
In order to support the MMU and cache the processor
will require a coprocessor interface. This is the major fea-
ture of the ARM6 which is missing on AMULET1. The
ARM6 coprocessor interface is synchronous and inappro-
priate for asynchronous use, so a new interface will be
developed. The MMU and cache will be based on existing
ARM designs for architectural compatibility, but will be
enhanced for asynchronous applications by pipelining
where appropriate.

Taken branches have a high latency cost on AMULET1,
so various history and trace techniques are currently under
investigation to establish their applicability to asynchro-
nous pipelined processors. It is not yet clear whether such
techniques will be cost-effective on a successor design.

8: Conclusions

The AMULET1 design demonstrates the feasibility of
developing complex asynchronous circuits. The design
encompasses many of the more complex features of mod-
ern high-performance RISC processors, such as exact
exception handling, instruction set compatibility and pipe-
lined operation, and shows that asynchronous techniques
are applicable to commercial scale digital design tasks.

AMULET1 is within a factor 2 of the ARM6 with
respect to important parameters such as performance,
power consumption and die size. As such it demonstrates
that asynchronous designs are comparable with clocked
designs, but AMULET1 does not, at this stage, demon-
strate any significant advantage over its clocked predeces-
sors.

It should be borne in mind, however, that ARM6 is a
highly evolved fourth generation synchronous processor,
whereas AMULET1 is the first of its line. Furthermore,
many features of the ARM instruction set have been
designed with reference to its synchronous implementa-
tion; these have been sources of difficulty in the asynchro-
nous implementation and bias the comparison
unfavourably against AMULET1.

Work is still going on to enhance the design and substan-
tial improvements are possible in many areas. It is hoped
that in the near future we will be able to demonstrate real
advantages for asynchronous methodologies based on the
techniques outlined in this paper.

9: Acknowledgements

The AMULET1 design work described in this paper
was carried out as part of ESPRIT project 5386, OMI-MAP
(the Open Microprocessor systems Initiative - Microproc-
essor Architecture Project). Subsequent work has been sup-
ported as part of ESPRIT project 6909, OMI/DE-ARM (the
Open Microprocessor systems Initiative - Deeply Embed-
ded ARM Applications project). The authors are grateful
for this support from the CEC.

The authors are also grateful for material support in var-
ious forms from Advanced RISC Machines Limited, Acorn
Computers Limited, Compass Design Automation Lim-
ited, VLSI Technology Limited and GEC Plessey Semi-
conductors Limited. The encouragement and support of the
OMI-MAP and OMI/DE-ARM consortia are also acknowl-
edged.

10: References
[1] Furber, S. B., “VLSI RISC Architecture and Organization”,

Marcel Dekker, New York, 1989.
[2] Sutherland, I.E., “Micropipelines”, Communications of the

ACM. Vol. 32, No. 6, January 1989, pp. 720-738.
[3] Furber, S.B., Day, P., Garside, J.D., Paver, N.C. and Woods,

J.V., “A Micropipelined ARM”, Proceedings of the IFIP TC
10/WG 10.5 International Conference on Very Large Scale
Integration (VLSI’93), Grenoble, France, September 1993.
Ed. Yanagawa, T. and Ivey, P. A. Pub. North Holland.

[4] Paver, N.C., Day, P., Furber, S.B., Garside, J.D. and Woods,
J.V., “Register Locking in an Asynchronous Microproces-
sor”, 1992 IEEE International Conference on Computer
Design: VLSI in Computers & Processors. October 1992.

[5] Garside, J.D. “A CMOS VLSI Implementation of an Asyn-
chronous ALU”. IFIP Working Conference on Asynchro-
nous Design Methodologies, April 1993. Ed. Furber, S. B.
and Edwards, M. D. Pub. North Holland.

[6] Yuan, J., and Svensson, C., “High-Speed CMOS Circuit
Techniques”, IEEE Journal of Solid-State Circuits, Vol. 24,
No. 1, February 1989, pp. 62-70.

[7] Dobberpuhl, D. W. et al., “A 200-MHz 64-b Dual-Issue
CMOS Microprocessor”, IEEE Journal of Solid-State Cir-
cuits, Vol. 27, No. 11, November 1992, pp. 1555-1565.



the write has completed and the write word line has been
disabled; then the lock FIFO entry can be removed and a
read operation which is held on the lock can proceed.

In figure 10 the write enable latch has been added to the
circuit. This latch is now responsible for holding the write
word lines stable until the write has completed, so the lock
FIFO entry can be cleared as soon as the register contents
are updated and the read can proceed concurrently with the
disabling of the write word line. This significantly reduces
the write to read delay when a read stalls on a lock.

It also illustrates the modularity of the asynchronous
design style; this sort of change can be incorporated inter-
nally in a block such as the register bank and, provided the
interfaces to adjacent blocks are preserved, the enhanced
register bank can be inserted into the design without any
changes elsewhere in the system. It is rarely so straightfor-
ward to introduce a single-point enhancement in a synchro-
nous system.

7.4: Pipeline simplification

The pipeline structure employed on AMULET1 is now
believed to be deeper than is optimal. A deep pipeline can
support high throughput (when instructions can be issued
fast enough to keep it full) but has poor latency properties
which are particularly noticeable when a change in control
flow occurs which, in typical code, is on average once
every five instructions.

Lock FIFO
Rin Ain

Aout Rout

Write Enable
Enable

Remove Lock

Read Lock Gating

Registers

Write Complete

W Bus

W
rit

e 
D

on
e

P
re

 C
ha

rg
e 

D
on

e

Write Enable Latch
Rin

Rout
Ain
Aout

C

C

TOGGLE

Figure 10: Improved latency register read logic

The main pipeline will work better if it is made wider
and shallower. We intend to remove the separate pipeline
stage for the multiplier and shifter, and bypass these com-
pletely when they are not required (which already happens
with the multiplier, but not the shifter). Instructions which
require the shifter will take longer in the execute stage, but
as these are relatively infrequent the reduced pipeline
latency for other instructions will show an overall advan-
tage. There will also be a power saving whenever the
shifter is bypassed, which will frequently be possible with
the addition of dedicated logic to perform alignments of
immediate (literal) operands.

Subsidiary control pipelines are in many places longer
than is useful, and these will be reduced. The maximum
depth of prefetching will also be reduced by reducing the
depth of the instruction and PC pipelines, saving power and
improving performance.

7.5: Improved latch circuits

The micropipeline style of asynchronous design
requires the use of self-timed latches to control each of the
pipeline stages. The latches used on AMULET1 are con-
ventional transmission gate latches with weak feedback
inverters to give static operation. These latches require
complementary control wires. The latch control wires are a
significant source of capacitive load (and hence power dis-
sipation) during pipeline operation, so the need for two
control wires for each latch is undesirable for low-power
designs. The control problem is also made more difficult
since both wires must be monitored to ensure that latch
operations have completed.

Investigations into alternative latch technologies have
been carried out to examine the applicability of single-
phase latches [6] which require only one control wire.
These have been used to considerable effect on high-per-
formance designs, most notably the DEC Alpha [7]. For
low-power applications some modification is required to
give the latches fully static behaviour, but this is possible
and appears to give significant benefits both in speed of
operation and energy per cycle compared with the AMU-
LET1 latch technology.

Four-phase control has been mentioned above in the
context of instruction decode logic; it may also offer bene-
fits for the control of simple pipelines.

7.6: Architectural extensions

The ultimate goal of the work beyond AMULET1 is to
produce an asynchronous integrated CPU which incorpo-
rates an MMU and cache memory. This chip will operate
asynchronously for all internal operations, but will inter-
face to a conventional external memory system through a
clocked interface.



but in practice this has not been borne out. This can be
attributed to a number of factors including:

• The primary instruction decoder cannot issue in-
structions at the rate required to keep the pipeline
busy.

• Data dependencies between consecutive instruc-
tions in typical compiled code cause frequent in-
terlocks which stall the pipeline.

The second of these is partly a function of the compiler.
The ARM6 compiler makes no attempt to separate depend-
ent instructions because the ARM6 shows no benefit from
so doing. Preliminary improvements in compiler optimiza-
tion strategies have yielded significant performance
improvements in AMULET1.

In retrospect the pipeline structure on AMULET1 is too
deep. Micropipelines make building FIFO buffers easy and
it is therefore tempting to use them too liberally; the AMU-
LET1 design falls into that trap. Many of the pipeline
stages are contributing nothing to the chip’s performance,
or in some cases actually diminish it, whereas they all dis-
sipate power.

The asynchronous control structures used on AMU-
LET1 are not a major source of inefficiency. It has been
estimated that they represent a small area overhead (10% to
20%) compared with an equivalent clocked organisation
and can support similar operating speeds. The asynchro-
nous design style does, however, preclude the use of some
architectural enhancements which contribute to the high
performance of clocked processors with deep pipelines -
the prime example of this being register forwarding (which
will be discussed further below).

In some areas the asynchronous approach shows a par-
ticularly strong win. The ALU, for example, can exploit a
simple structure with operand dependent delay which gives
better throughput on a typical mix of operand values than a
much more complex ALU for a synchronous system, opti-
mised for rare worst case operand values [5]. The flexibility
of the asynchronous approach allows a design to be opti-
mised for typical conditions whilst supporting rare but nec-
essary functions with simple logic; there is no need here to
commit large amounts of silicon to ensuring that infre-
quently used operations can complete within a fixed clock
cycle.

7: Future enhancements

The AMULET1 design was completed early in 1993,
since which considerable effort has been put into analysing
the behaviour of the design to identify sources of perform-
ance loss with a view to the design of a more efficient suc-
cessor. This work has produced a number of enhancements
of the design, as detailed below.

7.1: Faster decode logic

The major bottle-neck in the design is the primary
instruction decoder. The logic task here is complex as the
ARM instruction set exposes some features of the synchro-
nous pipeline, and these must be unwound here and emu-
lated on a very different pipeline.

The improvements under investigation include increas-
ing the level of concurrency in the decode logic, and
switching from two-phase to four-phase (return to zero)
asynchronous control within the decoder.

7.2: Result forwarding

Conventional register forwarding depends on perform-
ing a comparison between the destination register address
of one instruction and the source register addresses of a
successor instruction. These addresses are associated with
instructions at different pipeline stages, but in a synchro-
nous design these stages are controlled by the same clock
so the comparison can be performed directly.

In an asynchronous pipeline comparisons between
addresses in different stages cannot be compared without
explicit synchronisation between the two stages, which is a
potential source of inefficiency (since synchronisation is
always achieved by slowing the faster stage down). There-
fore AMULET1 does not employ forwarding logic but
passes all the results through the register bank where a
locking mechanism is used to avoid hazards.

Because typical code contains frequent data dependen-
cies between successive instructions, the locking mecha-
nism will often hold the processor up (particularly when the
decode bottleneck is removed). Therefore an equivalent to
register forwarding is required. This has been solved within
the asynchronous environment by retaining the result reg-
ister address of one instruction for use during the decode of
its successor. If the successor requires this register as a
source operand the decoder will bypass the register read
phase and collect the operand from a ‘last result’ register
which will be associated with the ALU and act like a local
register cache controlled by the instruction decoder.

A similar mechanism can be used to forward data items
loaded from memory directly to the execution unit when
required.

7.3: Register lock latency reduction

When the result forwarding mechanism is not applicable
the register bank locking mechanism will manage data
dependencies as on AMULET1 [4]. A simple enhancement
to the existing mechanism has been developed which
reduces the write to read delay significantly; this is illus-
trated in figure 10.

On AMULET1 the write word line is driven directly
from the lock FIFO output. This must remain stable until



niques to compute the first transfer address. Dedicated
hardware is used to identify the registers to be transferred,
and the PC incrementing loop in the address interface gen-
erates the sequential memory addresses used for the trans-
fers.

The major difficulty in the implementation of these
instructions is the need to provide an exact exception and
restart mechanism when memory faults arise (for example
when a virtual memory system has paged the target mem-
ory area out onto disk). The problem is particularly severe
in the case of load multiple, since this instruction can mod-
ify most of the processor state before the fault is detected.

The implementation of load multiple on AMULET1
uses four phases:

• The address of the first transfer (which is always
the lowest address) is computed and the data
transfer is initiated. Subsequent addresses are
computed autonomously in the address interface.

• The base write-back value is computed and writ-
ten back to the base register, but a copy is kept in
the execution pipeline in case a fault arises.

• The target registers are marked to receive their
data values. Note that the base register may ap-
pear in the transfer list and be corrupted.

• The base register is read again to ensure that any
transfer to it has completed. If a fault has arisen,
the write-back value is written back again to pre-
pare for a restart.

When R15 is in the transfer list it is always transferred
last, so any fault will arise before the PC is corrupted.
Therefore the PC and the base register are always preserved
when a fault arises, which is sufficient to ensure that the
instruction is restartable.

5: AMULET1 characteristics

The principal characteristics of AMULET1 are summa-
rised in table 1, along with the corresponding characteris-

Table 1: Characteristics of AMULET1 and ARM6

AMULET1 ARM6

Process 1µm DLM CMOS 1µm DLM CMOS

Cell area 5.5mm x 4.1mm 4.1mm x 2.7mm

Transistors 58,374 33,494

Performance 9K dhrystones 14K dhrystones
@ 10MHz

Power 83mW 75mW @ 10MHz

tics of ARM6, a functionally similar synchronous design.
These characteristics show that the asynchronous design

uses twice the number of transistors and twice the silicon
area of the clocked chip on an equivalent process, and
delivers rather lower performance at a similar power con-
sumption.

The performance measure in table 1 is based upon
dhrystone code compiled for the ARM6; subsequent work
has shown that this can be improved significantly by the
inclusion of optimisations which take account of the inter-
instruction dependencies of the AMULET1 design. With
such optimisations the performances of the two chips are
then very similar.

Note also that for both chips these performance figures
are based on worst case slow-slow simulations. Production
ARM6 chips have been qualified at significantly higher
clock rates.

The design effort which was required to define the
organisation of AMULET1 and then to convert this organ-
isation into a silicon layout was around 5 man years. Again,
this is comparable with the design resource required to pro-
duce an equivalent clocked design

6: Retrospective analysis

The primary motivation for this investigation into com-
plex asynchronous circuits was the need for design styles
which deliver lower power consumption than is achieved
through current practice.

If the measure of power efficiency is the delivered
MIPS/Watt at peak performance, then AMULET1 has little
to offer; indeed, on this measure it performs less well than
an ARM6 (though note that ARM6 is a world-leading
design on this measure, so it sets a high target to beat).
However, before writing-off asynchronous logic for low-
power applications, the following points should be noted:

• AMULET1 is a first attempt at an asynchronous
design of this complexity. As such the primary
goal at this stage was to prove feasibility, not low
power. There is considerable scope for improving
the power efficiency.

• Power consumption at peak performance may not
be the most important measure. Most processors
are idle much of the time and asynchronous logic
has the potential to drop instantly to zero power
under idle conditions. Clocked systems can only
save power on a coarse granularity by stepping
the clock rate down.

The organisation of AMULET1 employs a relatively
deep pipeline, which accounts for much of the increase in
transistor count and die size relative to ARM6. The benefit
of the deeper pipeline should be an increase in throughput,



control logic. Access to the ALU result bus is controlled
non-deterministically by an arbiter; steering the result to
the correct register is controlled by the register bank lock
FIFO. (Where the destination is R15, which in ARM is an
alias for the PC, the memory control pipeline steers the data
directly to the address interface rather than to the register
bank.)

Post-indexed addressing modes require the base register
to be used unmodified as the memory address, then an off-
set is added to the base to prepare it for the next transfer.
Again this is achieved in a single datapath operation as
shown in figure 8. Note here how the base register is copied
directly from the register bank to the address interface via
a dedicated bus. This bus is absent on ARM6 (where it
could not be exploited because of the memory interface
restrictions) but is needed here to make single cycle opera-
tion of post-indexed instructions possible.

The load and store addressing modes allow immediate
offsets to be used instead of the register offsets illustrated
in figures 7 and 8; these are implemented in a similar way
to the branch offset flow shown in figure 6. The buses are
configured so that when an immediate offset is used the
second register read port can be used to access data for stor-
ing, as shown in figure 9. The majority of store instructions
in typical programs use immediate offsets, but when a reg-
ister offset is required it is no longer possible to complete

registers

address out

data out data in

pass thru

as instr

A + B/A - B

ipipe

imm extr.

pc pipe

RnRm

Rn PC

Figure 8: Datapath activity during a post-
indexed load instruction

the instruction in a single datapath operation, since three
register operands are required. In this case the address com-
putation is performed in one operation exactly as for a load
instruction, then the data is accessed in a subsequent oper-
ation. Since the store data-out route is less complex than the
address route, the data will be available to rendezvous with
the address without delaying the issue of the memory
request. The only cost of the second operation is the delay
to the following instruction. Although stores with register
offsets are rare in typical code, they must be supported for
ARM6 compatibility.

4.4: Load and store multiple register instructions

In addition to the single register load and store instruc-
tions, the ARM architecture also supports instructions
which can load or store any subset (or all) of the registers
in current use. These instructions are used for procedure
entry and return, context switching, and high-bandwidth
memory block copies. Although they occur less frequently
in typical code than the single register transfer instructions,
they are responsible for a similar total number of registers
loaded and stored, so similar attention must be paid to their
efficient implementation.

Load and store multiple register instructions support
auto-indexing addressing modes which are similar to the
single register transfer instructions, and use similar tech-

registers

address out

data out data in

pass thru

no shift

A + B/A - B

ipipe

imm [11:0]

pc pipe

RnRd

Rn PC

Byte?

Figure 9: Datapath activity during a post-indexed
store instruction with immediate offset



instruction.
A branch on ARM6 takes three clock cycles to com-

plete; this is because pipeline flushing is handled directly
by the instruction and the extra two cycles match precisely
the depth of prefetching. On AMULET1 the branch is per-
formed by a single pipelined operation with a separate
mechanism to control flushing. In practice there is no per-
formance advantage in reducing the branch to a single
cycle since the flushing overhead remains the same, but the
non-deterministic amount of flushing required makes the
simple mechanism employed on ARM6 impractical here.

4.3: Load and store instructions

One place where AMULET1 uses fewer datapath oper-
ations than ARM6 to good effect is in single register load
and store instructions. ARM6 has a memory interface
which allows the transfer of one word per clock cycle, and
since load and store instructions require two words to be
transferred across this interface (one word of data and one
instruction word) these instructions require a minimum of
two clock cycles to complete their execution phase. In fact
load instructions take three cycles to complete since data
arrives from memory too late to be written directly back
into the target register, and a third cycle is required to com-
plete the transfer.

Since two (or three) cycles are required for these

registers

address out

data out data in

pass thru

left 2

A + B

ipipe

signx [23:0]

pc pipe

PC

PC

Figure 6: Datapath activity during a branch

instructions, the ARM6 datapath is available for useful
work during these cycles. The ARM instruction set exploits
these cycles to allow more powerful addressing modes to
be supported than are normally found on RISC processors.
(Other RISCs generally use a Harvard architecture to avoid
the need for extra clock cycles for loads and stores.)

AMULET1 can perform (most) load and store opera-
tions in a single datapath operation. Autonomous instruc-
tion prefetching results in a buffered supply of instructions,
so interrupting the prefetch operation for a data transfer
should not result in the processor becoming starved of
instructions. The register locking mechanism manages any
delay in the memory response to the transfer request, so
provided the compiler can schedule independent instruc-
tions after the load the processor can continue doing useful
work.

Figure 7 illustrates the datapath activity for a pre-
indexed load instruction. Here the transfer address is com-
puted by adding or subtracting a register offset to or from
the base register. The result is used both as the memory
address and to overwrite the original base value, giving the
auto-indexing behaviour required by the instruction seman-
tics. When the requested data returns from memory it
passes through the data-in block onto the ALU result bus
and to the destination register. This can happen after an
arbitrary delay and is independent of the execution pipeline

registers

address out

data out data in

pass thru

as instr

A + B/A - B

ipipe

imm extr.

pc pipe

RnRm

Rn? PC

Figure 7: Datapath activity during a pre-
indexed load instruction



employed as elastic buffer memories to decouple the peaks
in the supply and demand characteristics of the logic units
at either end; in many cases the depths of these FIFOs may
be chosen arbitrarily in an attempt to optimise performance
(or power consumption), though in some cases there are
functionality issues to consider as well. An example is that
the instruction and PC pipeline depths may be varied arbi-
trarily except that the Instruction pipeline must be at least 3
stages longer than the PC pipeline otherwise a deadlock can
occur.

4: Asynchronous operation

The asynchronous implementation of the ARM instruc-
tion set is described below with reference to figures which
show the movement of data around the AMULET1 bus
structure.

These figures are very similar to the corresponding fig-
ures for the synchronous ARM [1]. Note, however, that
whereas an instruction has sole occupancy of the datapath
in the synchronous ARM, here there are several pipeline
stages in the execution phase and several instructions may
occupy different stages.

4.1: Register to register instructions

The basic operation of the AMULET1 datapath during a
register to register instruction is illustrated in figure 4. The

registers

address out

data out data in

pass thru

as instr.

as instruction

ipipe

imm. extr.

pc pipe

RnRm

Rd PC

Figure 4: Datapath activity during a register
to register instruction

two register operands are read from the register bank and
passed through the multiplier. One operand is shifted as
required by the instruction, then the two operands are com-
bined in the ALU and the result returned to the register
bank.

If one (or both) of the source operand addresses is reg-
ister 15 the register file should return the PC value for the
current instruction with an offset of 8 bytes. The offset is an
artifact of the synchronous pipeline implementation on ear-
lier ARM chips, but it is visible at the instruction set level
and so must be emulated here. The PC resides in the
address interface where it is autonomously incremented
and issued for instruction prefetching, so PC values are
copied into a PC pipeline as they are issued for use in the
register file as R15.

Each instruction must present the correct PC value as
R15, so as an instruction enters decode it is paired with the
next value from the PC pipeline. The high level view of this
operation is shown in figure 5.

4.2: Branch instructions

Where the instruction modifies the program counter the
new value must be sent to the address interface. Figure 6
shows the movement of data during a branch instruction.
The branch target address is computed in the ALU from the
current PC value (which is passed from the PC pipeline via
the register bank to the ALU) and an immediate offset con-
tained in the instruction.

The branch target address is passed to the address inter-
face where it replaces the old PC value. The address inter-
face then begins to fetch the new instruction stream by
issuing sequential addresses starting from the branch tar-
get.

As the branch target address arrives asynchronously to
the operations within the incrementing loop in the address
interface, it breaks into the loop at a non-deterministic
point. A consequence of this is that AMULET1 displays a
non-deterministic depth of prefetching beyond a branch

Instruction

Instruction

PC Value

ExecutionAddress
Interface

Instruction

PC Pipe

Memory Unit

Instruction

A operand

write bus

FIFO

 and PC
synchronize

address
(PC)

Figure 5: PC and instruction synchronization



control
2

X pipe
rdgen

A pipe

dest. ctrl.

mem
ctrl

FIFO

ALU

shift

mux

arb. mux

mux

wbus
ctrl.

AddressControlData Out

Data In

CPSR

psrC

Cout

I[31:28], PcPar

pass

Cond

multiply

imm ext.

mux

primary decode

decode
3

decode
2

reg
control

ngen registers

LSMp

incrementer

PC

byte rep.
mem ctrl

address
control

mux

control
3 mux

byte alignPC pipe
instr. pipe

CPSR’

Figure 3: AMULET1 overall pipe-
line structure



them are arbitrary (though long delays will, of course,
reduce performance). Also note that the Request and
Acknowledge wires use 2-phase signalling; rising and fall-
ing edges are both significant and have the same meaning.

3: AMULET1

The AMULET1 organisation has been described else-
where [3] so only a summary will be presented here. The
processor to memory interface follows the Micropipeline
convention, with one (output) bundle to send address, con-
trol and write data to the memory and a second (input) bun-
dle to return read data from the memory. The memory
system may have an arbitrary pipeline depth and delay, but
must return read values in the requested order.

Internally the processor is constructed from several
function units (figure 2) which operate independently and
concurrently, exchanging information through bundled
data interfaces. The role of each of these units is described
below.

3.1: Address interface

The address interface is responsible for issuing read and
write requests to memory. It issues instruction prefetch
requests autonomously and accepts data transfer and
branch target addresses from the execution unit as required.
Branch target addresses are immediately issued to memory
and also change the prefetching stream to continue from the
target location; data transfer addresses temporarily inter-
rupt the prefetching stream which resumes once the data

registers

address out

data out data in

multiplier

shifter

ALU

ipipe

imm. extr.

pc pipe

instr.
decode

Address

Execute
Unit

Data
Interface

Register
Bank

Interface

Figure 2: AMULET1 organisation

address has been issued.
The ARM architecture makes the program counter read-

ily accessible to the programmer as register 15 in the regis-
ter bank. PC values are therefore copied from the address
interface to the register bank through a PC pipeline which
buffers the values until the associated instruction arrives
from memory.

3.2: Register bank

All the user accessible state is held in the register bank,
which employs a novel locking mechanism [4] to allow
multiple pending writes from the execution pipeline and
from external memory. The locking mechanism ensures the
correct behaviour of instruction streams with data depend-
encies between successive instructions and enables register
read and write processes to proceed asynchronously with-
out arbitration and without risk of metastability in the con-
trol and data circuits.

3.3: Execution unit

Arithmetic processing is carried out in the execution
pipeline. This incorporates a ‘3-bits at a time’ carry-save
multiplier, a barrel shifter and rotator and an ALU. The
ALU has a data dependent propagation delay which detects
the longest carry chain in an addition [5]. This allows a rel-
atively simple ALU to give better average performance on
a typical mix of operand values than the more complex
ALU in the clocked ARM6, since there is no need to coerce
the worst case addition into a fixed clock period.

3.4: Data interface

The data interface is responsible for receiving data from
memory and for steering it into the instruction pipeline,
register bank or address interface. Instructions are stored in
a pipeline awaiting execution, and immediate values are
extracted at the top of the pipeline for use as operands as
necessary. Loaded data values are aligned and byte-
extracted as required by the instruction.

Data to be written to memory is also passed through this
unit where it is synchronised with address and control
information in the address interface before all these signals
are passed to memory as a single bundle.

3.5: Overall pipeline structure

The overall pipeline structure of the processor is shown
in figure 3. The shaded boxes are the pipeline registers in
the main decode and execute paths, and indicate the depth
of pipelining employed in the design.

Throughout the design the control and datapath pipeline
stages are matched so that, at least in principle, all the logic
units can be kept busy. Several pipeline FIFO structures are



AMULET1: A Micropipelined ARM

S.B. Furber, P. Day, J.D. Garside, N.C. Paver and J.V. Woods

Department of Computer Science, The University,
Oxford Road, Manchester, M13 9PL, U.K.

Abstract

A fully asynchronous implementation of the ARM
microprocessor has been developed in order to investigate
the potential of asynchronous logic for low-power appli-
cations. The work demonstrates the feasibility of complex
asynchronous design and shows that the cost and perform-
ance characteristics are similar to clocked designs.

AMULET1 is the first attempt at applying asynchronous
techniques to a design of this complexity and as such there
is much room for improvement. This paper introduces the
design approach and organisation of the chip; it then cov-
ers the lessons learned from the first design and points
towards future strategies for its enhancement and the
likely benefits which will accrue from mature asynchro-
nous technology.

1: Introduction

The growth in the market for portable computing equip-
ment and the problems of thermal dissipation of high-end
microprocessors are both factors which indicate that power
consumption is an increasingly important engineering con-
cern in the design of computers. One source of power inef-
ficiency in current design practice is the use of free-running
high frequency clocks which cause all parts of the system
to burn power whether or not they are doing useful work.
Asynchronous design avoids this inefficiency since func-
tional units use power only when doing useful work. There-
fore asynchronous approaches have been proposed as
offering a route to more power-efficient computing.

The AMULET project was established at Manchester
University in late 1990 to investigate the potential power
savings of asynchronous design. The goal was the develop-
ment of a fully asynchronous implementation of the ARM
microprocessor [1], primarily to demonstrate the feasibility

of applying asynchronous design techniques on a commer-
cially interesting scale. The design was completed early in
1993 after 5 man-years of design effort and was submitted
for fabrication. The work shows that designs on this scale
are practical and produce results which are similar in
design effort, chip area and performance to conventional
clocked designs.

Though the first design is fully functional, it must be
viewed as an initial attempt at an asynchronous implemen-
tation of a commercial microprocessor architecture rather
than the last word on the matter. Experience gained during
the development and subsequent evaluation of the design
points to considerable scope for future enhancement.

2: Micropipelines

The asynchronous design style used in AMULET1 is
based on Sutherland’s Micropipelines [2] which employ a
2-phase bundled data interface for sending data between
functional units. The communication protocol is illustrated
by the timing diagram in figure 1. A valid data value is
placed on a conventional bus by the sender which then indi-
cates the availability of the data by causing a transition on
a Request wire. The receiver senses this transition, accepts
the data and then causes a transition on theAcknowledge
wire, completing the transfer. The sender may then issue
another data value in a similar manner. Note that only the
order of these events is significant; the delays between

Figure 1: Micropipeline handshake protocol

Request

Acknowledge

Data


