
Graph based Synthesis for Low power Combinational
logic with a maximal/minimal disjoint Function Set

ABSTRACT
This paper discusses a new, systematic approach to the synthesis of
a class of non-regenerative Boolean networks, described by
FON[F OFF]={m i}[{M i}] , where for every mj[M j] ∈{mi}[{M i}] , there
exists another mk[M k] ∈{mi}[{M i}] , such that their Hamming
distance HD(mj, mk)=HD(Mj, Mk)=O(n), (where ‘n’ represents the
number of distinct primary inputs). The method automatically
ensures exact minimization for certain important self-dual
functions with 2n-1 points in its one-set. The elements meant for
grouping are determined from a newly proposed weighted
adjacency matrix. Then the binary value corresponding to the
candidate pair is correlated with another proposed binary
information matrix to enable synthesis. The algorithm can be
implemented in any high level language and achieves best cost
optimization for the problem dealt with, irrespective of the number
of inputs. For other cases, the method is iterated to reduce it to a
problem of O(n-1), O(n-2),…. and then solved. In addition, it leads
to optimal results for problems exhibiting higher degree of
adjacency, compatible with standard synthesis methods. Circuit
level simulations demonstrate mean savings in power, gate and
literal counts by 11.7%, 29.4% and 4.8% respectively, over a wide
range of examples compared with other existing techniques.

Categories and Subject Descriptors
B.6.1 [Design Styles]: Combinational logic

General Terms
Design, Theory, Performance

Keywords
AOI logic, AND-XOR expressions, Boolean distance, Low power

1. INTRODUCTION
Logic synthesis has matured as a field and is used in every major
digital IC design worldwide [7]. Despite a wealth of research
results and pioneering commercial tools, some significant
problems remain open owing to its inherent computational
complexity [2]. Logic synthesis forms an important part of the
design cycle for a digital circuit/system. Its actual significance
should also be understood in the context of the increasingly
important requirement to minimize power dissipation. The low

power design challenge is one that requires abstraction, modeling
and optimization at all levels of design hierarchy. The
considerations range from the technology being used for the
implementation, circuit and logic topologies, digital architectures
and even the algorithms being implemented [1]. This articulates
the fact that the power component should be considered during
the logic synthesis phase as well. Gate-level optimization may
achieve power savings: in some specific cases more than 50%
reduction in power, without loss of performance, may be
achieved [7], In general, however, the reduction is around 5%-
15% [9]. Gate-level optimizations are relatively low cost in terms
of design-effort compared with other techniques.
This paper presents a novel and versatile synthesis method
incorporating available gate library types. It is primarily aimed at
combinatorial logic networks, whose ON/OFF set exhibits
maximal and complementary pair-wise disjointness. In other
words, the function set contains canonical terms, which can be
grouped based on their Hamming distance, (HD), which is O(n).
The proposed technique guarantees best results for the above
problem definition, where the optimality of the solution obtained
is quantitatively evaluated in terms of total power consumption
(P) of the circuit realized, number of gates (NG) and literals (NL)
required for its implementation. Of course, a comparison based
on NG is only approximate since different gate types are of
different, (although roughly comparable) sizes.
The technique has its roots in the rudiments of graph and network
theory. It enables best minimum solutions even for logic
networks composed of elements exhibiting strong or complete
adjacency, using a variation of the proposed heuristic, as will be
seen in section 5.1.2. Although our analysis for some problem
cases with function sets exhibiting adjacency as well as non-
adjacency between their elements have yielded satisfactory
experimental results, still an exhaustive analysis is deemed
necessary to gain a complete insight about the effectiveness of
our proposition for such function classes, which promises scope
for further work in this direction. This phenomenon is also due to
the NP-hard enumeration of such possible functions. The strategy
considers the issue of output phase optimization as well.
The remainder of this paper is organized as follows. Section 2
provides concise background information pertaining to some
traditional synthesis approaches available in literature, such as
AND-OR-Invert (AOI) logic and also background to some of the
important classes of AND-XOR expressions, such as Reed-
Muller (RM), Generalized RM (GRM) and Pseudo-Kronecker
RM (PKRM) forms. In Section 3, the inherent nature and some
fundamental properties governing Boolean functions exhibiting
only maximal and exact bit-wise complementary support are
mentioned. Section 4 discusses some essential graph theoretic
principles. Section 5 describes the proposed graph structure and
weighted adjacency matrix formulation with an example.
Minimization heuristics for some problem categories are also
described. Besides, the mode of direct synthesis by correlation of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GLSVLSI ’07, March 11-13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

the binary data with another proposed information matrix is also
dealt with in this section for minterms/maxterms as well. Section 6
briefly highlights the simulation mechanism, examples and also
tabulates the results obtained for the different cases. Comparison
between the different synthesis procedures in terms of P and NG is
also graphically illustrated in this section. Finally, we make the
concluding remarks in Section 7.

2. CONVENTIONAL SYNTHESIS
Conventional logic design is usually based on AND-OR logic and
OR-AND logic. We have used AOI logic in common with the
usual library descriptions in the technology domain; this will be
referred to as Standard form in this paper. We have adopted single
rail circuits for our implementation. Although double-rail inputs
are available in the general case for designs targeting
programmable logic devices, for standard cell based IC designs,
the circuit inputs are generally single-rail. This is because single-
rail circuits tend to have fewer interconnections and thereby less
hardware area overhead.
XOR based designs have certain well-known advantages over the
above classical realization methods. Firstly, they pave way for a
more concise expression for many basic arithmetic functions.
Secondly, many practical digital circuits used in the fields of
coding theory, linear system, telecommunication and arithmetic
coding contain basic functionality which are inherently mod-2
sum. Finally, circuits containing XOR gate types have excellent
design-for-test properties. Such is their significance that even some
earlier FPGA styles had incorporated 2-input XOR gate in their
basic granularity blocks, for example the Cli 6006 from Concurrent
Logic Inc.
Various classes exist in AND-XOR expressions involving only
AND and XOR gate types. This is because any arbitrary logic
function can be purely realized using only AND and XOR logic
gates. For example, the RM, GRM and PKRM forms extensively
rely upon such gates for implementation. Slight modifications of
the Shannon expansion (1) are made for the AND-XOR logic to
derive Davio expansions (2), (3) and given by [10] as,

F = [(x and F x) xor (x’ and F x’)] (1)

F = [Fx’ xor {x and (Fx xor Fx’)}] (2)

F = [Fx xor {x’ and (Fx xor Fx’)}] (3)

Recursive application of the above tree expansions results in
various RM trees [10]. If only the positive Davio expansion (2) is
used repeatedly for variable expansion with some fixed order of
expansion of variables, a compact RM tree is generated. A GRM
tree is created when a choice exists between positive Davio
expansion and negative Davio expansion (3) for each variable. If
equations (1), (2) and (3) are used along with the choice of
equations (2) and (3) in each sub-tree, the PKRM structure is
generated. Importantly, in all these structures only two kinds of
gates (AND and XOR) are used for circuit realizations. Since
obtaining minimal expressions for RM, GRM and PKRM forms is
by itself a separate extensive procedure and due to the necessity
for a reasonable comparison with those of our proposed
realizations, we have resorted to factoring those forms with
elementary minimization rules in line with [3]. The objective of
factorization is to represent a Boolean function in a logically
equivalent factored form but with a minimum number of literals.
We have opted for algebraic factorization as it is simple and

requires much less CPU execution time compared to Boolean
factorization. This weak operation has enabled us to greatly
reduce the literal count as well as the gate count needed for such
realizations, while still preserving the integrity of those
structures. This technique is also justified in the sense that we are
primarily concerned with AND-XOR logic formats. Hence, the
corresponding factorized expressions would henceforth be
identified as f-RM, f-GRM and f-PKRM expansions respectively.

3. BACKGROUND AND PRELIMINARIES
3.1 Definition
Let Z be a logic function with its support and ON-set defined as,

s[Z] = {xn-1, xn-2, …. , x0} (4)

ZON = {mi}; 0 ≤ i ≤ (p-1), where 0 ≤ p ≤ 2|s[Z]| (5)

where, ZON stands for the ON-set of the function Z and {mi} refer
to the set of all minterms. Now, for every mj, mk ∈ {m i}, that
exists, the Boolean distance between the two binary tuples is
given by HD (mj, mk) and is O(n).

3.1.1 Property 1
For the binary 2-tuple (mj, mk), whose HD is O(n), it naturally
follows that (mj ∩ mk) = { } and the converse is also true.

3.1.2 Property 2
The upper bound for the number of exact bit-wise complementary
pairs in the function set would be 2n-1/2|s[Z]|-1.

3.1.3 Property 3
For the upper bound of 2n-1 disjoint binary 2-tuples, the bit-wise
complementary pair is obtained by grouping an element in a finite
set comprising 2n-1 elements with the absolute value of the
element being j, such that j = 0,1,….,2(n-1)-1; with an unique
element of another finite set of a similar cardinality, whose
absoluteness is described by k, such that k = 2n-m; where
m = 1,2,….,(n+1).
The above definition and formulation of properties also hold good
for the case of functions specified in terms of their OFF-set.

4. REVIEW OF GRAPH THEORY
A graph G is a pair G = (V, E), consisting of a finite set V ≠ φ and
a set E of two-element subsets of V. In graph theory, infinite
graphs are also studied, however here; we restrict ourselves to the
finite case. The elements of V are called vertices. An element,
e = {a, b} of E is called an edge with end vertices ‘a’ and ‘b’. We
say that ‘a’ and ‘b’ are incident with ‘e’ and that ‘a’ and ‘b’ are
adjacent or neighbours of each other, and write e = ab [8].
Further details regarding the pictorial descriptions and properties
of all graphs and other network terminologies can be found in [8].

5. PROPOSED GRAPH & SYNTHESIS
In our case, the problem under consideration is represented in a
novel way on the lines of a complete graph specification. The
complete graph, Kn is a network with |V|=n and |E|=[n(n-1)]/2.
In other words, the empty graph, Kn’ is a graph with |Kn’|=n and
|E (Kn’)|=0 , where Kn’ is the complementary version of Kn [8].
The decimal equivalent of each binary minterm/maxterm shall
correspond to a unique vertex label or identity for the proposed
network. So, the total number of minterms [maxterms] in the ON-
set [OFF-set) of a completely specified logic function shall
account for the number of vertices in the graph. As far as

incompletely specified logic functions are concerned, whose DC-
set ≠ { }, the inclusion of its elements in the ON-set or OFF-set is
dictated by the optimality of the best minimal solution that is
predicted.
The algorithm for such a directed graph (digraph) can be
implemented by means of any high-level language and run on a
computer with even an adjacency list representation.

5.1 Weighted Adjacency Matrix specification
A directed multigraph G with a non-zero finite vertex set can in
general be represented in matrix form by an Adjacency matrix. For
our problem specification, we opt for a slightly modified form of
the latter, designated a Weighted Adjacency Matrix (WAM). The
order of an Adjacency matrix would be ‘n × n’ . The added feature
of a weighted adjacency matrix over the conventional one would
be that each matrix element representing the presence of a directed
edge from one vertex to another, aij, is also multiplied by the
decimal equivalent of the corresponding Boolean distance between
the two vertices (to be read as an entry corresponding to a row ‘i’
and a column ‘j’), HD (i, j). In other words, every edge of this
strongly connected graph will be associated with a weight, which
is the Boolean distance between its end vertices. In order to
preserve the structural property of an Adjacency matrix and to
make it appropriate for our problem specification, we introduce
n(n-1)/2 extra edges, i.e., an edge between two end vertices is
considered to be bidirectional. So, for the proposed structure, if
|V| = n, then |E| = n(n-1). Hence the proposed binary network is
an extension of the complete graph functionality and this leads to a
dense network with number of edges of O[n(n-1)]. The typical
structure of a four terminal logic network is shown in Fig. 1. Here
We(x,y) represents the weight of an edge with its head at vertex ‘y’
and tail at vertex ‘x’ and is equal to the decimal equivalent of the
binary distance between those two vertices. It is also clear from the
proposed graph that the in-degree/out-degree of each vertex would
be O(n) and that the minimum eccentricity (radius) and maximum

eccentricity (diameter) of each of the graph vertices would also
be equal to unity. The weighted adjacency matrix of Fig. 1 would
be as follows.
 w x y z

 0 1 HD(w,x) 1 HD(w,y) 1 HD(w,z)w

x 1 HD(x,w) 0 1 HD(x,y

y

z

× × ×
× ×) 1 HD(x,z)

1 HD(y,w) 1 HD(y,x) 0 1 HD(y,z)

1 HD(z,w) 1 HD(z,x) 1 HD(z,y) 0

 
 × 
 × × ×
 

× × × 
From the above representation, it can be inferred that the matrix
is non-negative, square and symmetric which implies that
|aij| = |aji|. Here ‘i’ and ‘j’ assume row and column indices
respectively and vice-versa.

5.1.1 Case 1: Exact grouping procedure for logic
functions with actual complementary ON-set/OFF-set
Given a Boolean function, Z, whose ON-set, ZON = {mi}, such
that |ZON| is even, then for every mj ∈ {mi}, there definitely exists
another mk ∈ {mi}, where mj ∩ mk = φ, then HD(mj, mk) = n.
Also, there does not exist any ml ∈ {mi}, such that HD(mj, ml) =
HD(mk, ml) = O(unity). It has been observed that the number of
functions belonging to this category grows exponentially with ‘n’
and hence the proposed technique would carry much significance
for higher values of ‘n’. A digraph is then drawn with |V(Kn)|=n
and |E(Kn)|=n(n-1). A weighted adjacency matrix is then formed
as shown above. For Max |aij|=Max |aji|=HD[O(n)] , group the
vertices corresponding to the i th and j th rows or those
corresponding to the ith and j th columns. The above procedure is
continued until all the row entries or column entries in the matrix
are checked. Then the binary information corresponding to the
term-pair undergoes a literal matching with the information
matrix mentioned in the next sub-section, so as to enable direct
logic synthesis. The resulting factors are subjected to a weak
factorization heuristic to yield the best and minimal irredundant
solution. The above routine holds good for maxterm dependent
functions also and takes the least polynomial time since single
matrix iteration is sufficient to obtain terms, suitable for pairing.
The above procedure is also ideal for certain self-dual logic
functions which contain exactly 2n-1 elements in its one-set. A
self-dual function can be generally described as follows. Let Z be
a completely specified self-dual Boolean function, so that
ZON={mi} and ZOFF={M j}; such that |ZON|=|ZOFF| and i ≠ j. Let
Mk∈{M j}. Then the equality relation based on the indices,
{i} xor k ∈ {j} , would hold well. If Z is an incompletely specified
function, then the values for don’t cares are assigned such that the
above relation is satisfied and the cardinality of either of the main
functional sets (ON/OFF-set) would be (n/2). The method
illustrated is most suitable for effectively synthesizing widely
used practical digital circuits of any order, which contain such
functionality, and include parity generator and checker circuits,
with even number of input literals.

5.1.2 Case 2: Exact two-level solution for function
elements exhibiting complete adjacency
For a logic function, F, whose ON-set is FON = {ma}, then for
every mb ∈ {ma}, there exists atleast one mc ∈ {ma}, such that
mb ∩ mc ≠ { } or HD(mb, mc)<O(n). Hence the minimum binary
distance is unity and the maximum value is (n-1). Then, similarly,
a directed graph with |V(Kn)|=n and |E(Kn)|=n(n-1) is sketched.
A compact weighted adjacency matrix is framed. For |aij| = |aji| =
HD[O(unity)] , combine those vertices corresponding to the ith
and j th rows or those corresponding to the i th and j th columns. Figure 1. An example 4-terminal Boolean network

HD(w,x) = We(w,x) = We(x,w)

HD(w,y) = We(w,y) = We(y,w)

HD(w,z) = We(w,z) = We(z,w)

HD(x,y) = We(x,y) = We(y,x)

HD(x,z) = We(x,z) = We(z,x)

Another weighted adjacency matrix is framed for the vertex pair
entries resulting from the previous matrix. This would constitute
the second iteration. The shared literal would have to be neglected
with a don’t care occupying that variable position. For the problem
under consideration represented by this proposed matrix, the
notion of adjacency for binary values would be governed by the
following: 1&0, 0&1, 0&d, d&0, 1&d, d&1 are understood as non-
adjacent (whose HD=1), whereas 0&0 and 1&1 are considered
adjacent (whose HD=0). Here ‘d’ refers to a don’t care term. In the
new matrix, the presence of a unity element is to be checked. If
found, the above process is continued, otherwise all the canonical
terms would have been already co-joined to result in a minimum
expression in standard disjunctive normal form. The vertex
combinations would imply the reduced products and they have to
be logically summed to obtain the above form. It has been found
that the results obtained by this method match those obtained by
standard synthesis solutions such as K-Map, Quine-McCluskey
method or by a standard two-level logic minimizer such as
Espresso-Exact. The number of iterations in this case would
depend upon the degree of grouping attained in the initial stages
and as such this method covers the issue of output phase
optimization and is also applicable for functions appearing in
canonical product forms. An added advantage in this method is
that it can solve for both the normal phase as well as for the
inverted phase of the function in parallel and then compare them
based on the number of literals and realizable gates needed.

5.1.3 Case 3: NP-hard function enumeration problem
Given a Boolean function, Z, whose ON-set, ZON = {mi}, such that
|ZON| is odd, then for every mj ∈ {mi}, there exists an element,
mk ∈ {mi}, where mj ∩ mk = φ, then HD(mj, mk) = n. In addition,
there also exists atleast one more element, mp ∈ {mi}, where
1 < HD[mp, {mi}] < O(n-1) holds good. To quantify the number of
functions belonging to this class is by itself an NP-hard problem
and is beyond the scope of this work. However, amongst the
functions that can be classified in this category, we have been able
to achieve good simplification, albeit with mixed performance
results.

5.1.4 Case 4: Considering output phase optimization
Similar to conventional PLA type output phase optimization, for
the problem type described in the previous cases, binary networks
can be drawn for both the normal phase of the function (F) as well
as for the complementary phase (F’). Then their corresponding
minimum solutions can be compared in terms of the number of
irredundant prime implicants and/or literals to decide on the best
choice of function polarity.
If a logic function is described in terms of its OFF-set (with or
without don’t cares), by default, it is translated into an ON-set
problem to be solved and the solution is inverted. This is
necessitated due to the presence of an extra implicant required for
a minimal OFF-set solution compared with the latter. In turn, this
is attributed to the nature of the binary information matrix
specification for maxterms as is evident from equations (8) and (9).
For minimization problem definitions associated with case 3, the
technology independent heuristic would make a final choice based
on the literal count of the resulting solutions corresponding to the
opposite function polarities. However, a comparison on the basis
of realizable gates is also possible, if the circuit can be
standardized to accommodate only gates available in a library.
This seems to be a reasonable proposition as the directed acyclic
graph representation for a combinatorial switching network would
have a similar binary tree construction.

5.2 Synthesis with Binary Information Matrix
The proposed synthesis technique, although primarily meant for
effecting cost optimization by way of reducing the number of
gates and literals needed for implementation, achieves the
objective of minimizing the power cost of the Boolean network
realized. Although power optimization is a consequence of the
area-centric approach, it is a desirable outcome. The method
proposed in this paper paves the way for systematic grouping and
reduction of pair-wise; maximally disjoint binary 2-tuples. This is
possible by a binary information matrix for a 2-tuple fully disjoint
ON-set pair described by equations (6) and (7) as follows,

1 2 1 0

j

k

 x x x x

m 0 1 1 1

m 1 0 0 0

n n− −

 
 
 

= [(xn-1 xor xn-2) and…...….….and (x1 xnor x0)] (6)

= [(xn-1 xnor xn-2) or…...….….or (x1 xor x0)]’ (7)

A binary information matrix for a 2-tuple disjoint OFF-set pair
would be described by equations (8) and (9), given below.

1 2 1 0

j

k

 x x x x

 0 1 1 1

 1 0 0 0

n n

M

M

− −

 
 
 

= [(xn-1 xnor xn-2) or……..….........or (x0 xnor xn-1)] (8)

= [(xn-1 xor xn-2) and………....….and (x0 xor xn-1)]’ (9)

It is clear that equations (6) and (7) and similarly equations (8)
and (9) are equivalent duals of each other. The rows in the above
matrices correspond to the canonical binary 2-tuple pair and the
columns represent the support of the function. Hence a basic
information matrix has an order of ‘2 × n’. The intersection of a
row index with a column index is assigned a binary 1(0), if the
variable associated with the minterm (maxterm) is present in
normal form and 0(1) otherwise.

6. SIMULATION METHOD & RESULTS
About 40 arbitrary multiple input, single output non-regenerative
logic functions, representing all possible problem cases described
above, were considered for simulation studies. Table 2 in the
appendix lists some of the examples; for reasons of brevity only a
representative sample have been included. The MOS transistor
descriptions corresponding to the synthesized gate level netlist
were simulated as the back-end using Mentor Graphics tools for a
0.35 micron TSMC CMOS process technology. The estimation of
power consumption of circuits based on a finite input vector set is
through tagged probabilistic simulation scheme [5]. The reason
for the choice of this scheme is due to the minimal associated
error component. The simulation results obtained for the target
technology validate our proposition and arguments for majority
of samples, detailed in Table 1. The graphical comparison plots
are depicted by Figs. 2 and 3. Since the solutions obtained by our
method are comparable with those of the traditional ones and
industry-standard tools, we have not considered any problem-sets
for case 2.

Table 1. Comparison of design metrics for different synthesis styles

Standard form f-RM form f-GRM form f-PKRM form Proposed form Logic
Function ID P (nW) NG P (nW) NG P (nW) NG P (nW) NG P (nW) NG

Case 1 - LF14 10.78 9 13.46 5 13.46 5 13.46 5 9.67 3

Case 1 - LF24 14.44 9 5.7 3 6.44 5 5.7 5 5.7 3

Case 3 - LF34 9.65 6 10.4 5 12.16 7 9.65 7 8.15 3

Case 1 - LF44 20.14 13 11.38 4 14.95 4 11.38 4 11.25 3

Case 3 - LF54 7.76 6 14.79 6 13.81 6 13.81 6 9.67 3

Case 3 - LF64 11.18 7 8.64 5 7.8 6 8.64 5 5.99 3

Case 1 - LF75 16.49 10 16.01 8 18.75 9 18.75 9 9.82 4

Case 3 - LF85 16.67 9 10.12 4 10.12 4 10.12 4 8.23 3

Case 1 - LF95 7.76 6 14.79 6 13.81 6 13.81 6 9.67 3

Case 3 - LF105 29.09 13 16.15 8 17.23 8 23.39 11 12.27 5

Case 3 - LF115 10.73 14 13.46 5 13.46 5 13.46 5 9.66 3

Case 3 - LF125 12.51 9 14.5 5 20.57 7 23.6 9 8.15 3

Case 3 - LF135 12.59 9 16.81 6 14.59 5 21.79 9 8.19 3

Case 1 - LF145 29.24 15 8.03 3 12.23 5 12.23 5 8.03 3

Case 3 - LF155 12.75 7 13.82 8 14.14 8 14.14 8 10.56 6

Case 3 - LF165 19.48 11 13.09 6 13.09 6 13.09 6 13.11 6

Case 1 - LF175 13.38 8 16.57 10 16.57 10 16.57 10 13.05 7

Case 1 - LF185 14.49 9 5.7 3 6.44 5 6.44 3 5.7 3

Case 1 - LF195 26.42 15 11.38 4 14.5 4 14.5 4 9.48 3

Case 3 - LF205 15.74 8 11.72 7 11.72 7 11.72 7 15.72 8

Case 1 - LF216 18.15 11 22.34 12 25.95 14 25.95 14 16.34 5

Case 1 - LF226 25.82 15 20.62 5 19.75 5 20.62 5 17.52 4

Case 3 - LF236 15.69 10 11.73 7 14.32 8 14.32 8 8.25 4

Case 3 - LF246 15.68 9 13.42 7 14.14 8 14.14 8 9.89 4

Case 3 - LF256 16.98 10 17.88 8 23.81 9 23.81 9 12.22 4

LFMn; LF – Logic Function, M – Function identity, n – Number of input literals

Power consumption profile

0

5

10

15

20

25

30

35

LF
1

LF
2

LF
3

LF
4

LF
5

LF
6

LF
7

LF
8

LF
9

LF
10

LF
11

LF
12

LF
13

LF
14

LF
15

LF
16

LF
17

LF
18

LF
19

LF
20

LF
21

LF
22

LF
23

LF
24

LF
25

Logic Function ID

P
o
w
er
 (
n
W

) Standard form

f-RM form

f-GRM form

f-PKRM form

Proposed form

Figure 2. Power consumption comparison for different synthesis methods

Gate count comparison

0

2

4

6

8

10

12

14

16

LF
1

LF
2

LF
3

LF
4

LF
5

LF
6

LF
7

LF
8

LF
9

LF
10

LF
11

LF
12

LF
13

LF
14

LF
15

LF
16

LF
17

LF
18

LF
19

LF
20

LF
21

LF
22

LF
23

LF
24

LF
25

Logic Function ID

G
at
e
co

u
n
t Standard form

f-RM form

f-GRM form

f-PKRM form

Proposed form

Figure 3. Gate count comparison for various synthesis schemes

Let us consider the output truth vector of a four-variable Boolean
function given by [0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0]T, which falls
under case 1. The power consumption metric found out by
simulation with a technology target, for the solution obtained
based on the standard form is 16.7 nW. Among the different Reed-
Muller forms, f-PKRM has the lowest value of 10.1 nW and our
proposed form has a value of 8.2 nW respectively.
For the truth vector of a four-variable logic function, given by
[0,0,0,0,0,1,1,1,0,1,1,0,0,0,0,0]T (belonging to case 3), the
standard, f-GRM and proposed forms have power consumption
values of 14.4 nW, 13.3 nW and 10.7 nW respectively.
For case 4, we consider the truth vector of a 4-input logic function
as, [1,1,1,1,0,1,1,0,0,1,1,0,1,1,1,1]T. In this case, the total power
metric was found for the standard, f-PKRM and proposed forms
respectively as 16.0 nW, 10.0 nW and 8.1 nW.
From the detailed simulation results mentioned in Table 2, we have
considered the best minimum power amongst those of the other
conventional methods and compared it with our method. The
percentage savings/extra expenditure incurred in each case was
then averaged to arrive at the net savings for all the examples
considered. The same procedure has been followed with respect to
gate count and literal count.

7. CONCLUSIONS
The computational complexity associated with logic simplification
has posed challenges since the early 60’s [2]. Exact solutions for
some central problems have been derived only within the last few
years and others remain open. This paper has addressed an
important issue of practical relevance, by means of introducing a
novel approach to logic reduction for certain classes of Boolean
functions, based on graph theory and suitable for easier
implementation with a high-level language. Our approach is
greatly simplified in comparison with those of existing significant
works, such as [4] and [6], as it does not expect any
intuitive/complex analytical solutions, but rather enables a
systematic reduction procedure. The other advantage is that it also
minimizes functions not exhibiting auto-symmetry. This adds to
the pedagogical value of this research work and is ideal for
enabling hand-crafted solutions for smaller degree problems.
Algorithmic logic synthesis is usually carried out in two stages, the
independent stage where the given Boolean equations are
minimized with no regard to physical properties and the dependent
stage where mapping to a physical cell library is done. At the logic
level, although a number of logic types exist within the large
family of XOR Sum of Products expressions [10], we have
selected only three of them (RM, GRM and PKRM forms), owing
to a relatively narrower solution choice and reduced computational
cost required to arrive at a best minima. The importance of our
contribution is substantiated by improved results, in quantitative
comparison with the traditional ones, at both the technology-
independent and dependent phases. Further work is carried out to
complete the automation of the synthesis process to result in an
integrated EDA tool for XOR and/or XNOR dominated switching
circuits.

8. REFERENCES
[1] Chandrakasan, A.P. and Brodersen R.W. Minimizing power

consumption in digital CMOS circuits. Proc. of the IEEE,
83, 4 (April 1995), 498-523.

[2] Christopher Umans, et. al. Complexity of two-level logic
minimization. IEEE Trans. on CAD of Integrated Circuits and
Systems, 25, 7 (July 2006), 1230-1246.

[3] Unni Narayanan, and Liu, C.L. Low Power logic synthesis
for XOR based circuits. Proc. of the IEEE/ACM ICCAD
(San Jose, California, USA, Nov. 9-13, 1997), 570-574.

[4] Bernasconi, A. Fast Three-level logic Minimization based on
Autosymmetry. Proceedings of the 39th ACM/IEEE DAC
(New Orleans, Louisiana, USA, June 10-14, 2002), 425-430.

[5] Ding, C.-S. et al. Gate-level power estimation using tagged
probabilistic simulation. IEEE Trans. on CAD of Integrated
Circuits and Systems, 17, 11 (Nov. 1998), 1099-1107.

[6] Valentina Ciriani. Logic Minimization using Exclusive OR
Gates. Proceedings of the 38th ACM/IEEE DAC (Las Vegas,
Nevada, USA, June 18-22, 2001), 115-120.

[7] Sasan Iman, and Massoud Pedram. Logic Synthesis for Low
Power VLSI Designs. Springer Publishing, 1998.

[8] Dieter Jungnickel. Graphs, Networks and Algorithms.
Springer-Verlag, 2nd Edition, 2005.

[9] Farzad Nekoogar, and Faranak Nekoogar. From ASICs to
SOCs: A Practical Approach. Prentice-Hall, 2003.

[10] Tsutomu Sasao. Switching Theory for Logic Synthesis.
Kluwer Academic Publishers, 1999.

APPENDIX

 Table 2. Description of Boolean functions

Logic
Function ID

ON/OFF Set specification
of the Boolean function

LF14 {0,3,12,15}
LF24 {5,6,9,10}
LF34 {6,7,8,9}
LF44 {0,3,5,6,9,10,12,15}
LF54 {0,7,8,15}
LF64 {5,6,7,9,10,11}
LF75 {8,11,20,23}
LF85 {1,2,5,6,25,26,29,30}
LF95 {0,1,2,3,28,29,30,31}
LF105 {1,2,9,10,13,14,17,18,20,21,29,30}
LF115 {0,3,12,15,16,19,28,31}
LF125 {0,1,2,3,5,6,9,10,12,13,14,15,16,17,18,19,21,22,

25,26,28,29,30,31}
LF135 {0,3,4,7,10,11,12,13,14,15,16,17,18,19,20,21,22,

23,24,27,28,31}
LF145 {2,3,4,5,8,9,14,15,16,17,22,23,26,27,28,29}
LF155 {4,5,10,11,20,21,26,27}
LF165 {1,2,5,6,19,23,25,26,29,30}
LF175 {5,10,21,26,28,29}
LF185 {9,11,12,14,17,19,20,22}
LF195 {0,1,6,7,10,11,12,13,18,19,20,21,24,25,30,31}
LF205 {8,9,10,11,21,22}
LF216 {7,8,55,56}
LF226 {17,18,29,30,52,55,56,59}
LF236 {17,18,21,22,41,42,45,46}
LF246 {13,14,17,18,45,46,49,50}
LF256 {3,4,11,12,51,52,59,60}

