Graph based Synthesis for Low power Combinational
logic with a maximal/minimal disjoint Function Set

ABSTRACT

This paper discusses a new, systematic approable &ynthesis of
a class of non-regenerative Boolean networks, destr by
FonlF ore]={m}[{M }] , where for everyn[M;] ZAm}{{M }}] , there

exists anothermfM,] ZAm}{M}], such that their Hamming

distanceHD(m, my=HD(Mj, M\)=0O(n), (where h’ represents the
number of distinct primary inputs). The method adtically
ensures exact minimization for certain importantlf-deal

functions with2"* points in its one-set. The elements meant for

grouping are determined from a newly proposegighted

adjacency matrix Then the binary value corresponding to the

candidate pair is correlated with another propodadary

information matrixto enable synthesis. The algorithm can be

implemented in any high level language and achicest cost
optimization for the problem dealt with, irrespegetiof the number
of inputs. For other cases, the method is iter&teceduce it to a

problem ofO(n-1) O(n-2).... and then solved. In addition, it leads

to optimal results for problems exhibiting higheegdee of
adjacency, compatible with standard synthesis nasth€ircuit
level simulations demonstrate mean savings in pogate and
literal counts by 11.7%, 29.4% and 4.8% respedtive¥er a wide
range of examples compared with other existingrtegtes.

Categories and Subject Descriptors
B.6.1 [Design Styles]: Combinational logic

General Terms
Design, Theory, Performance

Keywords
AOI logic, AND-XOR expressions, Boolean distanceylpower

1. INTRODUCTION

Logic synthesis has matured as a field and is usedery major
digital IC design worldwide [7]. Despite a wealtti k@search
results and pioneering commercial tools, some faamt
problems remain open owing to its inherent comjpanat
complexity [2]. Logic synthesis forms an importgpart of the
design cycle for a digital circuit/system. Its atwsignificance
should also be understood in the context of theesmingly
important requirement to minimize power dissipatide low
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power design challenge is one that requires alisiragnodeling
and optimization at all levels of design hierarchyhe

considerations range from the technology being ueedthe

implementation, circuit and logic topologies, digiarchitectures
and even the algorithms being implemented [1]. Hrigculates
the fact that the power component should be coresidduring
the logic synthesis phase as well. Gate-level dpétion may
achieve power savings: in some specific cases riwe 50%
reduction in power, without loss of performance, ymbae

achieved [7], In general, however, the reductiomnsund 5%-
15% [9]. Gate-level optimizations are relativelylgost in terms
of design-effort compared with other techniques.

This paper presents a novel and versatile synthemthod
incorporating available gate library types. It nparily aimed at
combinatorial logic networks, whose ON/OFF set bithi
maximal and complementary pair-wise disjointness. other
words, the function set contains canonical termisickv can be
grouped based on their Hamming distanétb); which isO(n).

The proposed technique guarantees best resultshéombove
problem definition, where the optimality of the stddbn obtained
is quantitatively evaluated in terms of total poveensumption
(P) of the circuit realized, number of gaté¢;] and literals I{,)

required for its implementation. Of course, a corigeen based
on Ng is only approximate since different gate types afe
different, (although roughly comparable) sizes.

The technique has its roots in the rudiments oply@nd network
theory. It enables best minimum solutions even fogic

networks composed of elements exhibiting strongcamplete
adjacency, using a variation of the proposed heairigs will be
seen in section 5.1.2. Although our analysis fanesqroblem
cases with function sets exhibiting adjacency adl @& non-
adjacency between their elements have yielded faetisy

experimental results, still an exhaustive analyisisdeemed
necessary to gain a complete insight about thectefemess of
our proposition for such function classes, whichnpises scope
for further work in this direction. This phenomenisralso due to
the NP-hard enumerationf such possible functions. The strategy
considers the issue of output phase optimizationedls

The remainder of this paper is organized as follo8ection 2
provides concise background information pertainiog some
traditional synthesis approaches available in ditme, such as
AND-OR-Invert (AOI) logic and also background tons® of the
important classes of AND-XOR expressions, such agdR
Muller (RM), Generalized RM (GRM) and Pseudo-Krdkesc
RM (PKRM) forms. In Section 3, the inherent natared some
fundamental properties governing Boolean functierkibiting

only maximal and exact bit-wise complementary supoe

mentioned. Section 4 discusses some essential dregaretic

principles. Section 5 describes the proposed gsapltture and
weighted adjacency matrixformulation with an example.
Minimization heuristics for some problem categore® also
described. Besides, the mode of direct synthesisobelation of



the binary data with another proposed informaticetrin is also
dealt with in this section for minterms/maxtermsaegdl. Section 6
briefly highlights the simulation mechanism, exaegpland also
tabulates the results obtained for the differerstesa Comparison
between the different synthesis procedures in taffsandNg is
also graphically illustrated in this section. Flgalwe make the
concluding remarks in Section 7.

2. CONVENTIONAL SYNTHESIS

Conventional logic design is usually based on ANR-Bgic and
OR-AND logic. We have used AOI logic in common withe
usual library descriptions in the technology domadims will be

referred to ast@ndard formin this paper. We have adopted single

rail circuits for our implementation. Although ddebail inputs
are available in the general case for designs tiage
programmable logic devices, for standard cell basediesigns,
the circuit inputs are generally single-rail. Thésbecause single-
rail circuits tend to have fewer interconnectiomsl dhereby less
hardware area overhead.

XOR based designs have certain well-known advastager the
above classical realization methods. Firstly, thpaye way for a
more concise expression for many basic arithmaticctfons.
Secondly, many practical digital circuits used e tfields of
coding theory, linear system, telecommunication amnithmetic
coding contain basic functionality which are inhrghe mod-2
sum. Finally, circuits containing XOR gate typesédnaxcellent
design-for-test properties. Such is their signifioathat even some
earlier FPGA styles had incorporated 2-input XORega their
basic granularity blocks, for example the Cli 6@@8n Concurrent
Logic Inc.

Various classes exist in AND-XOR expressions inwajvonly
AND and XOR gate types. This is because any arpittagic
function can be purely realized using only AND ax@R logic
gates. For example, the RM, GRM and PKRM forms resitesly
rely upon such gates for implementation. Slight ifications of
the Shannon expansion (1) are made for the AND-X@jJR to
derive Davio expansions (2), (3) and given by [49)]

F =[(xand F,) xor (X’ and Fy)] )2
F = [Re xor {x and (F xor F)}] )(2
F = [F xor {xX’ and (F xor F)}] 3)

Recursive application of the above tree expansi@silts in
various RM trees [10]. If only the positive Davigpansion (2) is
used repeatedly for variable expansion with somredfiorder of
expansion of variables, a compact RM tree is g¢edraA GRM
tree is created when a choice exists between pesiiavio
expansion and negative Davio expansion (3) for eactable. If
equations (1), (2) and (3) are used along with theice of
equations (2) and (3) in each sub-tree, the PKRMcgire is
generated. Importantly, in all these structuresydmnlo kinds of
gates (AND and XOR) are used for circuit realizasio Since
obtaining minimal expressions for RM, GRM and PKRMms is
by itself a separate extensive procedure and dubetmecessity
for a reasonable comparison with those of our mmwegdo
realizations, we have resorted to factoring thosem$ with
elementary minimization rules in line with [3]. Thabjective of
factorization is to represent a Boolean functionainlogically
equivalent factored form but with a minimum numioériterals.
We have opted for algebraic factorization as itsisple and

requires much less CPU execution time compared doldan
factorization. This weak operation has enabled awsgreatly
reduce the literal count as well as the gate caepetled for such
realizations, while still preserving thentegrity of those
structures. This technique is also justified ia sense that we are
primarily concerned with AND-XOR logic formats. Han the
corresponding factorized expressions would hentiefdoe
identified ad-RM, f-GRMandf-PKRM expansions respectively.

3. BACKGROUND AND PRELIMINARIES

3.1 Definition

Let Z be a logic function with itsupportandON-setdefined as,
S[Z] = {Xn-lr Xn-2s weee s )b} (4)
Zon = {mi}; 0 <i < (p-1), where & p< 254 (5)

where,Zoy stands for the ON-set of the functidrand{m;} refer
to the set of all minterms. Now, for every,m, O {m;}, that
exists, the Boolean distance between the two bitapjes is
given byHD (m, my and isO(n).

3.1.1 Property 1
For the binary 2-tuplgmy, m), whose HD isO(n), it naturally
follows that(m » m) = {} and the converse is also true.

3.1.2 Property 2
The upper bound for the number of exact bit-wiseglementary
pairs in the function set would @&Y2154H,

3.1.3 Property 3

For the upper bound & disjoint binary 2-tuples, the bit-wise
complementary pair is obtained by grouping an eterirea finite
set comprising2™® elements with the absolute value of the
element being, such thatj = 0,1,....,2"%Y-1; with an unique
element of another finite set of a similar cardiyalwhose
absoluteness is described Iy such thatk = 2™-m; where
m=1,2,....,(n+1)

The above definition and formulation of propertéso hold good
for the case of functions specified in terms ofrt-F-set.

4. REVIEW OF GRAPH THEORY

A graphG is a pairG = (V, E) consisting of a finite s&t # gand

a setE of two-element subsets &f. In graph theory, infinite
graphs are also studied, however here; we restiisielves to the
finite case. The elements ®&f are calledvertices An element,
e ={a, b}of E is called aredgewith end verticesa’ and ‘b’. We
say that ‘a’ and ‘b’ aréncidentwith ‘e’ and that ‘a’ and ‘b’ are
adjacent or neighboursof each other, and write e = ab [8].
Further details regarding the pictorial descripgi@md properties
of all graphs and other network terminologies caridund in [8].

5. PROPOSED GRAPH & SYNTHESIS

In our case, the problem under consideration isesgmted in a
novel way on the lines of eomplete graphspecification. The
complete graphK, is a network withV|=n and |E|=[n(n-1)]/2.
In other words, the empty grapk, is a graph witHK,'|=n and
|IE (K.)|=0, whereK, is the complementary version Kf, [8].
The decimal equivalent of each binary minterm/mamteshall
correspond to a uniqueertex labelor identity for the proposed
network. So, the total number of minterms [maxtgrimshe ON-
set [OFF-set) of a completely specified logic fumct shall
account for the number of vertices in the graph. fas as



incompletely specified logic functions are conceknehoseDC-
set# { }, the inclusion of its elements in the ON-set or GefFis
dictated by the optimality of the best minimal dmo that is
predicted.

The algorithm for such a directed grapdigtaph) can be
implemented by means of any high-level language ramdon a
computer with even an adjacency list representation

5.1 Weighted Adjacency Matrix specification

A directed multigraph G with a non-zero finite \ettset can in
general be represented in matrix form byAatjacency matrixFor
our problem specification, we opt for a slightly difeed form of
the latter, designated Weighted Adjacency Matrix (WAMJhe
order of an Adjacency matrix would Be x n’. The added feature
of a weighted adjacency matrix over the conventiame would
be that each matrix element representing the pceseha directed
edge from one vertex to anothey, is also multiplied by the
decimal equivalent of the corresponding Booleatadise between
the two vertices (to be read as an entry correspgrio a rowi’
and a columnj ), HD (i, j). In other words, every edge of this
strongly connected grapWill be associated with a weight, which
is the Boolean distance between its end verticesorber to
preserve the structural property of an Adjacencyrimnand to
make it appropriate for our problem specificatiove introduce
n(n-1)/2 extra edges, i.e., an edge between two end veriices
considered to be bidirectional. So, for the progostucture, if
V| = n, then|E| = n(n-1). Hence the proposed binary network is
an extension of the complete graph functionalitgt ts leads to a
dense networkvith number of edges aD[n(n-1)]. The typical
structure of a four terminal logic network is shoinrFig. 1. Here
W2 represents thaveight of an edgewith itsheadat vertex y’
andtail at vertex X' and is equal to the decimal equivalent of the
binary distance between those two vertices. Itss elear from the
proposed graph that the in-degree/out-degree df eatex would
be O(n) and that the minimum eccentricityadius) and maximum

HD(W,X) = WEWX) = \petw,
HD(w.y) = WEWY) = \p\elw)
HD(w,z) = WEW-2)= \\ezw)
HD(x.y) = WEOY) = \\ e x)
HD(x,z) = We*d= wees

Figure 1. An example 4-terminal Boolean network

eccentricity fiametej of each of the graph vertices would also
be equal tainity. Theweighted adjacency matrif Fig. 1 would
be as follows.

w X y z
w 0 12 HD(w,x) X Hm@,y) X HD(w,z
X | 1x HD(x,w) 0 Xl HD®,y X HD(x,z)
y |1xHD(y,w) 1Ix HD(y,x) 0 ¥ HD(y,z)
z |1xHD(z,w) X HD(z,x) % HD(z,y) 0

From the above representation, it can be inferadl the matrix
is non-negative square and symmetric which implies that
lag| = |a;|. Here " and ‘] assume row and column indices
respectively and vice-versa.

5.1.1 Case 1: Exact grouping procedure for logic

functions with actual complementary ON-set/OFF-set
Given a Boolean functionZ, whose ON-setZoy = {m;}, such
that|Zo\| is even then for everyny 7{mj}, there definitely exists
anotherm, 7 {m}, wheremy » m¢ = @ thenHD(m, m) = n.
Also, there does not exist any /7{m}, such that HD(m m) =
HD(m,, m) = O(unity). It has been observed that the number of
functions belonging to this category grows expoiadigitwith ‘n’
and hence the proposed technique would carry migofifisance
for higher values ofrf'. A digraph is then drawn witlv(K,)|=n
and|E(K,)|=n(n-1). A weighted adjacency matris then formed
as shown above. Fdvax |gj|= Max EE HD[O(n)] group the
vertices corresponding to thé" and j" rows or those
corresponding to th&" andj™ columns. The above procedure is
continued until all the row entries or column egdrin the matrix
are checked. Then the binary information correspando the
term-pair undergoes a literal matching with theoinfation
matrix mentioned in the next sub-section, so asrable direct
logic synthesis. The resulting factors are subgbdte a weak
factorization heuristic to yield the best and miainrredundant
solution. The above routine holds good for maxtel@pendent
functions also and takes the least polynomial tsimee single
matrix iteration is sufficient to obtain terms, tadile for pairing.
The above procedure is also ideal for certa@lf-dual logic
functions which contain exactlg™* elements in its one-set. A
self-dualfunction can be generally described as follows.4 be

a completely specified self-dual Boolean functiossp that
Zon={m;} and Zore={Mj}; such that|Zon|=|Zore| andi # j. Let

M ZAM;}. Then the equality relation based on the indices,
{i} xor k O {j}, would hold well. IfZ is an incompletely specified
function, then the values for don’t cares are asigsuch that the
above relation is satisfied and the cardinalitgitfier of the main
functional sets (ON/OFF-set) would b@/2). The method
illustrated is most suitable for effectively syrsimng widely
used practical digital circuits of any order, whicbntain such
functionality, and include parity generator and ates circuits,
with even number of input literals.

5.1.2 Case 2: Exact two-level solution for function
elements exhibiting complete adjacency

For a logic functionfF, whose ON-set i$oy = {mg}, then for
everym, [7{mg}, there exists atleast ome, /7{my}, such that
m, N m, # { } or HD(m,, m)<O(n). Hence the minimum binary
distance isunity and the maximum value {g-1). Then, similarly,

a directed graph witfV(K,)|=n and|E(K,)|=n(n-1) is sketched.

A compactweighted adjacency matriz framed. Fota;| = |a;| =
HD[O(unlty)] combine those vertices correspondlng to ithe
and ™ rows or those corresponding to tHeandj™ columns.



Another weighted adjacency matriis framed for the vertex pair

entries resulting from the previous matrix. Thisulebconstitute

the second iterationThe shared literal would have to be neglected

with a don’t care occupying that variable positiBor the problem
under consideration represented by this proposettixnahe
notion of adjacency for binary values would be gaed by the

following: 1&0, 0&1, 0&d, d&0, 1&d, d&lare understood as non-

adjacent \fhose HD=), whereas0&0 and 1&1 are considered

adjacent\whose HD=0. Here o' refers to a don'’t care term. In the

new matrix, the presence of a unity element isdochecked. If
found, the above process is continued, otherwisthalcanonical
terms would have been already co-joined to resuli minimum
expression in standardlisjunctive normal form The vertex
combinations would imply the reduced products dred thave to
be logically summed to obtain the above form. I baen found
that the results obtained by this method matchethaistained by
standard synthesis solutions such as K-Map, Quin€liskey
method or by a standard two-level logic minimizercls as
Espresso-Exact. The number of iterations in thisecaould
depend upon the degree of grouping attained inrtii@l stages
and as such this method covers the issue of ouphatse
optimization and is also applicable for functiongpearing in
canonical product forms. An added advantage in ttidshod is
that it can solve for both the normal phase as wslifor the
inverted phase of the function in parallel and tkempare them
based on the number of literals and realizablesgageded.

5.1.3 Case 3: NP-hard function enumeration problem

Given a Boolean functior, whose ON-setZoy = {m;}, such that

|Zonl is odd, then for everymy 7 {mj}, there exists an element,

m J{m}, wheremy n m; = @ thenHD(m, m) = n. In addition,
there also exists atleast one more element,0 {m;}, where
1 < HD[m,, {m}] < O(n-1) holds goodTo quantify the number of
functions belonging to this class is by itself aR-Nard problem
and is beyond the scope of this work. However, agabrihe

functions that can be classified in this categerg,have been able

to achieve good simplification, albeit with mixeerformance
results.

5.1.4 Case 4: Considering output phase optimization

Similar to conventional PLA type output phase ojation, for
the problem type described in the previaases binary networks
can be drawn for both the normal phase of the fondfF) as well

as for the complementary phade)( Then their corresponding

minimum solutions can be compared in terms of thmber of

irredundant prime implicants and/or literals to idecon the best
choice of function polarity.

If a logic function is described in terms of its BBet (with or
without don't cares), by default, it is translatedo an ON-set
problem to be solved and the solution is invertd@this is

necessitated due to the presence of an extra iampliequired for
a minimal OFF-set solution compared with the latterturn, this

is attributed to the nature of the binary inforrati matrix

specification for maxterms as is evident from eiunst (8) and (9).
For minimization problem definitions associatedhmitase 3, the
technology independent heuristic would make a fatadice based
on the literal count of the resulting solutionsregponding to the
opposite function polarities. However, a comparisonthe basis
of realizable gates is also possible, if the circaan be
standardized to accommodate only gates available library.

This seems to be a reasonable proposition as thetell acyclic
graph representation for a combinatorial switchiegwork would

have a similar binary tree construction.

5.2 Synthesiswith Binary Information Matrix
The proposed synthesis technique, although priynangant for
effecting cost optimization by way of reducing thember of
gates and literals needed for implementation, aeliethe
objective of minimizing the power cost of the Bamienetwork
realized. Although power optimization is a consemsee of the
area-centric approach, it is a desirable outconte method
proposed in this paper paves the way for systergatigping and
reduction of pair-wise; maximally disjoint binaryt@ples. This is
possible by a binary information matrix for a 24eufully disjoint
ON-set pair described by equations (6) and (7pbes,

Xi-1 T TR X &

m, 0 1 1 1

m 1 0 0 0
=[ (Xp1 XOr Xn0) and............. and (Xy Xnor Xo) | (6)
= (Xn-2 XNOF Xn2) OF wevvvennn or (Xy xor Xg) | @)

A binary information matrix for a 2-tuple disjoi@FF-set pair
would be described by equations (8) and (9), ghwlow.

Xi-1 Ximg e X &
M, 0 1 1 1
M 1 0 .. 0 0
= (Xn2 XNOF Xp2) OF cevvvnieieiieeeen. or (Xp XNOr Xn.1) | (8)
= [ (Xp1XOr Xp2) and................ and (Xp Xor Xn.1) I’ 9

It is clear that equations (6) and (7) and simylatuations (8)
and (9) areequivalent dual®f each other. The rows in the above
matrices correspond to the canonical binary 2-tyalie and the
columns represent the support of the function. ldeacbasic
information matrix has an order d@ % n'. The intersection of a
row index with a column index is assigned a binaf®), if the

variable associated with the minterm (maxterm) iiesent in

normal form and 0(1) otherwise.

6. SMULATION METHOD & RESULTS
About 40 arbitrary multiple input, single outputmeegenerative
logic functions, representing all possilplblem casesdescribed
above, were considered for simulation studies. 8ablin the
appendix lists some of the examples; for reasotsenfity only a
representative sample have been included. The Ma@$istor
descriptions corresponding to the synthesized tatel netlist
were simulated as the back-end using Mentor Grapbimls for a
0.35 micron TSMC CMOS process technology. The egton of
power consumption of circuits based on a finiteuingector set is
through tagged probabilistic simulation scheme [Hje reason
for the choice of this scheme is due to the miniemsdociated
error component. The simulation results obtainedtliie target
technology validate our proposition and argumentsnfiajority
of samples, detailed in Table 1. The graphical canspn plots
are depicted by Figs. 2 and 3. Since the solutidmigined by our
method are comparable with those of the traditicoreds and
industry-standard tools, we have not consideredparalglem-sets
for case 2



Table 1. Comparison of design metricsfor different synthesis styles

Logic Standard form f-RM form f-GRM form f-PKRM form Proposed form
Function ID P (nW) Ng | P(nW) Ng P (nW) N | P(nW) Ng P (nW) Ng
Case 1-LF1 10.78 9 13.46 5 13.46 5 13.46 5 9.67 ¢]
Case 1-LF2 14.44 9 5.7 3 6.44 5 5.7 5 5.7 3
Case 3 - LF3 9.65 6 10.4 5 12.16 7 9.65 7 8.15 B
Case 1 - LF2 20.14 13 11.38 4 14.95 4 11.39 4 11.26 3
Case 3 - LF5 7.76 6 14.79 6 13.81 6 13.8] 6 9.67 B
Case 3 - LF6 11.18 7 8.64 5 7.8 6 8.64 5 5.99 3
Case 1-LF7 16.49 10 16.01 8 18.75 9 18.74 g 9.82 4
Case 3-LF3 16.67 10.12 4 10.12 4 10.12 4 8.23 B
Case 1-LF® 7.76 14.79 6 13.81 6 13.81 6 9.67 B

Case 3-LF10 29.09 13 16.15 8 17.23 8 23.34 1L 12.2)7 5
Case 3-LF11 10.73 14 13.46 5 13.46 5 13.44 5 9.664 3
Case 3-LF12 12.51 9 14.5 5 20.57 7 23.6 9 8.15 B

Case 3 - LF13 12.59 9 16.81 6 14.59 5 21.74 9 8.19 ¢]
Case1-LF12| 29.24 15 8.03 3 12.23 5 12.23 5 8.03 3
Case 3 - LF15 12.75 7 13.82 8 14.14 8 14.14 8 10.56 6
Case 3 - LF16 19.48 11 13.09 6 13.09 6 13.094 6 13.11 6
Case 1 - LF1Y 13.38 8 16.57 10 16.57 1( 16.57 1 13.06 7
Case 1 - LF18 14.49 9 5.7 3 6.44 5 6.44 3 5.7 3

Case 1-LF19 26.42 15 11.38 4 14.5 4 14.5 4 9.48 B3
Case 3-LF20 15.74 8 11.72 11.72 7 11.72 1 15.72 te]
Case 1-LF21 18.15 11 22.34 12 25.95 14 25.95 1 16.34 5
Case 1-LF22 25.82 15 20.62 5 19.75 5 20.62 5 17.5p 4
Case 3 - LF23 15.69 10 11.73 7 14.32 8 14.37 8 8.25 4
Case 3 - LF2% 15.68 9 13.42 7 14.14 8 14.14 8 9.89 !
Case 3-LF25 16.98 10 17.88 8 23.81 9 23.81 g 12.2p 4

LFM™, LF — Logic Function, M — Function identity, n -ulber of input literals
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Figure 2. Power consumption comparison for different synthesis methods
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Figure 3. Gate count comparison for various synthesis schemes



Let us consider the output truth vector of a foariable Boolean
function given by [0,1,1,0,0,0,0,0,0,0,0,0,0,a]% which falls
under case 1 The power consumption metridfound out by
simulation with a technology target, for the saduatiobtained
based on the standard foisn16.7 nW.Among the different Reed-
Muller forms f-PKRM has the lowest value of 10.1 nW and our
proposed form has a value of 8.2 nW respectively.

For the truth vector of a four-variable logic fuioct, given by
[0,0,0,0,0,1,1,1,0,1,1,0,0,0,0'0] (belonging to case 3, the
standard, -GRM and proposed forms have power gcopsan
values of 14.4 nW, 13.3 nW and 10.7 nW respectively

For case 4 we consider the truth vector of a 4-input logiodtion
as, [1,1,1,1,0,1,1,0,0,1,1,0,1,1,1,1]n this case, the total power
metric was found for the standard, f-PKRM and pemabforms
respectively as 16.0 nW, 10.0 nW and 8.1 nW.

From the detailed simulation results mentionedabl& 2, we have
considered the best minimum power amongst thosthefother
conventional methods and compared it with our nekthbhe
percentage savings/extra expenditure incurred oh emase was
then averaged to arrive at the net savings forthel examples
considered. The same procedure has been followtbdrespect to
gate count and literal count.

7. CONCLUSIONS

The computational complexity associated with lagjraplification
has posed challenges since the early 60's [2]. tEs@lations for
some central problems have been derived only withénlast few
years and others remain open. This paper has agdrean
important issue of practical relevance, by meansmwbducing a
novel approach to logic reduction for certain otsssf Boolean
functions, based on graph theory and suitable fasiee
implementation with a high-level language. Our aagh is
greatly simplified in comparison with those of dixig significant
works, such as [4] and [6], as it does not expeoy a
intuitive/complex analytical solutions, but rathemables a
systematic reduction procedure. The other advaritaget it also
minimizes functions not exhibiting auto-symmetnhi§ adds to
the pedagogical value of this research work anddéeal for
enabling hand-crafted solutions for smaller degmedlems.
Algorithmic logic synthesis is usually carried auttwo stages, the
independent stage where the given Boolean equatines
minimized with no regard to physical properties #mel dependent
stage where mapping to a physical cell librarydeel At the logic
level, although a number of logic types exist witlthe large
family of XOR Sum of Products expressions [10], \wave
selected only three of them (RM, GRM and PKRM faoynasving
to a relatively narrower solution choice and redlicemputational
cost required to arrive at a best minima. The irtgyare of our
contribution is substantiated by improved resulisguantitative
comparison with the traditional ones, at both tkeehnhology-
independent and dependent phases. Further worriiea out to
complete the automation of the synthesis proces®dolt in an
integrated EDA tool for XOR and/or XNOR dominateslitshing
circuits.
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APPENDIX
Table 2. Description of Boolean functions
Logic ON/OFF Set specification
Function ID of the Boolean function
LF1* {0,3,12,15}
LF2* {5,6,9,10}
LF3* {6,7,8,9}
LF4* {0,3,5,6,9,10,12,15}
LF5* {0,7,8,15}
LF6’ {5,6,7,9,10,11}
LF7° {8,11,20,23}
LF8 {1,2,5,6,25,26,29,30}
LF9® {0,1,2,3,28,29,30,31}
LF10° {1,2,9,10,13,14,17,18,20,21,29,30}
LF11° {0,3,12,15,16,19,28,31}
LF12 {0,1,2,3,5,6,9,10,12,13,14,15,16,17,18,19,21,22,
25,26,28,29,30,31}
LF13 {0,3,4,7,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,24,27,28,31}
LF14 {2,3,4,5,8,9,14,15,16,17,22,23,26,27,28,29}
LF15° {4,5,10,11,20,21,26,27}
LF16° {1,2,5,6,19,23,25,26,29,30}
LF17 {5,10,21,26,28,29}
LF18 {9,11,12,14,17,19,20,22}
LF19° {0,1,6,7,10,11,12,13,18,19,20,21,24,25,30,31
LF20° {8,9,10,11,21,22}
LF21° {7,8,55,56}
LF22 {17,18,29,30,52,55,56,59}
LF23 {17,18,21,22,41,42,45,46}
LF24° {13,14,17,18,45,46,49,50}
LF25° {3,4,11,12,51,52,59,60}




