
Wagging Logic: Implicit Parallelism Extraction Using Asynchronous Methodologies

Charlie Brej

School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK

Email: cbrej@cs.man.ac.uk

Abstract—Asynchronous circuits have a number of potential
performance advantages over their synchronous equivalents
due to the ability to exploit average case performance. These
advantages are offset by the loss of performance caused
by the handshaking overheads which causes designs to be
throughput bound. This paper investigates the nature of the
throughput problem and proposes a novel automatic approach
to overcome its effect. The designs generated using the method
not only cease suffering from a throughput bottleneck, but also
attain the parallel computation properties despite their original
sequential specification. The method is then demonstrated on

a processor design. The processor demonstrates the ability of
the method to implement a seven gate delay per operation
superscalar microprocessor with: register locking, instruction
reordering, simultaneous multi-threading, cache-banking and
other complex techniques, all automatically or with minor
design effort. Such a design can be constructed in days rather
than the hundreds of person years required by conventional
methodologies.

I. OVERVIEW

This paper examines the performance properties of asyn-

chronous circuits and presents the reset phase of the circuits

as a bottle neck. A solution is presented which attempts to

overcome this bottleneck, akin to loop unrolling the design.

When combined with early evaluation, this solution is then

shown to have properties of extracting instruction level par-

allelism from circuits which were originally designed to be

sequential. This property is then demonstrated on a processor

design along with descriptions of a series of methods used to

overcome some new adverse effects. The work establishes a

methodology of rapidly designing systems where parallelism

is automatically extracted, thus yielding high performance

designs in a fraction of the design effort.

A. Background

Modern high performance processor designs require a vast

engineer effort to implement the many features which are

necessary to enable the expected high degree of instruction

level parallelism. Due to the high level of complexity, many

designers abstract the behaviour of the system to a data-

flow/token-based representation. This allows the operations

to stall while awaiting data or executing more demanding

operations. In such systems, during each clock-cycle, each

stage executes a handshake with its upstream and down-

stream neighbours to agree the transfer of data. Not only

does this allow a intuitive representation of the system, but

also permits advanced features such as early evaluation,

where an operation can generate results before all inputs

are present, then stall in order to consume the late arriving

data.

These features are already implicitly present in many

asynchronous methodologies. The removal of the clock

allows further advanced elements such as delay-insensitively

encoded bit-level pipelining. The simplest delay insensitive

code (one which presents its own validity) is a 1-of-2 (dual

rail) code where rising one wire signifies a zero and rising

the other signals a one. When both signals are low the

data deemed to be not ready, and thus the presence of new

data can be detected. These codes are also usually used in

high speed domino/pre-charge circuits, but gate level logic

implementations are also common. Because both the inputs

and the outputs of the logic blocks are encoded using delay-

insensitive codes, no external timing sources are required

to delay the propagation of the data. Instead, individual

bits of the output are evaluated as soon as sufficient inputs

have arrived. No design effort has to be expended on

making circuits early evaluating, the simplest automatically

generated logic implementations produce the outputs early.

II. ASYNCHRONOUS CIRCUIT PERFORMANCE

Progress in single threaded performance of modern pro-

cessors is becoming stagnant due to the design complexity

of very large scale systems, the design challenges presented

by globally distributed clock nets and increasing variation

in component delays. Asynchronous circuits have the po-

tential of achieving substantially higher performance targets

than synchronous equivalents. Most advantages have been

demonstrated and exploited [1], [2], [3], [4], yet these fail

to yield the expected performance boost.

A. Advantages

The advantages of asynchronous circuits can be broken

down into two groups, those brought in by using local

delays rather than a global clock and those achieved by

using implicit timing when computing (shown in figure

1)[5]. The clock overheads consist of unbalanced stages and

clock skew. Bundle data designs can alleviate clock skew

by generating a local stage clock signal by handshaking

with neighbouring stages. Although unbalanced stages can

cause a degradation in performance in synchronous systems

by running at the speed of the slowest stage, the bundled

data approach does not automatically solve this problem as

Figure 1. Clock Overheads

the design will still have a cycle time equal to the slowest

executed stage. So design effort is still required to lessen

this effect and it will never be fully removed by selectively

executing/bypassing stages.

Matched delay overhead is a much greater component of

the clock overheads. These generally cannot be overcome

by using bundled data approaches, (although data dependant

delays can alleviate some of the worst-average delay effect).

The basis of these overheads is the worst-case delay assump-

tions made by estimating the delay of a computational stage.

The worst case delay is calculated by taking the slowest

operation within a stage, assuming the worst case voltage

and temperature and the most pessimistic distribution of poor

transistors and wires.

B. Disadvantages

Judging by the overheads of synchronous systems, it

should be easy to implement asynchronous designs with

130% higher performance. Yet rarely do asynchronous im-

plementations come close to the speeds of synchronous de-

signs. There are a number of minor effects which contribute

to this (area overhead, overly conservative delays, no speed

binning...), yet these do not account for the performance

decrease removing all advantage gained by the shift to the

asynchronous methodology in the first place.

The one major overhead is the inability of data to progress

to a stage which is going through the reset phases due to the

previous value passing through it [6]. Many designers seri-

ously under-estimate the granularity of pipelining required

to allow tokens to flow freely without colliding with the reset

phase of the previous operation. The length of the reset phase

is dependant on the protocol and arrangement of the stage.

In the four-phase protocol, the computation happens in

parallel with the request assert phase (as shown in figure

2). The protocol then goes through three more phases: ac-

knowledge assert, request release and acknowledge release.

In early output designs [6], the output is generated even

before the request collection has completed.

Not all the phases are of equal length, for example, bun-

dled data circuits have coarse grain data bundles which re-

quire little synchronisation and well constructed asymmetric

delays mean the request release phase is much shorter than

the computation phase. To demonstrate the latency and cycle

delays of different design methodologies, a simple circuit

was constructed in a assortment of design styles. The test

design chosen was a 32 bit 2:1 multiplexer. Table I shows the

Figure 2. Four Phase Handshake

latency and cycle delays of the design in eight popular design

styles: two phase bundled data micropipelines[7], phased

logic using LEDR[8], Mousetrap[9], four phase bundled

data[10], DIMS[11], NCL-X[12], early output[6] and the

Caltech QDI pre-charged half buffer style[13]. The delay

values are given in gate delays and the table is designed

to only give very rough estimations of the actual delays.

This is because there is a multitude of other factors (delay

margins, non-inverting gates etc.) which make a completely

fair comparison impossible. Despite this, all design styles

show the cycle time being far greater than the latency, with

four-phase circuits being particularly affected.

Logic Style Latency Cycle Cycle/ Phases
Time Latency

2 Phase BD 4 8 200% 2
LEDR 4 8 200% 2
Mousetrap 3 6 200% 2
4 Phase BD 3 8 267% 4
DIMS 5 18 360% 4
NCL-X 3 14 467% 4
Early Output 3 16 533% 4
Caltech QDI 2 12 600% 4

Table I
DELAYS OF VARIOUS LOGIC STYLES

The cycle time over latency fraction gives the number of

dummy pipeline stages which would need to be added in

order to avoid tokens having to wait for a stage to complete

its reset phase before accepting the new data. Adding five

empty stages to a Caltech QDI style stage would give a

stage five latency delays before it was used again. By then

it should have completed its reset and be ready to accept

new data.

This fraction makes several assumptions which are prac-

tically impossible to uphold. These are: that all stages are

the same depth, all inputs arrive at the same time and

all acknowledgements arrive at the same time. If these

assumptions are not upheld, the cycle time becomes longer,

making the cycle time 43 times greater than the latency

of the stage and causing the stage to require additional

pipelining.

One example of a circuit which has a disproportionally

long cycle time is an incrementer when implemented in early

evaluating bit level pipelined design styles. The average

latency of a 32 bit incrementer, implemented in early output

logic, is little more than three gate delays as the inputs bits

arrive in a skewed wave-front and the carry chain is usually

short. The worst case path of the stage is 30 gate delays with

30 wire forks. The cycle time of the design is two times the

30 C-element delays to gather the requests of the stage, two

times the 30 C-element delays to collect and propagate the

acknowledge signals and eight additional delays for latching

and completion detection. The total is a cycle time of 128

gate delays which is 43 times greater than the latency of the

stage.

C. Solutions

There are a number of methods to alleviate the problem

of logic stages taking too long to reset. One method is to

use a two-phase protocol which has a lower cycle time

to latency ratio. This cuts the ratio down but two-phase

logic relies on timing assumptions which require additional

overheads. Another possibility is to increase the pipelining

of the design. This increases the latency of the stage.

Slack matching[14], [15] automatically inserts the correct

number of latches into circuits but the technique does not

take into consideration data dependant stage delays and

often generates designs with more latches than gates. The

additional latency added by the latches adds a substantial

overhead over the pure computational delay. Other methods

such as anti-tokens and early drop latches[6] reduce the reset

phase, yet these also add latency and are only beneficial in

specific circumstances.

III. WAGGING LOGIC

Wagging buffer structures[16] have been shown to be

beneficial when constructed in large tree structures[17].

Wagging buffers are an attempt to increase the capacity of

FIFO structures without increasing the latency. A wagging

buffer alternates the writes to one of two (or more) latches

on the input and on the output it alternates the reads from the

latches. This structure doubles the capacity of the FIFO, but

adds latency of a demultiplexer and a multiplexer. The added

latency makes the structure only beneficial when the wagged

FIFO already has a capacity of two or more. The technique

also increases the cycle time of the input and output stages

which are the bottlenecks of the structure.

While wagging buffers aim to duplicate buffer structures

in order to increase the FIFO capacity, wagging logic

attempts replicate entire logic stages to allow them to reset in

parallel. This is done by copying the logic of each stage and

cycling which copy of the logic the data should go through.

This allows one of the stages to compute while the others

are resetting.

Each stage has a wagging level which signifies the number

of copies of logic the stage contains. Each copy is called a

slice and has a slice number associated with it. The inputs

and outputs of each slice are connected to mixers which

collect the data from the outputs of one wagging logic

Figure 3. Example Wagging Pipeline

(a) Single channel mixer (b) LCM channel mixer (c) Direct
mixer

Figure 4. Mixer designs

stage and then distribute the data to the slices of the next

stage. The mixers also latch the data to allow the connected

slices to work independently. Figure 3 shows an example

pipeline with a combination of non-wagging and wagging

logic stages. These are connected using a selection of mixers.

A. Wagging Mixers

To connect two wagging stages, it is possible to multiplex

the data of the input stage to a single channel and then

demultiplex it again to the second stage, in a similar way to

wagging buffers. This construction, shown in figure 4(a), has

a performance limit of the cycle time of the single pipeline

latch and the multiplexing/demultiplexing logic (about 20

gate delays in most four-phase design styles).

An alternative is to demultiplex first to a set of inter-

mediate channels and then multiplex again. The number of

intermediate channels is the LCM (lowest common multiple)

of the level of wagging of the two stages, shown in figure

4(b). An initial token, at reset time, is placed in latch 0.

This is then passed to the first output slice. The value from

the first input slice is written to latch 1, then passed to

the second output slice. The sequence continues and after

six transactions it repeats. The structure does not have a

bottleneck stage which will limit the performance, but it

still has the added latency of the mixers.

When connecting two stages with an equal level of

wagging, multiplexing becomes unnecessary as the lowest

common multiple of any number and itself is itself. The

output of stage X is passed as an input to stage X+1 (mod

the wagging level), shown in figure 4(c). If a single level of

wagging is used in an entire design, the latency overhead is

limited to the interfaces between wagging and non-wagging

logic.

Figure 5. Example Accumulator Design

B. Example Wagging Design

Figure 5 shows a design of a simple accumulator circuit.

The circuit has two operations: “Load” reads a new value

into the register and “Accumulate” adds the value in the

register to the input value and writes the result back to

the register. The type of operation executed is declared in

the input channel, and it directs the multiplexer to pick the

appropriate value. The contents of the register is also passed

out each cycle. The worst case delay of the stage is the delay

of the adder and the multiplexer.

Figure 6. Wagging Accumulator

Figure 6 shows the design

and example operation in a

level six wagging logic im-

plementation of the accumu-

lator. The sequence of oper-

ations passed through it is:

0) Load

1) Accumulate

2) Accumulate

3) Load

4) Accumulate

5) Load

In the figure, the data de-

pendencies can be seen as

the black units and arrows

(results of grey units were

discarded). There are the two

sequences of accumulates

which have no data depen-

dencies (the black line re-

gions are unconnected). Be-

cause the second data depen-

dency region does not rely

on the results of the first, the

second set of accumulations

can be executed in parallel

(subject to the arrival of in-

puts).

This can be seen in fig-

ure 7, where the opera-

tions conducted by the cir-

cuit are shown flattened. Un-

less there is a conflict over

hardware resources, which

Figure 7. Flattened Accumulator Operation

in this case there is not (thanks to the high level of wagging),

the timing of operations is only dependant on the arrival of

inputs. If data of the first self contained sequence is late, or

the computation is slow, the second sequence can complete

before the first has generated a result. This allows proceeding

stages to try conducting as much processing as possible

before they strictly require the data from a late arriving input.

Because early output logic uses bit level pipelining, each

bit of the result progresses to the next stage as soon as

it is calculated. This is highly advantageous when using

units such as adders or incrementers which have an ordered

sequence of desiring input values and generating output

values. This greatly reduces the delay of two adders placed

in series as parts of the result generated early by the first

adder are the parts desired first by the second adder.

C. Results

To examine the performance advantages of wagging logic,

a system was constructed which allows the user to create

wagging circuits and analyse their performance. The system

takes designs written in synchronous structural verilog as an

input, allows them to be desynchronised into early output

dual-rail circuits and selectively waggs parts of the circuit

to a chosen level. The final implementation can then be

simulated and have its performance evaluated. The perfor-

mance is, by default, measured by counting the number

of results generated within the time of 10,000 gate delays

(deemed sufficiently long to extract an accurate performance

figure) in a simulation. As a rule of thumb, the number of

operations executed within 10,000 gate delays is equal to

the number of MIPS if the design had been implemented in

300nm technology. The tool also outputs the slowest path[6]

of the simulation which can then be used to improve the

performance of the design.

The result of the 32 bit incrementer stage, described in

section II-B, can be fed back to the input of the stage, creat-

ing a self-sustaining circuit which continuously increments a

value. Without any wagging, this circuit manages to execute

78 operations within a 10,000 gate delay simulation run.

This gives a cycle time of 128 gate delays (as predicted).

When wagging the stage there is an option of which wagging

mixer should be used. If a direct mixer is used (see “Inc.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80 90 100

O
p

e
a

ti
o

n
s
 i
n

 1
0

,0
0

0
 G

a
te

 D
e

la
y
s

Level of Wagging

Inc. Single
Inc. Direct

Accumulate

Figure 8. Performance of Wagging Logic Stages

Direct” in figure 8), each wagging slice added to the design

adds 78 to the number of operations able to execute in the

simulation time. As the design is very throughput bound this

can continue up to a wagging level of 43 (executing at three

gate delays per operation), when the design becomes latency

bound and the performance cannot be increased with the

addition of extra logic slices. If a single channel mixer was

used in the design, the performance could increase to 138

operations, within the simulation time (72 gate delays per

operation), at which point the bottleneck of using a single

stage becomes dominant (see “Inc. Single” in figure 8).

In the incrementer design, each operation was dependant

on the result of the previous calculation. When this is not the

case, a new execution cycle can begin before the result of

the previous cycle has been generated. An example of this is

the accumulate circuit described in the previous section. The

design was constructed with inputs to each wagging slice

supplying operations infinitely fast so as to only measure

the performance of the stage itself (and not the input logic).

A repeating sequence of one load and one accumulate was

executed. The results in figure 8 (labelled “Accumulate”)

show the increase in performance does not reach a ceiling.

If the graph was extended, the number of operations would

continue to increase to infinity (assuming a sufficiently fast

supply of inputs and collection of outputs).

The same technique was applied to a selection of ISCAS

benchmarks. The inputs were connected to data generators,

which would exercise the circuit, and the outputs were ac-

cepted and acknowledged. When the circuits were wagged,

nearly all gave results similar to the accumulator example,

where the performance could be increased indefinitely by

adding more logic slices. Some circuits with specific data

input patterns exhibited a sequenced operation where each

computation cycle was dependant on the data generated by

the last (and thus had a performance ceiling), but without

a clear understanding of the function of the circuits it is

difficult to see if the designs were executing in a sensible

mode of operation. With all ISCAS benchmark circuits

and input data patterns examined, the wagging designs

took less than ten gate delays per operation. Because of a

lack of suitable large scale benchmarks to demonstrate the

feasibility of the technique, a new design was constructed

to demonstrate the wagging logic design methodology.

IV. EXAMPLE PROCESSOR DESIGN

“Red Star” is a simple processor, based on the MIPS[18]

instruction set, designed to explore the possibilities of

wagging logic. Using wagging logic, and other techniques

outlined below, the design becomes very large and it is not

suggested that this is a reasonable alternative to common

place practises at this point in time. What is presented is a set

of techniques which will become increasingly viable as the

price of increasing single threaded performance (in both area

and design effort) continues to rise. The target of the design

is to implement traditionally complex architectural features

with little or no design effort and combine this with the

fastest computation possible. The issues of area and power

consumption are not addressed at this point.

A. Datapath

The datapath, shown in figure 9, was designed in a

synchronous style with a small alteration. The design is fully

functional in the synchronous form. The alteration made is

the addition of two stages before committing the results

back to the register bank or updating the PC to a branch

target. This increases the branch shadow by two instructions.

This is unnecessary in the synchronous version. In the

asynchronous wagging design this increases the number of

instructions prefetched. The penalty of prefetching a greater

number of instructions is not felt in the wagging version

as the resources wasted executing these operations are not

shared with those of instructions fetched at the branch

target address. Nor is there a large delay before the branch

target instructions begin to be fetched, as the new PC value

quickly progresses through the two additional empty stages

and informs the target slice the address to fetch the next

instruction from.

B. Register Bank

All storage, in early output logic, is constructed using

FIFO latches. Each cycle, the value is removed from the

latch and a new value is written to it. Register bank latches

have enable inputs which select whether the new data input

should be written or the old value should be recycled. This

kind of construction is wasteful of both energy and area,

but it fits well with wagging logic. In wagging circuits, the

contents of the whole register bank is copied to the register

bank in the next slice. If the data, a register is to be written

with, arrives to the register bank late, the register value will

Figure 9. Red Star Datapath

arrive at the next slice some time later than the others. Unless

this register is read in the next slice, there is no need to

wait for its arrival before reading one of the other registers.

Once the value is entered into the register bank in one of

the previous slices, it can propagate through the slices and

quickly catch up the computation wavefront. This enables

the register bank to block while waiting for the value to be

written. Additionally this allows the register bank reads and

writes to be executed in parallel and even out of order. If

the value, to be written to a register, is still being computed,

there is nothing stopping the following instructions from

writing to the next slice of the register bank (to any register).

C. Caches

The two caches (instruction and data) are the only con-

nections between the processor and the environment. The

position of the interfaces between wagging and non-wagging

logic is likely to be a bottleneck unless a low bandwidth

point is chosen. Having a single cache shared between all

slices will cause the system to be bound by the performance

of the cache. The alternative of treating the cache like a

register bank and copying its entire contents to the next slice

is impractical. Here, two different approaches are used to

allow independent parallel access to a component, yet keep

coherence between the instances.

1) Instruction Cache: A parallel access instruction cache

can be constructed by adding a cache to each slice of the

wagging design. Although the data contained within the

caches of the different slices will be different, the processor

does not insist that data, once fetched in one cycle, persists

into the next cycle. The individual caches in each slice need

not keep coherency. Figure 10 shows the performance of the

Red Star processor (using individual instruction caches in

each slice) executing a loop of nine instructions (including

the branch shadow). The circuit starts with no valid data

in the caches and all instructions have to be fetched from

RAM. After executing nine instructions the loop restarts and

the same nine instructions are re-executed.

If the chosen level of wagging was nine, each slice would

be re-executing the instruction it executed the previous iter-

ation, and thus that slice’s instruction cache would already

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70

O
p

e
a

ti
o

n
s
 i
n

 1
0

,0
0

0
 G

a
te

 D
e

la
y
s

Level of Wagging

Figure 10. Performance Executing a Nine Instruction Loop

contain the relevant data. Because nine is not a sufficient

wagging level to permit the circuit to execute in non

throughput bound operation, level 18 wagging performance

is greater, although it fetches the set of nine instructions

twice.

If the chosen wagging level was 16, or another number

which shares no common factors with the number of in-

structions in the loop, then each slice’s cache will end up

fetching every instruction in the loop. This is made worse

by the large number of caches which have to be filled with

data from RAM. Wagging levels with common prime factors

with the number of instructions in the loop give higher cache

hit rates.

A microprocessor which is only fast when executing

loops of nine instructions is not desirable, so a method of

increasing the cache hit rates in any size loop (or program

structure) is needed. Instead of updating the PC to the branch

target in whichever slice it gets delivered in, it is possible

to delay the effect of a branch and start execution of the

new instruction block in a more appropriate slice. For the

computation to be aware which slice it is currently executing

in, a slice number component can be used which outputs

the slice number the data is passing through. This can be

constructed to statically output a fixed number for each slice,

or generate the number dynamicly by using a mod N counter

(where N is the wagging level).

By comparing the branch target address with the slice

number, it is possible to determine if the slice should fetch

this instruction or pass the branch target unchanged to the

next slice and execute a NOP. The easiest way to designate

which slice should start the execution of a new instruction

block is to compare the address modulo the wagging level

to the slice number. Performing modulo operations becomes

trivial if the divisor is a power of two (result is equal

to the bottom bits of the dividend). For example a block

of instructions at branch target address 0x01E8 should be

executed starting from slice 8 if the wagging level was 16

(0x01E8 mod 16 equals 8).

If a power of two wagging level was used, each slice

would only execute instructions which have the slice number

in the bottom bits of the address. The advantage of this

technique is to break up the large instruction cache into

smaller faster caches, allow their access to be parallelised,

ensure the data is not replicated in multiple caches and allow

the removal of several bottom bits of the address stored in

the cache (as these are guaranteed to be equal to the slice

number).

Once implemented, the 16 way wagged, branch delaying

design executed at 8 to 20 gate delays per useful instruction

executed (i.e. not counting the inserted NOP instructions).

Loops of size 17 gave very poor results as each branch

caused 15 stages to be skipped and execution to resume in a

stage which had only just entered its reset phase. This was

improved by wagging at level 16 but using a mod 8 slice

counter to determine the branch start slice. This reduces the

worst case penalty to 7 skipped stages which only sometimes

propagates to a slice which is still resetting. This design run

at 8 to 10 gate delays per useful instruction executed in

all loop sizes above 4. Better results could be obtained by

making the compiler aware of the penalty associated with

specific branch distances.

2) Data Cache: The data cache requires coherence be-

tween caches in different slices, but the bandwidth to it

is much lower than the instruction cache, so the option of

having a single data cache is a possibility. The alternative

is to implement independent write-through caches with a

coherency network between them. This is an attractive

option as there is correlation between the data addresses

accessed and the instruction addresses they are accessed

from. This could lead to increased cache hit rates.

The data cache can be constructed using a set of separate

caches, along with a small level zero (L0) cache which is

propagated the same way as the register bank. The L0 cache

stores the write accesses of the previous N instructions. If

there is no cache access in a slice, a value from the L0

cache is updated in the L1 cache and the committed flag is

marked for that cache number in the L0 cache. Once a value

has been committed in all L1 caches it can be removed from

the L0 cache. This strategy is somewhat complicated and a

routine to deal with an overflow of the L0 cache must also

be designed. It is also possible to reduce the number of data

caches from the number of slices down to a lower number by

sharing a single cache between several slices. Although these

possibilities are being examined, because the benchmarks

used are not sufficiently memory access demanding, the data

cache is rarely in the slowest path, and thus improvements

in its performance have little effect on the performance of

the design as a whole. This remains part of future work.

D. Simultaneous Multithreading

The latch inputs to slice zero are of a different design

than the other latches in the system. Most latches are made

with a half-buffer design but the slice zero latches must

start with a token reset time which form the initial circuit

state. These latches could start with two tokens at reset time

causing two computational wavefronts. Because the data of

the two wavefronts is carried with them, the circuit holds

no state when the next wavefront reaches it. This allows

the two threads to be fully independent yet be executed on

the same hardware. This effectively replicates simultaneous

multithreading, where a single set of resources is shared

between two (or more) threads. There are still points where

the design must be altered to assure the correct functionality.

Elements which do not keep all their data in the wavefront

(in this case caches) must be manually protected from one

thread accessing or damaging the data of another. This can

be achieved by adding a variable which holds the ID of the

thread, carried in the wavefront. This ID can then be used

by the caches to determine which data is accessible.

The second necessary change is in the interface with

non-wagging logic. The interfaces now, rather than cycling

through the slices in order, must interleave accesses from the

two threads. This can be done in either a deterministic pre-

calculated sequence, or using arbiters to service the requests

in order of their arrival.

The latch controllers of slice zero could dynamically add

or remove threads from the processor with the state of the

whole thread being moved to or from the slice zero latches.

This procedure could be controlled by an external process

or by the design itself.

Experimental results show the strategy is easy to imple-

ment but requires the wagging level to be doubled to retain

the same performance. Doubling the area in order to execute

two threads could be attained by making two versions of the

same processor, so there is no obvious advantage to using

this technique. Possible advantages of simultaneous multi-

threading include sharing cache and other resources, direct

communication between threads and distributing activity of

a single thread over a larger area to avoid hot spots. Further

investigation into this field will be conducted.

E. Optimisation

Extracting the slowest path[6] of a simulation run is a

powerful method of finding the bottleneck in the system.

In the Red Star design the slowest path was mainly in

the ALU adder and the branch target adder. These were

initially constructed using a ripple carry design. This design

performs very poorly when adding a small positive to a small

negative number. The delay before generating the result

can be up to 64 gate delays (as much time as is allocated

for 10 instructions). Using a standard fast carry or carry

select adder to implement both adders would have been an

option but here an incremental optimisation approach gave

favourable results.

The incremental method looks at the slowest path and

tries to shorten it by rearranging the logic or adding hinting

logic. Hinting logic is superfluous logic which is designed

to generate a result much faster than the normal logic, but

only in specific circumstances. In the case of the adders,

the hinting logic detected long carry chains and propagated

a carry value directly to a specific adder slice. This would

only be activated when the long carry chain is present but

when it does it saves many gate delays worth of latency. The

biggest advantage of this method is to generate units with

low latency on specific paths as concentrating on all paths

will increase the average case delay.

When applied, this technique decreased the cycle-time per

instruction down to seven gate delays even on subtraction

and branch back heavy benchmarks. The ALU adder was

implemented with a fast top bit result generation (for sign

test operations). The branch adder was constructed with fast

generation of the bottom eight bits, as these are used to as

the index into the instruction cache with remaining bits of

the result then having several additional gate delays before

they are needed. With more effort it should be possible to

reduce the instruction cycle-time to about five gate delays

per instruction without making any architectural changes.

F. Results

Although the design contains gates which have a high

fan in, these gates only exist in the reset logic and do

not form a part of the slowest path. If they did then the

issue could be resolved by increasing the wagging level

or increasing pipelining in the problem stage. The current

design executes a number of benchmarks (made from kernels

of compiled C code segments) at an average of seven gate

delays per instruction. If the design would be technology

mapped, the delay per instruction would be 10±3 inversion

delays, depending on the success of the technology mapper

and layout. Table II shows the performance of a number

of synchronous and asynchronous designs[19], [20], [21],

[22], [1], [23], [24], [25], [2], [26], [27]. To compensate for

technology scaling, the performance is given in number of

inversion delays per instruction (on their respective process

technologies). The delays of inversions were taken from

TSMC standard cell libraries[28] for each technology. There

are factors which are not considered, such as the complexity

of different instruction sets and the manufacturing speed of

the benchmarked sample (some designs were manufactured

on slow runs and the Pentium D and Core 2 chips were from

slow bins), thus the results in the table should only be used

as a rough estimate.

V. FUTURE WORK

The work presented in this paper is still in its early

stages and although the aim of achieving high performance

Processor MIPS Tech. Inversion Inversions/
(nm) delay(ps) Instruction

SPA 6 180 60 2778
Philips 80c51 4 500 170 1471
ARM996HS 83 130 45 268
nanoSpa 63 180 60 265
Amulet 2 40 500 170 147
TITAC-2 52 500 170 113
Aspro 115 250 85 102
Lutonium 200 180 60 83
Amulet 3 115 350 120 72
Fulcrum Vortex 475 150 50 42
MiniMIPS 180 600 200 28
Pentium 1 300 425 250 85 28
Pentium D 805 2746 90 30 12
Core 2 E6300 4502 65 22 10
Red Star 10± 3

Table II
PERFORMANCE OF A SELECTION OF PROCESSORS

computation appears on target, it is important to examine

the design methodology’s position and its future targets.

A. Power and Area

The work presented makes a fundamental assumption

which must be true for the method to yield beneficial results.

When generating parallel designs, the unit that is to be

parallel must be duplicated. This trades a doubling of the

area, in exchange for a possible doubling of the performance.

This performance may be then decreased due to the increase

in wire capacitance. Despite this, this is an assumption that

all parallel system designers take for granted, and has been

shown to be true through the numerous highly parallel high-

performance designs present on the market today.

The energy consumption of wagging circuits is nearly

identical to the original non-wagging circuit which forms

each of the slices. The same number of logic gates transition

for each operation, but these transitions are dispersed among

the slices. In non-wagging designs, slack matching latches

need to be inserted to improve the performance. These cause

the additional energy consumption which is not present in

the wagging version. Latches between slices are constructed

using half-buffer designs (except for slice 0), rather than

latches which hold a token at reset time, have adequate

decoupling (to not deadlock the system) and thus consume

more power. Finally, because the computation phase is quasi-

delay-insensitive, the design has implicit voltage scaling

compensation and resistance to environmental fluctuations.

Static power consumption is a problem which increases

with area which increases with the wagging level. For low

wagging levels the increase in performance is also linear

with the wagging level, thus the static power per operation

executed remains the same. If the slices of the design are not

placed in a regular manner, there is a possibility of longer

wires which may increase capacitance and delays. Effects

such as this may become relevant with large designs and

high levels of wagging.

It is important to consider all these issues when choosing

the where, at what level and even if to apply the wagging.

Wagging is not suitable in all instances and the paper

explores the upper limit of the approach. There is no reason

to apply the approach to the point of saturation, and if a

doubling in performance is sufficient then a two way wagged

design should be used.

B. Design Flow

Parts of the flow, such as desynchronisation to early output

logic, wagging, simulation, timing extraction and dynamic

timing analysis, have been implemented. This is a product

of several years of effort. The flow still needs a technology

mapper and an input language. The technology mapper will

enable a more accurate comparison between the different

technologies and even permit post-layout measurements.

Desynchronisation is used to allow an easy design input.

This is already showing its limitations as components such as

additional buffering, conditional transactors, memory blocks

etc. have to be added into the verilog parser and treated

differently from other elements. The use of a language

gives a more high level way of implementing these features.

This protects against their misuse and allows verification

which could assure non-deadlocking function of advanced

components.

An input language also allows the design to be com-

piled into a network of course blocks (such as adders and

multiplexers) which the optimisation system could be aware

of. These blocks may have possible optimisation techniques

described for them to allow the slowest path analysis to

pick and apply the most suitable optimisation to overcome a

specific bottleneck. This has already shown itself to be a very

powerful technique to create custom components for their

specific applications (in the branch and ALU adders of the

Red Star design). These optimisations were done manually

but an automatic approach is being worked on. Automatic

latch removal and insertion has been implemented and the

optimisation system will be expanded to alter the logic

structure and shorten specific paths.

While the more advanced features of the design flow are

finalised, a small experimental processor is being manufac-

tured. Executing the 80c51 instruction set and manufactured

in 130nm technology, the processor aims to demonstrate

the ability of wagging logic to implement complex non-

RISC multi-cycle instruction sets and explore new caching

structures. The level of wagging was set at 11 to examine

the point of saturation, although the performance does not

increase above level eight. All slices are by-passable to allow

the removal of any faulty slice, and test the performance at

different levels of wagging. The returned silicon is expected

in March 2010. The post layout results look positive, simula-

tions yielding speeds roughly 100 MIPS unwagged, and 800

MIPS when wagged, although these are highly dependant

on code executing. During 2010, it is hoped that both the

completed tool-flow and the Red Star example design will

be available to the public.

VI. CONCLUSIONS

This paper presented a powerful strategy to overcome

the greatest obstacle in generating high performance asyn-

chronous circuits. The application of the method and addi-

tional high-performance techniques are demonstrated on an

example processor design. Implicit data dependency tracking

allows the engineer to concentrate on higher level archi-

tectural improvements rather than worrying about blocking

stages and sharing resources. Bit-level early output logic

also allows average-case latency based computation, but the

methods shown in this paper can just as easily be applied

to any asynchronous logic style.

It is hoped that wagging designs could compete with

current high performance cores, but with a fraction of the

design effort. This can already be demonstrated, to a small

extent, by the relative ease of constructing complicated

features in Red Star. The processor took one person week of

design effort, and optimisation to achieve seven gate delays

per instruction took another three person days. This was

deliberately short in order to research automatic optimisation

of a rapidly implemented processor, but, even without an op-

timiser, this simple implementation reaches the performance

of current cutting-edge designs. Within a very short period

of time it would be possible to implement a world class

processor with speeds unattainable by synchronous design

methods.

REFERENCES

[1] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N. C.
Paver. AMULET2e: An asynchronous embedded controller.
In International Symposium on Asynchronous Circuits and
Systems, pages 290–299. IEEE Computer Society Press, 1997.

[2] J. D. Garside, W. J. Bainbridge, A. Bardsley, D. M. Clark,
D. A. Edwards, S. B. Furber, D. W. Lloyd, S. Mohammadi,
J. S. Pepper, S. Temple, J. V. Woods, J. Liu, and O. Petlin.
Amulet3i - an asynchronous system-on-chip. In International

Symposium on Asynchronous Circuits and Systems, page 162,
Washington, DC, USA, 2000. IEEE Computer Society.

[3] Montek Singh, Steven M. Nowick, Jose A. Tierno, Sergey
Rylov, and Alexander Rylyakov. An adaptively-pipelined
mixed synchronous-asynchronous digital fir filter chip op-
erating at 1.3 gigahertz. In International Symposium on
Asynchronous Circuits and Systems, page 84, Washington, DC,
USA, 2002. IEEE Computer Society.

[4] Montek Singh and Steven M. Nowick. High-throughput
asynchronous pipelines for fine-grain dynamic datapaths. In
International Symposium on Asynchronous Circuits and Sys-
tems, page 198, Washington, DC, USA, 2000. IEEE Computer
Society.

[5] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou.
Coping with the variability of combinational logic delays.
ICCD, pages 505–508, 2004.

[6] Charles Brej. Early Output Logic and Anti-Tokens. PhD thesis,
University of Manchester, 2005.

[7] Ivan E. Sutherland. Micropipelines. Commun. ACM,
32(6):720–738, 1989.

[8] Robert B. Reese, Mitchell A. Thornton, and Cherrice Traver.
A fine-grain phased logic cpu. isvlsi, 00:70, 2003.

[9] Montek Singh and Steven M. Nowick. Mousetrap: Ultra-
high-speed transition-signaling asynchronous pipelines. iccd,
00:0009, 2001.

[10] J. Sparsø and S. Furber. Principles of Asynchronous Circuit
Design - A Systems Perspective. Kluwer Academic Publishers,
dec 2001.

[11] David E. Muller. Asynchronous logics and application to
information processing. In Symposium on the Application
of Switching Theory to Space Technology, pages 289–297.
Stanford University Press, 1962.

[12] Alex Kondratyev and Kelvin Lwin. Design of asynchronous
circuits using synchronous cad tools. IEEE Des. Test,
19(4):107–117, 2002.

[13] A. Lines. Pipelined asynchronous circuits. Master’s thesis,
California Inst. of Technology, 1995.

[14] Peter A. Beerel, Nam-Hoon Kim, Andrew Lines, and Mike
Davies. Slack matching asynchronous designs. In International
Symposium on Asynchronous Circuits and Systems, pages 184–
194, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[15] Piyush Prakash and Alain J. Martin. Slack matching quasi
delay-insensitive circuits. In International Symposium on
Asynchronous Circuits and Systems, page 195, Washington,
DC, USA, 2006. IEEE Computer Society.

[16] A. Yakovlev A. Bystrov. Fast four-phase tree fifo. In
Asynchronous Forum, 1999.

[17] Rudolf H. Mak. A taxonomy of maximally elastic buffers.
In CS-Report 04-26. Dept. Math. and Comp. Sc., 2004.

[18] Gerry Kane. MIPS RISC architecture. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1988.

[19] L. A. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley,
S. Temple, J. D. Garside, and Z. C. Yu. Spa - a secure
amulet core for smartcard applications. Microprocessors and
Microsystems, 27 (9):431–446, October 2003.

[20] Hans van Gageldonk, Kees van Berkel, Ad M. G. Peeters,
Daniel Baumann, Daniel Gloor, and Gerhard Stegmann. An
asynchronous low-power 80c51 microcontroller. In Inter-
national Symposium on Asynchronous Circuits and Systems,
pages 96–107, 1998.

[21] A. Bink and R. York. ARM996HS: the first licensable,
clockless 32-bit processor core. IEEE Micro, 27(2):58–68,
March 2007.

[22] L. A. Plana L. A. Tarazona and D. A. Edwards. Architectural
enhancements for a synthesised self-timed processor. In
Asynchronous Forum, 2007.

[23] Akihiro Takamura, Masashi Kuwako, Masashi Imai, Taro
Fujii, Motokazu Ozawa, Izumi Fukasaku, Yoichiro Ueno, and
Takashi Nanya. TITAC-2: An asynchronous 32-bit micropro-
cessor based on scalable-delay-insensitive model. In Interna-
tional Conference on Computer Design, pages 288–294, 1997.

[24] Marc Renaudin, Pascal Vivet, and Frédéric Robin. Aspro-216:
A standard-cell q.d.i. 16-bit risc asynchronous microprocessor.
In International Symposium on Asynchronous Circuits and
Systems, pages 22–31, 1998.

[25] Alain J. Martin, Mika Nystrom, Karl Papadantonakis, Paul I.
Penzes, Piyush Prakash, Catherine G. Wong, Jonathan Chang,
Kevin S. Ko, Benjamin Lee, Elaine Ou, James Pugh, Eino-
Ville Talvala, James T. Tong, and Ahmet Tura. The Lutonium:
A Sub-Nanojoule Asynchronous 8051 Microcontroller. In In-
ternational Symposium on Asynchronous Circuits and Systems,
pages 14–23, 2003.

[26] A. Lines. The Vortex: A Superscalar Asynchronous Processor.
In International Symposium on Asynchronous Circuits and
Systems, pages 39–48, 2007.

[27] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nys-
troem, Paul Penzes, Robert Southworth, and Uri Cummings.
The design of an asynchronous MIPS R3000 microprocessor.
In Advanced Research in VLSI, pages 164–181, 1997.

[28] Cadence Design Systems TSMC Standard Cell Libraries,
1997-2007.

