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Abstract - The design of an asynchronous block sorter and issues relating to its testability
are discussed in this paper. The sorter takes an input data stream and sends it to the output
sorted in descending order. The testable structure of the block sorter is implemented using
the built-in self test (BIST) design methodology. A novel technique for changing the opera-
tion mode of the sorting cells of the block sorter which allows them to be set to normal
operation mode or BIST mode sequentially or in parallel respectively is described. In BIST
mode the sorting cells are tested in parallel reducing the overall test application time of the
sorter. Fault simulation results reveal 100% testability of both single stuck-at-output faults
at the high-level representation of the block sorter and all stuck-at faults inside data process-
ing blocks of its sorting cells. The total area overhead of the BIST block sorter is 15.7%.
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1. Introduction

Asynchronous design methodologies are a subject of growing research interest since they

appear to offer benefits in low power applications, promise greater design modularity,

exhibit average case performance rather than worst case performance and have no clock

skew problem [Lav93, Hauck95].

Philips Research Laboratories has developed the Tangram programming language which is

supported by a set of CAD tools for the design of asynchronous VLSI circuits [Berk88,

Berk91, Scha93]. Tangram describes the VLSI circuit as a set of processes which communi-

cate along channels. The Tangram program is translated into an intermediate format called a

handshake circuit representation. Handshake circuits are composed of handshake compo-

nents and channels on which they communicate [Berk93]. Channels communicate with

each other using a 4-phase (return-to-zero) signalling protocol [Mead80]. The result of

compiling the Tangram program is a silicon layout with particular performance, power con-

sumption and silicon area properties. The transparency of the compilation process makes it

possible to go back to the Tangram program level where it is easy to make improvements to

the properties of the target VLSI design.

A great deal of engineering work has been carried out in the AMULET group at the Univer-

sity of Manchester to optimise the design flow of asynchronous circuits initially described

in the Tangram language [Farn95, EdTR95]. In collaboration with Philips Research Labora-

tories an effective design scheme called “hybrid” design environment has been developed

and incorporated within theCadence design framework usingSIMIC design verification

tools [Farn95, Sim94]. As a result, during the design process which goes from the Tangram

specification to a handshake circuit implementation an engineer may replace Tangram syn-

thesised subcircuits with more efficient hand-developed design solutions.

Handshake circuits can be translated into delay-insensitive, speed-independent or bounded-

delay asynchronous circuits [Berk91, Lav93, Hauck95]. In delay-insensitive circuits all

delays in gates and wires are allowed to be arbitrary but finite. Gate delays in speed-inde-

pendent circuits are arbitrary and finite but signal transmission along wires is instantaneous.
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This assumption allows the use of the isochronic fork [Berk91], i.e., the arrival times of

transitions at their destinations are equal. Both delay-insensitive and speed-independent

implementations require dual-rail encoding of data where each data bit is represented by

two wires: a ‘zero’ propagation wire and a ‘one’ propagation wire. Bounded-delay asyn-

chronous circuits allow a single-rail data implementation to be used. Thus, combinational

logic circuits similar to those used in synchronous designs can be used directly which offers

a significant reduction in silicon area. A bounded-delay circuit uses the bounded delay

model to ensure correct data processing. In this model the delays through the data paths of

the circuit are known and bounded. The sender generates request signals for the receiver

only when the data is stable and ready to be transmitted.

The testing of asynchronous circuits for fabrication faults is more complex than that of syn-

chronous circuits. The major factors that complicate the testing of asynchronous circuits are

[Hulg94]:

• The presence of a large number of state holding elements. This makes the generation of

tests hard or even impossible.

• The difficulty of detecting hazards and races.

• The absence of global synchronization clocks. This decreases the level of controllability

of internal circuit states since asynchronous circuits perform as autonomous blocks.

The most widely accepted fault model used to represent different fabrication failures in

VLSI designs is the stuck-at fault model [MClus86, Russ89, Weste93]. A stuck-at fault on

line a connects it to the power supply voltage (Vdd) or ground (Vss) permanently. It has

been observed that stuck-at-output faults in control circuits where each transition is con-

firmed by another cause the whole circuit to halt; this is called the self-diagnostic property

of delay insensitive circuits [Dav90]. Some stuck-at-input faults can cause premature firing

on the control line of the circuit. The detection of such faults requires a special testability

analysis to be made [Haz92]. In this paper we consider two types of stuck-at faults: stuck-

at-output faults in the control logic and gate-level stuck-at-output and stuck-at-input faults

inside the data processing blocks of the test object. As was mentioned above, stuck-at-out-
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put faults on the control lines of the handshake circuit exhibit themselves by causing the cir-

cuit to deadlock when it operates normally. Thus, there is no need to develop any test

techniques to detect such faults. Stuck-at faults in dual-rail encoded data paths are identified

easily since they prevent any transitions on the corresponding data lines. A special testabil-

ity analysis must be carried out to detect stuck-at faults on the single rail encoding data

paths of the circuit under test.

The generation of tests for a system-level chip is difficult due to the high complexity of the

circuit under test, especially if the circuit is implemented using design techniques which do

not consider testability issues [MClus86]. Several design-for-testability techniques for

asynchronous circuits have been reported. A test strategy for delay-insensitive circuits has

been described [Ron93]. It was shown that this strategy allows circuits to be tested for

stuck-at faults in linear time. Unfortunately, it does not address the testing issues of the cir-

cuit’s data paths. A number of solutions to adapt the scan testing technique for testing

micropipelines have been reported [Khoc94, Pet95]. A scan design technique to test asyn-

chronous sequential machines was described by Wey et al. [Wey93]. These approaches

reduce the test generation problem of complex sequential circuits to that of testing their

combinational logic. The testable designs reported assume isolated testing of the circuit,

i.e., its inputs and outputs are fully controllable and observable. Such an approach does not

consider the case of the asynchronous circuit which is a part of a large asynchronous VLSI

design where each asynchronous block operates autonomously.

A partial scan test technique for asynchronous circuits has been described by Marly Ron-

cken [Ron94]. Taking the digital compact cassette (DCC) error corrector decoder as an

example it was shown how the asynchronous partial scan test technique can be adapted into

the high-level VLSI programming environment. The DCC error corrector decoder performs

in test and normal operation modes. An asymmetric isochronic fork was used for switching

the mode of operation of the circuit. It is assumed that there is a distinguished branch on

which transitions are guaranteed to move faster along this fork. Unfortunately, the use of the

asymmetric isochronic fork does not allow the change of mode to be implemented using
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delay-insensitive control logic. The reported scan solution was designed for testing the error

corrector and a controller which use dual-rail data encoding.

In this paper, we present a BIST technique for asynchronous VLSI circuits with regular

structures and single-rail data encoding. A case study of an asynchronous block sorter is

reported. The rest of the paper is organised as follows: Section 2 describes the design of the

asynchronous block sorter. The testing issues of the block sorter and the testable structure of

the sorting cells are considered in Section 3. The asynchronous procedure for changing the

mode of operation of the block sorter is described in Section 4. The design of the asynchro-

nous random pattern generator used in the BIST block sorter is discussed in Section 5. Sec-

tion 6 presents the simulation results and cost comparisons of the BIST version of the block

sorter. Finally, Section 7 concludes the paper.

2. Design of the asynchronous block sorter

The original design of the asynchronous block sorter was developed in Philips Research

Labs and generated in the hybrid design environment worked out at the University of Man-

chester [Berk88, Farn95, FarnTR96]. A high-level diagram of the block sorter is shown in

Figure 1. It consists of a head cell, 64 sorting cells and a tail cell which are connected in a

chain. All these blocks are fully asynchronous and operate autonomously. The head takes

16-bit vectors from its input and passes 17 bit vectors to the first sorting cell. An extra

boolean flag is added by the head to the input data. The first 63 input vectors have zero flags

and only the last 64-th input vector has a boolean flag set to one. Flag one means the end of

the block. The head contains an asynchronous modulo-63 counter which counts the number

of input vectors passing through it. After completing 63 handshakes the head takes the last

input vector and changes its boolean flag to one. When 64 input vectors have been passed

through the head to the first sorting cell the head is ready to take a new block of input vec-

tors.

Each sorting cell of the block sorter compares the 8 most significant bits of each new input

vector1 with a value stored in a register within the cell. Afterwards, each cell passes the

1. According to the specification of the block sorter



6

minimum vector to its output and stores the maximum one in its internal register. As a

result, the set of 64 input vectors are stored in 64 sorting cells in a descending order.

The sorted block of 64 17-bit vectors are sent to the tail. The tail strips the boolean flag off

its input value. The Tangram program for the asynchronous four-stage block sorter and

handshake implementations of its basic components can be found elsewhere [FarnTR96].

All the sorting cells of the block sorter are identical. A block diagram of the sorting cell is

shown in Figure 2. When a new block of input data is sent by the head to the sorting cells,

the first 17-bit input vector of the block is passed from theDin inputs to the inputs of multi-

plexerMX1 and registerReg2. Note that the first vector of each new block of data is always

stored in registerReg1 first. A new input vector is latched in registerReg2.

The 8 most significant bits of registersReg1 andReg2 are compared by comparatorCMP.

The design of the comparator is similar to the implementation of an asynchronous adder the

CarryOut signal of which is used as the output of the comparator. Various designs of an

Figure 1 : High-level design of the block sorter
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asynchronous adder are investigated elsewhere [Gars93, Pet96a, Pet96b]. In particular, the

comparatorCMP was designed using the hybrid implementation of its asynchronous adder

which provides for the detection of all its stuck-at faults without the introduction of a spe-

cific test mode [Pet96b].

The result of the comparison is stored in latchL which controls multiplexerMX2. If the

value stored inReg1 is greater than or equal to the current value ofReg2 then the state of

latchL is zero and the vector written inReg2 is sent through multiplexerMX2 to the output

of the cell. If the value ofReg1 is less than the value written inReg2 then the state of latchL

is changed to one. As a result, the contents ofReg1 are passed through multiplexerMX2 to

its outputs. The contents ofReg2 are copied intoReg1 and the cell is ready to write a new

vector intoReg2 in order to compare it with the contents ofReg1. The sorting procedure

described above is repeated.

3. Testing the block sorter

3.1 Fault model

To design the asynchronous block sorter for testability we assume the stuck-at fault model.

In particular we consider two types of stuck-at faults:

• gate-level stuck-at output faults inside the control circuits of the block sorter;

• gate-level stuck-at faults (including stuck-at input and output faults) inside the data

processing blocks of the sorter.

Stuck-at faults on the control wires of the sorter are detected during its normal operation

mode since they violate the handshaking protocol causing the whole circuit to halt [Dav90,

Ron94]. The detection of stuck-at faults on the data paths of the circuit requires more care

to be taken since they may or may not manifest themselves by producing wrong responses

on the outputs of the block sorter.
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3.2 Testable implementation of the sorting cell

The testing of data paths inside sorting cells is difficult since the controllability and observ-

ability of their internal nodes are different and dependent on the position of each cell in the

chain. The testability of the block sorter can be increased by making the states of the regis-

ters inside the sorting cells controllable. One of the approaches to increase the controllabil-

ity of the memory elements of the circuit under test is scan testing.

In principle, the scan testing technique assumes that all the registers of the testable design

can be transformed into a shift register to scan the test vectors in and scan the test results

out. As can be seen from the design of the sorting cell (Figure 2) the main data processing

block which must be tested is the comparator. The full scan test implementation of the sort-

ing cell requires the use of master-slave registers instead ofReg1 andReg2 which effec-

tively doubles their sizes. These registers would be used just to scan the test vectors in since

the test results are not stored in them (Figure 2). Thus, the use of scannable registers is not

efficient to test the sorting cell.

The structure shown in Figure 3 uses the system data paths of the sorting cell to send test

vectors to registersReg1 andReg2. The state of latchL can be observed on an additional

outputCmpRes. An extra multiplexerMX3 is required to send either test or normal 8-bit

Figure 3 : Testable sorting cell
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input vectors to the registers of the cell depending on the mode of operation. An additional

boolean signalOpMode, which is high in test mode, controls multiplexerMX3.

In test mode multiplexerMX3 passes 8-bit test vectors to the inputs of multiplexerMX1 and

registerReg2. The first and the second test vectors are written in the corresponding latches

of registersReg1 andReg2 respectively. The data on busDin[8:0] remains unchanged since

it is not used to test the comparator. After the application of the pair of test vectors the test

result is stored in latchL and can be observed on its outputCmpRes. Thus, stuck-at faults

inside the comparator can be detected during test mode.

The sorting cell is set to normal operation mode (OpMode=0) to test the rest of the circuit.

Two blocks of tests are required to detect stuck-at faults on the data paths of the sorting cell:

• a block of ‘all ones’ tests;

• a block of ‘running one’ tests which starts with ‘all zeros’ test.

The first block of tests detects all stuck-at zero faults on the data paths involved in transfer-

ring the data to the outputs of the cell except the internal bus which connects the outputs of

Reg2 with the inputs of multiplexerMX1. The second block of tests detects the rest of the

stuck-at faults which have not been identified by the previous test block. Since the test

blocks must be applied to the inputs of the block sorter the size of each test block must be

equal to the number of the sorting cells, i.e., 64.

3.3 Design for testability of the block sorter

Figure 4 illustrates the BIST implementation of the block sorter. The operation mode of the

circuit is changed asynchronously along a two-phaseChMode2 channel which consists of

two wires: a request and an acknowledge wire. The mechanism for changing the operation

mode of the block sorter will be discussed later.

In normal operation mode, the two blocks of test vectors described above are applied to

inputsDin of the sorter. As a result, stuck-at faults on the control lines and the data paths of
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the block sorter are tested including the head and the tail of the block sorter. The next step is

to test internal gate stuck-at faults of the comparator inside each sorting cell.

In test mode, test vectors are produced by the asynchronous random pattern generator (see

Section 5) placed on a chip. Random tests are applied to each sorting cell in parallel since

all cells are identical. The test results are mixed by a 64-input XOR gate and observed on its

outputMixCmp. In the presence of a single stuck-at fault inside the comparator of any sort-

ing cell the outputMixCmp will be changed to one during the test. OutputMixCmp remains

zero all the time during the test for the fault free block sorter.

4. Procedure for changing the operation mode

As was mentioned earlier a handshake circuit is a network of handshaking components

which communicates via its channels. Each channel consists of a set of at least two wires (a

request and an acknowledge wire) along which a four-phase communication protocol is per-

formed. If the component performs a particular data processing operation an additional wire

or a set of wires can be included to pass the data in and out. A transmission of signals along

a channel can be made only after the receiver has confirmed the receipt of the previous

transmission.

Figure 4 : BIST design of the block sorter
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States of asynchronous circuits are difficult to control since they operate autonomously. All

the cells of the asynchronous block sorter are fully autonomous blocks which can be in any

state during their operation. In order to set the sorter to test or normal operation mode one

must be sure that the circuit cells are empty, i.e., the sorter has processed the current block

of input data and ready to take a new one. The procedure for changing the operation mode

of the circuit must be asynchronous since the cells of the sorter enter their empty states

asynchronously and at different times.

4.1 Sorting cell implementation for changing the operation

mode

A fragment of the chain of the 64 sorting cells is shown in Figure 5. The sorting cells are

activated along the activation channel marked with➩. Suppose the block sorter operates in

normal mode. In order to change the operation mode of the sorting cells to test mode the

ModeReq input is set to high externally. As a result, theGReq signal goes high. When the

first cell is empty its operation mode is changed to test mode and the acknowledge signal

LAck0 is set to high. Once the second cell went through the empty state its operation mode

is changed to test mode generating a rising event on theLAck1 output. The procedure for

setting the rest of the sorting cells to test modes repeats sequentially till the last cell. Once

all the cells have been set to test mode theLAck63 signal goes high. A a result, a falling

event is produced on theGReq input of the block sorter. The acknowledge signalsAcki (i=0,

1, ... , 63) of all the sorting cells are reset sequentially starting from the first cell. When the

LAck63 signal has been reset the sorting cells can be tested.

Cell0 Cell1 Cell63

➩�

Cell2

GReq

ModeReq

LAck63

LAck0 LAck1 LAck2 LAck62

Figure 5 : Diagram which shows the changing of the operation mode of the sorting
cells
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The operation mode of the block sorter is changed to normal operation mode by resetting its

ModeReq input. Thus, theGReq signal goes high. Since the sorting cells are tested in paral-

lel they pass their empty states at nearly the same time. As a result, the operation mode of

the sorting cells is changed in parallel. Once theLAck63 output of the last cell has been set

to high theGReq signal is reset. WhenLAck63 is set to low the block sorter can operate

according to its specification.

An arbiter can be used to identify the situation when the sorting cell is empty. Different

designs of arbiter circuits can be found elsewhere [Chan73]. The arbiter takes a request for

changing the operation mode of the sorting cell and waits until the cell goes to the empty

state. When it happens the arbiter serves the request and changes the operation mode of the

cell. Figure 6 shows a fragment of the handshake implementation of the sorting cell. This

sorting cell contains an arbiter which is placed after the repeater. The left communication

channel of the arbiter serves requests when the cell is empty and ready to process a new data

item. The right channel is used for changing the operation mode of the circuit.
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Initially, the Boolean signal ModeReq is low and the storage element called variable is

reset. The operation mode signal OpMode is low and the case element is switched to normal

mode where its passive port is connected to its active port NormCh2. The sorting cell is

activated along its activation channel (➩).

The ModeReq signal is set to high in order to change the operation mode of the cell to test

mode. As a result, a rising event is generated on input GReq of the mode control circuit.

When the (i-1)-th sorting cell (i=1, 2, ... , 63) has been set to test mode (LAcki-1 goes high)

the request output Req of the mode control circuit is set to one and the arbiter of the i-th cell

waits until a handshake is completed on its left channel to activate its right channel. Once

the i-th cell went through its empty state (the D1 input of the arbiter has been reset) the G2

output of the arbiter goes high, setting the output of the variable to high (OpMode=1). The

case element is switched connecting its passive port to its active port TestCh. A rising event

is produced on the acknowledge input Ack of the mode control and the LAcki signal goes

high.

If the LAcki-1 input is reset the Req output of the mode control is set to low, resetting the G2

output of the arbiter. As a result, a handshake is completed along the right channel of the

arbiter and the latch of the variable is closed. A rising request event produced on the request

output of the active port of the repeater is transmitted by the arbiter to its G1 output, activat-

ing the passive channel of the sequencer.

The block sorter is set to normal operation mode when the boolean signal ModeReq is set to

low. As a result, the mode control circuit passes a rising event generated on the GReq input

of the i-th cell directly to its Req output. When a handshake is completed along the left

channel of the arbiter (the cell is empty) the G2 output of the arbiter is set to high, resetting

the output of the variable. Thus, the case element is switched connecting its passive port to

active port NormCh2. Once a handshake has been completed along the right channel of the

arbiter a rising event produced on the request output of the passive port of the repeater is

transmitted to the G1 output of the arbiter and the cell can perform in normal operation

mode.



14

4.2 Mode control

Figure 7a illustrates an implementation of the mode control circuit of the i-th sorting cell

(i=2, 3, ... , n-2; n=63). The ModeReq input of this circuit is used to control the C-element

C1 which acts a symmetric (ModeReq=1) or asymmetric C-element (ModeReq=0). A

CMOS implementation of C1 is shown in Figure 8.

Initially, all the C-elements of the mode control are reset. In test mode the ModeReq is set to

high and C1 operates as a symmetric C-element. The GReq input is set to high. Once the

LAcki-1 input of the C-element C2 has been set to high its state is changed to one, setting the

C2
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Figure 7 : Mode control circuit implementations for a) the i-th (i=2,3, ... , n-2); a) the
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output ofC1 to high. WhenAck=1 the output of C-elementC3 is set to one (LAcki=1). The

GReq signal is reset. When theLAcki-1 input has been set to low the output ofC2 is reset.

As a result,Req goes low. Once acknowledged (theAck input is low) the output ofC3 is

reset.

In normal operation mode (ModeReq=0) C1 acts as an asymmetric C-element and the out-

puts ofC2 andC3 are held at zero permanently. Thus,C1 repeats signals from itsGReq

input to itsReg output. The output ofC3 is low because the output ofC2 is kept at zero

when the cell is set to normal operation mode. The state ofC2 cannot be changed to one

since theLAcki-1 input is held at zero by the previous cell.

Figure 7b shows implementations of the mode control circuitsMC0 andMC1 of the first

and second sorting cells respectively. Circuit MC0 passes a request signal from itsGReq

input directly to itsReq output whereas acknowledge events from theAck input are trans-

formed to theLAck0 output. The implementation ofMC1 is similar to the mode control cir-

cuit illustrated in Figure 7a except its C-elementC2 which has three inputs to ensure that its

state is zero during the changing of the operation mode of the cell to normal mode. For

instance, let us assume thatReq=LAck0=1. WhenGReq goes low theReq signal is reset,

priming C2. The two-input C-elementC2 shown in Figure 7a will be set to state one if the

LAck0 is still high. Thus, the third input ofC2 connected to theGReq input (see Figure 7b)

prevents the state ofC2 from changing to one.

The mode control circuit of the last sorting cell (see Figure 7c) is similar to the one illus-

trated in Figure 7a. A multiplexer is added to the original design in order to pass theAck

Out

wkIn1

In2

CIn1
In2

Out

Figure 8 : CMOS implementation of the C-element C1

-ModeReq

ModeReq=0

In1
In2

Out
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signal throughC3 in test mode (ModeReq=1) and theXOR gate in normal operation mode

(ModeReq=0). Since the output ofC2 is held at zero permanently when the operation mode

of the block sorter is changed to normal mode the XOR gate acts as a repeater of acknowl-

edge signals generated on itsAck input.

Testability of the mode control circuits

A fault analysis of the mode control circuits of the sorting cells connected in a chain (see

Figure 5) carried out usingSIMIC fault simulator revealed that their single stuck-at faults

cause the block sorter to halt [Sim94].

For example, stuck-at faults on inputs and outputs of the C-elements (see Figure 7), the

XOR gate and the multiplexer (in Figure 7c) violate the handshake protocol during the

changing of operation mode of the block sorter.

A stuck-at-1 fault on theModeReq input prevents the corresponding cell from setting to

normal operation mode since the output of theReq output cannot be changed (the output of

C2 is held at zero). As a result, the block sorter will halt in normal operation mode.

A stuck-at-0 fault on theModeReq input prevents a rising event generated on theLAcki-1

input from propagating through the corresponding C-elementC2 since theReq output is set

to high first by a high signal applied to theGReq input. Thus, the communication protocol is

broken and the circuit halts.

A stuck-at-1 fault on the control input of the multiplexer of the circuit shown in Figure 7c

can be easily identified by preventing any activity on its output in normal operation mode.

A stuck-at-0 fault on theModeReq input of this multiplexer can be detected in test mode. In

this mode both inputs of the XOR gate are activated. As a result, two rising and two falling

event are transmitted to the output of the multiplexer which violates the communication

protocol and causes the whole circuit to deadlock.
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4.3 Converting the two-phase mode control signal into a four-

phase signal

The Boolean ModeReq is a two-phase signal which is high in test mode and low in normal

operation mode. Since the whole circuit operates using four-phase signalling a mechanism

for converting the two-phase signal into a four-phase one is required (see Figure 9).

In the initial state the toggle element is reset and the inputs of the circuit are low. A rising

event on the ModeReq input is transmitted to the GReq output which is a request for chang-

ing the operation mode of the circuit. A rising acknowledge event on the LAck63 input

changes the dotted output of the toggle element to one. As a result, the output of the XOR

gate goes low and the GReq signal is returned to zero. When the acknowledge signal

LAck63 has returned to zero the toggle element steers a rising event to its output ModeAck.

Thus, the two-phase signalling protocol is completed along channel ChMode2 after the

completion of the four-phase signalling protocol along channel ChMode4.

5. Implementation of the random pattern generator

In the BIST design of the block sorter random pattern test vectors applied to the inputs of

the sorting cells (see Figure 4) are produced by the request-driven random pattern generator

the implementation of which is illustrated in Figure 10. The core element of the generator is

a synchronous linear feedback shift register (LFSR) of the maximum length [MClus86,

Russ89].

Figure 9 : Mechanism for converting a two-phase signalling along channel ChMode2
into a four-phase signalling along channel ChMode4
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Initially, the LFSR is set to its non-zero seed value. When the request signalRin is set to

high the corresponding output of the sequencer goes high (see Figure 10). This signal is

buffered to ensure the required drive strength of signals applied to the clock input of the

LFSR. As a result, the LFSR goes to its next state changing its outputs. When the negated

output of the C-element has been reset the output of the buffer B goes low, setting the

acknowledge outputAin of the generator to high. Once theRin input has been reset the

sequencer sets itsAin output to low. Thus, a handshake between the generator and the envi-

ronment is completed.

The random pattern generator used in the BIST block sorter is based on the 16-bit LFSR

described by the following derivation polynomial:

.

The period of such an LFSR is equal to  handshakes between the generator and the

environment. Only 8 outputs of the LFSR are used to stimulate the test inputs of the sorting

cells.

6. Simulation results and cost comparisons

The original and BIST versions of the block sorter were designed usingCadence CAD tools

and simulated usingSIMIC design verification tools developed by Genashor Corporation

[Sim94, Ashki94]. All the logic elements of the both designs of the block sorter were imple-

mented on the base of the AMULET low power cell library [EdTR95].

Figure 10 : A request-driven pseudo-random pattern generator based on the LFSR
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An exact fault simulation analysis of the comparator of the sorting cell (see Figure 3) was

carried out with the help of theSIMIC fault simulator. As a result, three hard-to-detect faults

have been found (r=3) which have the minimal random pattern detection probability

(pd= ). In order to calculate the upper bound of the random pattern test length

(L) the following formula can be used [Savir84, Wag87]:

, (1)

whereqt is thea priori defined escape probability threshold of the random test procedure

which is the probability that at least one stuck-at fault from the set of single stuck-at faults

will not be detected.

The calculation results showed thatL=1741 andL=2920 forqt=0.1 andqt=0.99 respec-

tively. The fault simulation results demonstrated that the application of 1000 pairs of 8-bit

random test vectors is enough to detect all stuck-at faults inside the comparators of the sort-

ing cells.

The simulation of the BIST block sorter (see Table 1) reveals that the application time of a

pair of random test vectors to each sorting cell is equal to 92ns. The area overhead of the

BIST design is 15.7% compared with the original version of the block sorter. In normal

operation mode, the average dynamic power consumption of the BIST block sorter is equal

to 28.4nJ per pair of tests which is slightly more than that of the original design.

The maximum number of extra pins required to implement the block sorter with BIST fea-

tures is 5:

• 2 pins for the signalsModeReq andModeAck of the two-phase channelChMode2;

• 3 pins for the channel along which the test results are observed, i.e., theMixCmp output

plus a request and an acknowledge signals.

1.95 10
3–×

L
qt r⁄( )ln

1 pd–( )ln
--------------------------≥
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The number of extra pins for the implementation of the result observation channel can be

reduced by sharing some of the system channels using select blocks and multiplexers. As a

result, the number of extra pins can be reduced to 2.

7. Conclusions

It has been demonstrated how the BIST technique can be applied to design testable asyn-

chronous circuits with regular structures. A case study of an asynchronous block sorter has

been presented. The sorter has been designed using handshake components and post-opti-

mized to achieve a minimal silicon area after its compilation. The structural regularity of

the block sorter makes it possible to test all of its sorting cells in parallel sharing a common

source of random test vectors. This increases the random test performance of the circuit. A

novel technique for changing the operation mode of the BIST block sorter has been pre-

sented. The operation mode of the sorting cells of the block sorter is changed asynchro-

nously with the help of an arbiter introduced into the design of each sorting cell to detect its

empty state.

Single stuck-at output faults on the control paths and all single stuck-at faults on the data

paths of the sorter have been considered. The block sorter is tested for faults on its control

a. NT is the number of transistors
b. T1 is the minimum application time of one input vector in normal operation mode
c. PD is the performance degradation
d. T2 is the minimum application time of a pair of test vectors in test mode
e. SA is the silicon area
f. AO is the area overhead
g. NEP is the number of extra pins
h. PC is the average power consumption per test in normal mode (NM) and test mode (TM)

Table 1 : Simulation results and cost comparisons

Block
Sorter

NTa

k
T1b

ns
PDc

%
T2d

 ns

No.
pairs

of
tests

SAe AOf

%

NEPg PCh

nJ

Max Min NM TM

Original 109.1 66.7 n/a n/a n/a 14.50 - - - 26.5 -

BIST 126.5 69.7 4 92 1000 16.77 15.7 5 2 28.4 30.0

mm
2
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lines during normal operation since these faults cause the whole circuit to halt. Stuck-at

faults on the control wires, which are not used in test mode, and on the data paths along

which the data is transferred are detectable in normal mode by applying two blocks of test

vectors. The BIST mode of the block sorter has been designed to test stuck-at faults inside

the comparators of the sorting cells and to reduce the test application time.

The BIST version of the block sorter demonstrates relatively small area overhead and low

average power consumption per test and requires a few extra pins. Fault simulation results

reveal 100% testability of both single stuck-at output faults at the high-level representation

of the block sorter and all stuck-at faults inside data processing blocks of its sorting cells.
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