
Self-Timed Realization of Combinational Logic

P. Balasubramanian and D.A. Edwards
School of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK

{padmanab, doug}@cs.man.ac.uk

Abstract

A novel synthesis method for self-timed realization

of arbitrary combinational logic functions is presented
in this paper. The cost of self-timed implementation of
a large number of conventional combinatorial
benchmarks is provided. A new self-timed system
configuration is also proposed in support of the
synthesis heuristic that generally favors weakly
indicating realizations of combinational logic. The
proposed two-level synthesis technique forms a good
starting point for the multi-level synthesis of weak-
indication circuits and certain preliminary insights in
this regard are highlighted.

1. Introduction

‘Reliability’ has been labeled as one of the five

cross-cutting design challenges in the International
Technology Roadmap for Semiconductors 2008 update
on design [1]. This drives home the point that
‘robustness’ is becoming an increasing priority for
digital logic design in deep submicron technologies. In
this scenario, self-timed design attracts increasing
interest, as it can inherently tolerate fluctuations in
process parameters, temperature and noise [2], whilst
guaranteeing correct operation regardless of variations
in design components or signal wires. In addition, it
features greater modularity. In this perspective, this
paper deals with research undertaken in the domain of
self-timed combinational logic and presents results
corresponding to a new two-level synthesis strategy.
The ultimate objective is to arrive at a novel,
practically feasible, technology-independent multi-level
synthesis strategy for compact weak-indication
realization of any combinational logic specification.

The remaining portion of this paper is organized as
follows. Section 2 describes a self-timed logic block
and gives background information in the context of this
paper. A brief overview of well-known synthesis
methods for robust asynchronous logic realization,

based on the delay-insensitive data encoding
convention (mostly dual-rail) is provided in Section 3.
Definitions of some terminologies are given in Section
4. The proposed heuristic to derive minimum disjoint
sum-of-products expression from a reduced sum-of-
products expression is elucidated in Section 5, and its
efficiency vis-à-vis other methods is studied on the
basis of some combinational benchmarks. The novel
heuristic to obtain minimum orthogonal sum-of-
products format corresponding to an arbitrary
combinational logic specification, on the basis of dual-
rail encoding, is discussed in Section 6. Results
corresponding to the self-timed realization of many
combinatorial benchmarks are also given in this
section. The new self-timed system architecture that
benefits the above synthesis mechanism is presented in
Section 7. Finally, we make the concluding remarks in
Section 8. Initial insights regarding extension of the
proposed two-level heuristic to multiple levels are also
mentioned therein.

2. Self-timed logic block

A self-timed logic block is also referred to as a

function block and represents the robust asynchronous
equivalent of a traditional synchronous combinational
logic circuit. In addition to realizing the requisite
functionality, the self-timed logic block has to be
transparent to the handshaking, as implemented by its
surrounding latches. Besides, there should not be any
dangling inputs or outputs within the function block.

A self-timed logic block is entrusted with the
responsibility of indicating (acknowledging) the
completion of the computation on all its intermediate
nodes. With respect to the manner of indication, such
logic blocks are either classified as strongly indicating
or weakly indicating. A depiction of strong and weak-
indication timing models, as specified by Seitz [3], is
shown in figure 1. In essence, strongly indicating logic
blocks wait for the arrival of all the inputs (whether
valid or spacer data) before they start to produce any

output (valid or spacer). On the other hand, a weakly
indicating logic block is allowed to produce a subset of
the outputs based on a subset of the inputs. All inputs
must become valid before the last output can become
valid; the last output must not become invalid until all
of the inputs become empty. It was also shown in [3]
that a legal interconnection of strong or weak-
indication logic blocks is permissible.

Figure 1: Portraying strong and weak-indication

Delay-insensitive data encoding and return-to-zero
handshaking (4-phase handshaking) constitutes a
widely preferred robust signaling convention for self-
timed designs. With dual-rail encoding, a data wire d is
represented using two rails: d0 and d1. A transition on
the former indicates the transmission of a zero, while a
transition on the latter indicates the transmission of a
one. The condition when both d0 and d1 are zeroes
signifies the spacer (empty) state and all the data wires
assume this state between two valid data states. d0 and
d1 are not allowed to be high simultaneously, as the
coding scheme is unordered. The request signal from
the sender is embedded within the encoded data wires.

Figure 2: Depiction of delay-insensitive data encoding

and 4-phase handshaking

The return-to-zero handshake protocol is explained
through the following steps:
i. The dual-rail data bus is initially in the spacer

state. The sender transmits the codeword (valid data).
This results in 'low' to 'high' transitions on the bus
wires (i.e. any one of the rails of all the dual-rail
signals is assigned a logic 'high' state), which
correspond to non-zero bits of the codeword.

ii. After the receiver receives the codeword, it drives
the ackout (ackin) wire 'high' ('low').

iii. The sender waits for the ackin to go 'low' and then
resets the data bus (i.e. it is driven to the spacer state).

iv. After an unbounded, but finite (positive) amount
of time, the receiver drives the ackout (ackin) wire
'low' ('high'). A single transaction is now said to be
complete and the system is ready to proceed with the
next transaction.

3. Review of self-timed design methods

The unorthodox methods employed to synthesize

self-timed combinatorial logic usually incur substantial
area overhead and are beset with the problem of input
space explosion, which poses an exponential
complexity of O(2n) with the number of primary inputs
of O(n). Here, n denotes the number of concurrent
single-rail inputs. A self-timed logic block realization
typically satisfies the acknowledgement property and
the unique-successor-set property [4]. The
acknowledgement property specifies that every
transition on a gate output node, excepting the primary
outputs, should be accompanied by a successive
transition on another gate output in the subsequent
stage. The unique-successor-set property stipulates that
the monotonic cover condition [5], which ensures
hazard-free implementation of speed-independent (SI)
circuits, be incorporated into the description of the
logic functionality. In simple terms, the monotonic
cover constraint requires that only one product term in
a sum-of-products implementation is allowed to assume
a logic 'high' at any time in case of either set (true
output) or reset (false output) functions.

In general, the cover constraint entails the
enumeration of all possible distinct input combinations.
Therefore, many indicating logic realization schemes
(especially strong-indication methods) suffer from
large area overheads and this has usually restricted self-
timed logic implementations to those with fewer inputs.
Self-timed implementation of larger combinational
circuits could incur at least three times the area penalty
of a conventional synchronous realization. However,
many approaches have been proposed (especially on

the basis of dual-rail encoding) and they differ in the
way of dealing with this problem by either:

i. Assuming the presence of the entire state
space without mention of any scheme for SI
decomposition [3] [6] or

ii. Confining themselves to only full custom
solutions for smaller functions [7] or

iii. Circumventing this problem considerably by
usually relying upon de-synchronization, with
the additional provision of availability of full
custom library gates as part of a standard cell
library [8] [9] [10] [11] or

iv. Performing SI logic decomposition
with/without consideration of the entire input
state space [12] [13]

Among these, variants of the third approach have
been predominant and facilitate weakly indicating
solutions while being technology-dependent. They have
their roots in the DIMS approach [6] and the dual-rail
combinational logic implementation style [14], which
do not synthesize self-timed circuits based on
specifications such as communicating handshake
processes or signal transition graphs. Instead, they rely
upon synchronous CAD tools for initial synthesis and
then resort to replacement of every gate with a dual-rail
encoded gate pair in a template based fashion that are
subsequently mapped using NULL convention logic
(NCL) operators. These operators are developed on the
basis of threshold logic and are made available as
custom elements of a standard cell library.

In contrast, we envisage a new technology-
independent multi-level self-timed synthesis technique
that is different from any of the NCL based schemes.
Towards this end, a preliminary (two-level) synthesis
procedure is proposed demonstrating its feasibility for
synthesizing combinational functions of any size as
self-timed circuits without exploding the input space. In
fact, this is cumbersome with approaches (i), (ii) or (iv)
mentioned above.

4. Preliminaries

Some definitions are first stated in this section to

help with further discussion.

4.1. Definition 1. A literal is a symbol referring to a
variable (x) or its complement (x’). In case of dual-rail
encoding, the notion of a literal is used to refer to either
the true-bit (x1) or the false-bit (x0) representation of a
variable (x) respectively.

4.2. Definition 2. A cube is defined as a logical
product1 (conjunction) of different literals, where a
variable appears in only one of its symbolic notations.
For example, a’b, abc’d are single-rail cubes. With
dual-rail encoding, a cube specifies a logical
conjunction of the true-bits or false-bits of different
variables. a0b1 and a1b1c0d1 are the respective dual-
rail encoded product term equivalents of the single-rail
cubes mentioned earlier.

4.3. Definition 3. A Boolean function, f, is a mapping
of type f: {0,1}n → {0,1,d}, where d denotes a don't
care condition. If d does not exist, then the function f is
said to be completely specified or two-valued,
otherwise it is called incompletely specified or ternary.
Each of the 2n nodes in the Boolean space corresponds
to a canonical product term (minterm). The ON-set,
OFF-set and DC-set of f correspond to those minterms
that are mapped to 1, 0 and d respectively.

4.4. Definition 4. A cover is a set of irredundant
product terms (prime implicants) pertaining to a logic
specification and the cardinality of a cover is the
number of essential products comprising the cover.

4.5. Definition 5. A sum-of-products (SOP) form
consists of a disjunction of product terms, each of
which involves a conjunction of literals. If the number
of terms in a SOP form is the least possible, then the
SOP is referred to as minimum SOP.

5. Disjoint sum-of-products form

A Boolean equation is said to be in disjoint SOP
(DSOP) form, if it is described by a logical sum of
product terms that are all disjoint [15], i.e. no two
product terms cover a common minterm when
expanded. A DSOP form with the least number of
product terms is known as minimum DSOP form.
While SOP minimization can be likened to a set
covering problem, DSOP minimization can be likened
to the problem of finding a minimum disjoint cover, the
exact solution of which is NP-hard [15]. For example,
the number of irredundant product terms of the SOP
expression of an Achilles’ heel function [15] is given
by O(n/2), while the number of essential products
constituting its DSOP expression is specified by
O(2n/2–1), where ‘n’ represents the number of distinct
primary inputs. DSOPs have been traditionally used in

1 The Muller C-element typically serves as the conjunction operator.

It outputs a high (low) when all its inputs are high (low),
otherwise it retains its state. It is an AND gate for transitions.

several applications in CAD areas, for example,
calculation of spectra of Boolean functions [16] or as a
starting point for the minimization of exclusive-OR
SOP logic [15]. This in turn forms the backbone of
synthesis schemes for reversible logic circuits [17] that
have applications related to the field of quantum
computing. It has been found that DSOP solutions
directly generated by Espresso are generally far from
the optimum, especially in case of functions with
several inputs because it considers group minimization
of all the function outputs. An alternative approach
would be to consider deriving DSOP solutions for the
combinational function outputs on an individual basis
on the basis of their SOP forms using heuristics [18] –
[22], where the reduced SOP form of a non-minimized
logic function can be obtained through multi-output
minimization using a standard two-level logic
minimizer: Espresso. A majority of the heuristics
proposed earlier, following this strategy, were found to
yield better solutions for many case studies in
comparison with the DSOP solutions directly generated
using Espresso.

5.1. Proposed heuristic

The heuristic proposed to derive DSOP format from
a SOP format is explained below:

§ Step 1: Obtain the SOP form of a logic function.
§ Step 2: Compare each cube with every other cube
in the SOP form to check whether they are mutually
disjoint. If and only if each cube does not overlap
with every other cube in the MSOP form, then go to
Step 11, else proceed with Step 3.
§ Step 3: Enumerate all the overlapping pairs of
cubes that have a non-disjoint support. If only pairs of
cubes with disjoint support exist, go to Step 8, else
proceed with Step 4.
§ Step 4: From among the overlapping pairs of
cubes that feature a non-disjoint support, choose that
pair of cubes which comprises the highest degree of
logic sharing among its constituents. If many such
pairs of cubes exist, which exhibit a similar highest
degree of commonality then an arbitrary choice is
resorted to.
§ Step 5: Use the distributive axiom to extract the
kernel. Apply the converse of the absorption axiom of
Boolean algebra to transform the kernel comprising
overlapping cubes with disjoint support into non-
overlapping cubes with a non-disjoint support. Apply
the distributive property of Boolean algebra to re-
enumerate the product terms.
§ Step 6: Check whether any cube contains any
other cube in the function; if so, the covering cube is
made to absorb the covered cube. Also, check

whether any cube is duplicated in the logic function.
If so, the redundancy is eliminated by applying the
idempotency axiom.
§ Step 7: Go to Step 2.
§ Step 8: Consider any two cubes with a disjoint
support, which also have the least support set
cardinalities. If many choices result, then a random
selection is made. Between such a pair of cubes, the
identity axiom of Boolean algebra is applied to any of
the pair of cubes considered. This results in a cube
expansion by making use of the distributive axiom.
§ Step 9: If any cube is found to cover any other
existing cube in the function, the covered cube is
discarded and the covering cube is alone retained.
Logic duplication is eliminated using the idempotent
law of Boolean algebra.
§ Step 10: Return to Step 2.
§ Step 11: Terminate the routine as the desired
DSOP solution has been obtained.

The logical correctness of the resulting DSOP
solution is guaranteed by the Boolean axioms used,
which are well-established and proven properties. The
functional correctness of the DSOP solution is ensured
by comparison of each cube with every other cube
forming the cover of each function output to make sure
that they do not overlap. The combinational
equivalence of a SOP form and its corresponding
DSOP form is confirmed through the ‘Dverify’ option
of Espresso. The cost of the DSOP solution is
represented by the count of all the unique input cubes,
some/all of which may eventually be found to be shared
between the various outputs.

5.2. Illustration and results

The DSOP heuristic described above has been
implemented in Java and has been used to generate
results for some combinatorial benchmarks specified in
PLA format. Minimum SOP and DSOP forms of the
benchmark, newtag, obtained using Espresso, are
represented by means of the cube-variable matrices of
figures 3 and 4 respectively for illustration purpose.
The benchmark function has a single output and its
support set is composed of 8 elements. The cube-
variable matrix is an O(m × n) matrix, where ‘m’
specifies the number of irredundant cubes of the
function (rows of the matrix) and ‘n’ refers to the
number of unique input support variables of the
function (columns of the matrix). A ‘1’ entry at the
intersection of a particular row and column index (amn)
implies the existence of a variable in its normal form,
while ‘0’ and ‘-’ entries signify the inverted and don’t
care states of the variable respectively. The conjunction

of all the variables in a row, appearing in either their
normal or complementary forms, describes the cube
corresponding to that row of the matrix. The logic
function is expressed as F = ∑Ci, where i = 1,…,m; i.e.
the summation of m non-redundant cubes that may
have a maximum dimension of n. In a DSOP cube-
variable matrix, apq ≠ arq, for any pair (p, r) of m with
respect to at least a column q of the matrix, where p ≠ r
and q signifying a column index.

Figure 3: Cube-variable matrix of SOP form of
newtag, based on Espresso

Figure 4: Cube-variable matrix of DSOP form of

newtag, based on Espresso

Figure 5 depicts the cube-variable matrix of the

DSOP form of the benchmark newtag corresponding to
our proposed heuristic. It can be inferred from this

example that the cost (number of irredundant cubes) of
our DSOP heuristic is similar to the cost of the SOP
solution of Espresso. Thus, our DSOP procedure has
effected reduction in the number of essential non-
overlapping product terms by 43% when compared
with the DSOP solution of Espresso.

Figure 5: Cube-variable matrix of DSOP form of
newtag, corresponding to the proposed heuristic

A set of combinational functions of the MCNC

benchmark suite were considered to evaluate the
potential of the proposed heuristic vis-à-vis the DSOP
solutions rendered by other methods. These are shown
in Table 1. The ‘dash’ in certain positions of the Table
indicates the unavailability of a result for the
benchmark corresponding to a specific method in the
literature. The optimal solution for a benchmark based
on a particular method(s) is highlighted in ‘bold-face’.

From Table 1, it can be observed that the proposed
heuristic has facilitated optimal/near-optimal solutions
for a majority of problems. Among the logic functions,
alu4, cordic, max1024 and x7dn are relatively bigger
specifications, with alu4, max1024 and x7dn having
been classified as hard problems in the original
Espresso benchmark suite. In comparison with the
DSOP solution rendered by Espresso, the proposed
method reports a substantial reduction in the number of
essential products by 65%. Compared to the SOP
expression generated using Espresso, the proposed
DSOP heuristic based solution is found to be greater by
3.3×, while the DSOP solution of Espresso is found to
be more expensive than its logically equivalent SOP
format by 9.5×. With respect to the bigger
specifications, the proposed method enables a
reduction in the number of essential DSOP terms by
15.5% compared to the best solution rendered by the
other heuristics. When considering all the benchmarks,
the proposed heuristic facilitates a cost reduction of the
order of 14.3%, on a mean basis.

6. Orthogonal sum-of-products form

The orthogonal sum-of-products (OSOP) form [14]

corresponding to a self-timed logic block output
consists of product terms that are all orthogonal to each
other, i.e. the cubes do not overlap. Every cube is
orthogonal to every other cube in an OSOP expression
and therefore it would inherently satisfy the monotonic
cover constraint. While the DSOP form [15] is also
composed of non-overlapping product terms, the OSOP
form is distinguished in that it comprises encoded
outputs described using encoded inputs. The OSOP
form with the least number of product terms can be
referred to as minimum OSOP form.

6.1. Proposed synthesis strategy

The problem of deducing the efficient OSOP form
for a dual-rail encoded function block (inclusive of
both its ‘true’ and ‘false’ outputs) can be narrowed
down to finding a minimum DSOP solution for the
outputs and their complements of a combinational logic
specification. Here, the function block represents the
dual-rail encoded equivalent of an original synchronous
combinational logic description. This is possible
because the output and its complement of a
combinational circuit can be identified as the true and
false outputs of a dual-rail encoded self-timed
equivalent with a straightforward literal replacement, as
is the case with DIMS [6] or NCL based approaches
[8] – [11]. Thus the OSOP synthesis scheme relies
upon the DSOP synthesis procedure as its back-end.

In view of this, it can be concluded that the efficacy
of the DSOP heuristic could have a direct bearing on
the effectiveness of the resulting OSOP solutions for a
self-timed logic block construction. The ON-sets and
DC-sets of the logic function outputs and their
corresponding OFF-sets are considered separately so as
to obtain the SOP forms for the combinational function
outputs and their complements. The corresponding
DSOP expressions are then derived for the function
outputs and their complements in parallel. However,
the DSOP procedure purely corresponds to
synchronous logic. Therefore, the OSOP form of a self-
timed logic block is obtained by invoking the DSOP
heuristic for both the ON and OFF-sets of a
combinatorial function specification simultaneously,
followed by subsequent encoding (here, dual-rail
encoding) of the inputs and outputs. The OSOP
heuristic has also been implemented in Java on the
basis of the DSOP synthesis method.

6.2. Results

Asynchronous dual-rail equivalents of a number of
combinatorial benchmark functions were considered to
estimate the cost of their OSOP forms. The OSOP cost
shown in column 4 of Table 2 reflects the number of
unique cubes. It can be seen that, on an average, the
OSOP heuristic has resulted in solutions, which
encompass approximately 21% logic (cubes) sharing,
but could be higher in specific cases. For example, in
case of ex5, an 83% reduction in the number of cubes
has been achieved through sharing of common logic.

Table 1: Cost of DSOP form of some combinatorial benchmarks corresponding to different heuristics

Benchmark Espresso [17] [18] [19] [20] [21] Proposed
5xp1 62 70 - - 82 79 48
alu4 3551 - - - 1545 1372 1206
b12 654 57 - - 60 60 62
clip 359 162 - - 262 212 167
cordic 22228 - - - 19763 8311 6687
max1024 776 - - - 444 - 362
misex1 18 15 - - 34 34 15
misex2 29 28 - - 30 29 28
mlp4 206 - - - 203 - 155
rd53 31 31 - - 35 35 31
rd73 127 127 - - 147 147 127
rd84 255 - - - 294 294 255
x7dn 1697 - - - 1091 - 1228
xor5 16 - 16 16 16 16 16
Z9sym 190 - 186 148 - - 171

Table 2: Cost of self-timed realization of combinational benchmark functions

Function block

 # Inputs in
dual-rail
format

Outputs
in dual-rail

format

Orthogonal product terms Runtime
(Minutes:
Seconds) After sharing Before sharing

9sym 18 2 251 251 0:2
al2 32 94 310 472 0:0
alu4 28 16 2711 2803 3:16
amd 28 48 358 613 0:0
apex3 108 100 1351 2504 0:9
b3 64 40 1298 1507 1:7
bcd 52 76 6831 7942 10:15
chkn 58 14 523 526 0:17
cps 48 218 3390 5001 0:36
duke2 44 58 705 955 0:1
e64 130 130 2376 3033 3:55
ex4 256 56 1062 1062 0:5
ex5 16 126 346 2054 0:2
exep 60 126 3177 3591 0:27
ibm 96 34 1365 1366 0:14
in3 70 58 496 813 0:1
in4 64 40 1396 1673 1:11
intb 60 28 2320 2320 3:10
jbp 72 114 636 869 0:1
luc 16 54 175 496 0:0
max1024 20 12 663 826 0:6
misex3 28 28 3826 4422 3:5
misg 112 46 189 192 0:0
mish 188 86 163 173 0:0
misj 70 28 58 69 0:0
mlp4 16 16 319 403 0:0
newapla 24 20 82 94 0:0
newill 16 2 19 19 0:0
opa 34 138 572 1464 0:2
pdc 32 80 1358 1740 0:4
ryy6 32 2 155 155 0:4
sao2 20 8 202 258 0:0
shift 38 32 200 212 0:0
soar 166 188 1269 1566 0:3
spla 32 92 1577 2209 0:7
sym10 20 2 478 478 0:24
t1 42 46 384 501 0:0
t481 32 2 2142 2142 26:23
ti 94 144 1388 2500 0:5
ts10 44 32 272 512 0:0
vg2 50 16 632 647 0:6
x6dn 78 10 432 603 0:5
x7dn 132 30 3711 3752 2:1
Z9sym 18 2 243 243 0:1

The benchmarks highlighted in ‘bold-face’ in Table
2 correspond to dual-rail asynchronous equivalents of
hard combinational logic specifications. The synthesis
time corresponds to the heuristic running on an Intel
Core2 Duo processor at 2.4GHz under Windows XP
with a 1GB RAM. In case of self-timed logic blocks
that comprise only two encoded outputs, for example,
9sym, newill, ryy6, sym10, t481 and Z9sym, it should
be obvious that hardly any logic sharing is feasible.
The synthesis of function blocks 9sym, newill, ryy6,
sym10, t481 and Z9sym reveals that the package’s
processing time depends on the number of inputs and
the logic description. With respect to soar, [3] [6] and
[13] would consider the entire input space, which is of
O(283). In contrast, the OSOP heuristic results in only
1269 product terms. It is to be noted here, that the
recent two-level weak-indication synthesis method [23]
is unlikely to cope with larger combinatorial problems.
This is owing to its selective expansion of products to
achieve distributive indication; hence its scalability is
dependent on the block size.

7. Proposed self-timed system topology

Our self-timed logic block realization method has
only ensured that the cover constraint is satisfied
without addressing the system indication aspect. The
architecture that externally takes care of the indication
phenomenon is shown in figure 6. It generally favors a
weakly indicating realization by synchronizing only a
pair (true & false) of encoded outputs with the current
stage completion detection logic using the
synchronizer, before being fed to the next stage.

Figure 6: Proposed robust system configuration

8. Conclusion and scope for further work

A two-level synthesis method for implementing
combinatorial logic as compact self-timed circuits is
presented in this paper. For multi-level synthesis,
‘complementary cubes insertion’ is proposed as a
supplementary concept. It necessitates the insertion of

complementary OFF-set/ON-set cubes in a rail of the
function block output, whose complementary rail
contains an indecomposable ON-set/OFF-set term
respectively. Implementation of this procedure and
analyzing various delay-insensitive data encodings
within this framework are left for future work.

9. References
[1] SIA’s ITRS report 2008, Available: http://www.itrs.net
[2] A.J. Martin et al. “The first asynchronous
microprocessor : the test results,” ACM SIGARCH Comp.
Arch. News, vol. 17, no. 4, June 1989, pp. 95-98.
[3] C.L. Seitz, “System Timing,” in Introduction to VLSI
Systems, pp. 218-262, Addison-Wesley, Reading, MA, 1980.
[4] A.J. Martin, “The limitation to delay-insensitivity in
asynchronous circuits,” Proc. ARVLSI, pp. 263-278, 1990.
[5] A. Kondratyev et al., “Basic gate implementation of
speed-independent circuits,” Proc. DAC, 1994, pp. 56-62.
[6] J. Sparso et al., “Delay-insensitive multi-ring structures,”
Integration, the VLSI Journal, vol. 15, 1993.
[7] T.E. Williams, “Self-timed rings and their application to
division,” PhD dissertation, Stanford Univ., May 1991.
[8] M. Ligthart et al., “Asynchronous design using
commercial HDL synthesis tools,” ASYNC, 2000, 114-125.
[9] A. Kondratyev et al., “Design of asynchronous circuits by
synchronous CAD tools,” IEEE D&T, vol.19, 2002.
[10] Y. Zhou et al., “Cost-aware synthesis of asynchronous
circuits based on partial acknowledgement,” ICCAD, 2006.
[11] C. Jeong et al., “Optimization of robust asynchronous
circuits by local input completeness relaxation,” ASP-DAC.
[12] B. Folco et al., “Technology mapping for area optimized
QDI circuits,” Proc. IFIP VLSI SoC, 2005.
[13] W.B. Toms et al., “Efficient synthesis of SI
combinational logic circuits,” ASP-DAC, 2005, 1022-1026.
[14] V.I. Varshavsky (Ed.), Self-timed Control of Concurrent
Processes, Kluwer Academic Publishers, 1990.
[15] T. Sasao (Ed.), Switching Theory for Logic Synthesis,
Kluwer Academic Publishers, Dordrecht, 1999.
[16] M.A. Thornton et al., Spectral Techniques in VLSI
CAD, Kluwer Academic Publishers, Boston, MA, 2001.
[17] P. Gupta et al., “An algorithm for synthesis of reversible
logic circuits,” IEEE TCAD, 25 (11), Nov. 2006.
[18] B.J. Falkowski et al., “An effective computer algorithm
for the calculation of disjoint cube representations of
Boolean functions,” 36th MWSCAS, 1993, pp. 1308-1311.
[19] T. Kozlowski, “Application of exclusive-OR logic in
technology independent logic optimization,” PhD Th., 1996.
[20] L. Shivakumaraiah et al., “Computation of disjoint cube
representations using a maximal binate variable heuristic,”
Proc. 34th IEEE SSST, 2002, pp. 417-421.
[21] G. Fey et al., “Utilizing BDDs for disjoint SOP
minimization,” 45th MWSCAS, 2002, pp. II-306-II-309.
[22] N. Drechsler et al., “Disjoint SOP minimization by
evolutionary algorithms,” EvoWorkshops, 2004, 198-207.
[23] W.B. Toms et al., “Prime Indicants: a synthesis method
for indicating combinational logic blocks,” ASYNC, 2009.

http://www.itrs.net/

	1. Introduction
	2. Self-timed logic block
	3. Review of self-timed design methods
	4. Preliminaries
	5. Disjoint sum-of-products form
	6. Orthogonal sum-of-products form
	6.2. Results

	7. Proposed self-timed system topology
	8. Conclusion and scope for further work
	9. References

