
A communication infrastructure for a million processor

machine
Andrew D Brown

Electronics and Computer
Science

University of Southampton
SO17 1BJ UK

+44 2380 593374

adb@ecs.soton.ac.uk

Mark Zwolinski
Electronics and Computer

Science
University of Southampton

SO17 1BJ UK
+44 2380 593528

mz@ecs.soton.ac.uk

Steve B Furber
Computer Science

University of Manchester
M13 9PL UK

+44 161 2756129

steve.furber@manche
ster.ac.uk

John E Chad
Biological Sciences

University of Southampton
SO17 1BJ UK

+44 2380 594292

j.e.chad@soton.ac.uk

Jeff S Reeve
Electronics and Computer

Science
University of Southampton

SO17 1BJ UK
+44 2380 592784

jsr@ecs.soton.ac.uk

Luis Plana

Computer Science
University of Manchester

M13 9PL UK
+44 161 2756194

lplana@cs.mancheste
r.ac.uk

Peter R Wilson
Electronics and Computer

Science
University of Southampton

SO17 1BJ UK
+44 2380 594162

prw@ecs.soton.ac.uk

David R Lester
Computer Science

University of Manchester
M13 9PL UK

+44 161 2755762

david.r.lester@manche
ster.ac.uk

ABSTRACT

SpiNNaker (Spiking Neural Network architecture) is a massively
parallel computing machine, comprised of a million ARM9 cores.
These are realised on 50000 chips, 20 cores/chip. While it could
be classed as a MIMD machine, there is no unifying bus structure,
and there is no attempt to maintain cross-system memory
coherency. Inter-core communication is brokered by a fast
message-passing system, built in and managed at the hardware
level - thus there is an inevitable tension between speed and
flexibility.

The message passing infrastructure was designed to be fast and
have a high bandwidth; a consequence of this design decision is
that the effective data payload is only 32 bits/packet. Whilst this is
ample for a wide range of applications, whilst the system is
initialising, it is necessary to transport relatively large and
sophisticated data structures across the system. This can be slow
and cumbersome, and makes some form of internal self-
organisation extremely attractive. This is described in outline
here.

Categories and Subject Descriptors

C.1.3 [Computer Systems Organisation]: Other architecture
styles.

General Terms

Algorithms, Design, Reliability, Experimentation, Languages.

Keywords

Multi-core, self-organisation.

1. INTRODUCTION
Generalising outrageously, the class of problems for which
SpiNNaker is ideally suited contain any problem that can be
represented as a mesh, where node-node interactions are local (in
the topological sense). This definition is broad: it covers network
simulations (including large networks of neurons), finite element
problems, ray-tracing, and many-body interaction problems, to
name but a few.

2. THE SYSTEM
The computational ensemble of a million cores is not isotropic.
The sheer scale of the system demands that some type of hierarchy
exists: each SpiNNaker node contains 20 cores, of which one is
selected as the 'monitor' core. Each of these 20 cores has its own
local memory, plus they share access to some node-local RAM,
six fast I/O ports and 128 MByte of node-local off-chip SDRAM -
see figure 1. Each chip is connected (via the IO ports) to six
physically adjacent nodes. The configuration of choice at this
level is currently a hexagonal mesh, although there is nothing
sacred about this. One of the node-local central resources on each
chip is an ethernet port; approximately one in 5000 of these is
connected to an external 'conventional' computing system.

Thus there exists a shallow hardware hierarchy - although in
steady state, any core in any node may communicate with any

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

other core in any node, whilst the system is configuring, it is
obliged to make use of the hardware hierarchy provided: worker
core → monitor core → ethernet monitor core → outside world.

Three types of packet support inter-core communication: Nearest
neighbour (NN) packets, which allow monitor cores to
communicate with their nearest neighbour monitors, via the fixed
hardware I/O links; point to point (P2P) packets, which allow
arbitrary pairs of monitors to communicate, and multicast (MC)
packets, which allow arbitrary pairs of cores to communicate. The
NN protocol is entirely hardware, and is available from power-up,
but the latter two require significant bootstrap processing to
establish.

Once in place, however, (by a mechanism nor described here), the
next problem is the mapping of our problem mesh into the
physical processor mesh.

2.1 Self-organisation
Conventional place and route techniques (generally considered
largely a solved problem by the late 1980s) require - at some stage
- for some part of the system to have an overview of the entire
problem space. Where this is not feasible, hierarchical
decomposition allows the problem to be solved as a series of sub-
problems, and the solution stitched together; the decrease of
quality of solution is not considered important.

For the P2P infrastructure, we have 50000 routing tables (one for
each chip), each containing 50000 entries. Thus we need to

compute and load into SpiNNaker 2.5GBytes of data to create this
packet network.

For the MC problem, using neural network simulation as an
example, we will typically be mapping 109 neurons to 106 cores
(each core can support the emulation of 1000 neurons), and
(assuming the average neural fan-in to be a biologically realistic
104), establish 1013 neural interconnects, which are then required
to be loaded into 50000 MC route tables. These numbers indicate
that we cannot even hold the data in a 32-bit offline machine, let
alone reason about them in anything other than linear time.

Fortunately, we have an alternative: a million core parallel
processing machine, which, with careful planning, can actually
generate the results where they need to be.

The computational process by which this is performed is best
outlined by analogy. Consider the problem mesh as a set of
mutually repulsive particles; spread them randomly on a two-
dimensional plane; allow the system to relax into a configuration
of minimum potential energy, energy being defined as some
suitable non-linear function of inter-particle distance.
(Inconveniences such as local energetic minima can be dealt with
as in simulated annealing.)

Mapping this solution technique onto the pair of discrete
networks that is the processor:problem mesh, we allow each
problem node to broadcast (via the NN packet protocol) a "field"
(some scalar value that is decreased geometrically with every node
hop.) Each node also accumulates an integral of all fields
broadcast from every other node. Although the notion of slope is
not easily defined in a discrete mesh with an arbitrary topology,
the notion of relative size of (topologically) adjacent integrals is
easy to capture - if a problem node detects a lower field integral
on a processor node adjacent to the one to which it is currently
mapped, it migrates there.

Thus the system (i.e. the problem:processor node map) will
"relax" to a configuration of minimum energy, which corresponds
to a maximal separation of problem nodes within the processor
mesh.

Note this is an asymptotic process, and these are never realised
comfortably on discrete networks - they can oscillate. Whilst this
in itself is not an issue (we are attempting to solve a discrete
placement and mapping problem, not solve a field), the reliable
detection of this oscillation, and the identification of a steady state
solution (the two are not the same thing) remain problematical.

3. ACKNOWLEDGMENTS
This work is supported by the Engineering and Physical Science
Research Council (EPSRC), ARM Ltd, Silistix Ltd, and Thales
Ltd, UK.

Packet IP
MUX

Processor
0

Packet
decode

Routing
engine

Output
select

Processor
1

Processor
N

Processor
N-1

System NoC

SDRAM
interface

System
RAM

System
ROM

Ethernet Watch
dog

System
controller

DDR SDRAM

Input
links

Output
links

JTAG
debug

Outside world communication

Figure 1: SpiNNaker internal architecture

