt splkes. Further, arour&’ or more qurmatlon what the retinal ganglion cells tell the visual cortéural Computa-
is retrieved by the time arountl0% of the ganglion cells tion, vol. 13, pp. 1255-1283, 2001.

have fired their first spikes. The corresponding RMSE plotg] S. Thorpe et al., “Speed of processing in human visual systiatfire
are also shown in F!g.' 8(h). Thus’ the foveal-pit model I?3] é(.)llTﬁgrlr')epg izggjt%aégggank order coding;omputational Neuro-
shown to perform efficiently with out-of-sample data. science: Trends in Researciol. 13, pp. 113-119, 1998.

[4] B. Sen & S. Furber, “Information recovery from rank-order encoded
V. DISCUSSION AND FURTHER WORK images,”Proceedings of Biologically Inspired Information Fusjqop.
In this work, we have designed a model of the foveal-pi[t 8-13, August 2006. o . . .
. . . . L. . ] V. Petrovic & C. Xydeas, “Objective evaluation of signal-level image
gangllon cells with the aim of moving an existing retinal fusion performance,Optical Engineeringvol. 14, no. 8, pp. 1-8, 2005.
model closer to biology. By so doing, we have developef] B. Sen & S. Furber, “Maximising information recovery from rank-order

a ‘shallow’ but densely packed model which resembles the codes,’Proceedings of SPIE Defence Security Sympasiwh 6570,
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