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ABSTRACT 
This paper discusses a new, systematic approach to the synthesis of 
a class of non-regenerative Boolean networks, described by 
FON[F OFF]={m i}[{M i}] , where for every mj[M j] ∈{mi}[{M i}] , there 
exists another mk[M k] ∈{mi}[{M i}] , such that their Hamming 
distance HD(mj, mk)=HD(Mj, Mk)=O(n), (where ‘n’ represents the 
number of distinct primary inputs). The method automatically 
ensures exact minimization for certain important self-dual 
functions with 2n-1 points in its one-set. The elements meant for 
grouping are determined from a newly proposed weighted 
adjacency matrix. Then the binary value corresponding to the 
candidate pair is correlated with another proposed binary 
information matrix to enable synthesis. The algorithm can be 
implemented in any high level language and achieves best cost 
optimization for the problem dealt with, irrespective of the number 
of inputs. For other cases, the method is iterated to reduce it to a 
problem of O(n-1), O(n-2),…. and then solved. In addition, it leads 
to optimal results for problems exhibiting higher degree of 
adjacency, compatible with standard synthesis methods. Circuit 
level simulations demonstrate mean savings in power, gate and 
literal counts by 11.7%, 29.4% and 4.8% respectively, over a wide 
range of examples compared with other existing techniques. 

Categories and Subject Descriptors 
B.6.1 [Design Styles]: Combinational logic  

General Terms 
Design, Theory, Performance 

Keywords 
AOI logic, AND-XOR expressions, Boolean distance, Low power   

1. INTRODUCTION 
Logic synthesis has matured as a field and is used in every major 
digital IC design worldwide [7]. Despite a wealth of research 
results and pioneering commercial tools, some significant 
problems remain open owing to its inherent computational 
complexity [2]. Logic synthesis forms an important part of the 
design cycle for a digital circuit/system. Its actual significance 
should also be understood in the context of the increasingly 
important requirement to minimize power dissipation. The low 

power design challenge is one that requires abstraction, modeling 
and optimization at all levels of design hierarchy. The 
considerations range from the technology being used for the 
implementation, circuit and logic topologies, digital architectures 
and even the algorithms being implemented [1]. This articulates 
the fact that the power component should be considered during 
the logic synthesis phase as well. Gate-level optimization may 
achieve power savings: in some specific cases more than 50% 
reduction in power, without loss of performance, may be 
achieved [7], In general, however, the reduction is around 5%-
15% [9]. Gate-level optimizations are relatively low cost in terms 
of design-effort compared with other techniques. 
This paper presents a novel and versatile synthesis method 
incorporating available gate library types. It is primarily aimed at 
combinatorial logic networks, whose ON/OFF set exhibits 
maximal and complementary pair-wise disjointness. In other 
words, the function set contains canonical terms, which can be 
grouped based on their Hamming distance, (HD), which is O(n). 
The proposed technique guarantees best results for the above 
problem definition, where the optimality of the solution obtained 
is quantitatively evaluated in terms of total power consumption 
(P) of the circuit realized, number of gates (NG) and literals (NL) 
required for its implementation. Of course, a comparison based 
on NG is only approximate since different gate types are of 
different, (although roughly comparable) sizes. 
The technique has its roots in the rudiments of graph and network 
theory. It enables best minimum solutions even for logic 
networks composed of elements exhibiting strong or complete 
adjacency, using a variation of the proposed heuristic, as will be 
seen in section 5.1.2. Although our analysis for some problem 
cases with function sets exhibiting adjacency as well as non-
adjacency between their elements have yielded satisfactory 
experimental results, still an exhaustive analysis is deemed 
necessary to gain a complete insight about the effectiveness of 
our proposition for such function classes, which promises scope 
for further work in this direction. This phenomenon is also due to 
the NP-hard enumeration of such possible functions. The strategy 
considers the issue of output phase optimization as well.                                                                                                                                
The remainder of this paper is organized as follows. Section 2 
provides concise background information pertaining to some 
traditional synthesis approaches available in literature, such as 
AND-OR-Invert (AOI) logic and also background to some of the 
important classes of AND-XOR expressions, such as Reed-
Muller (RM), Generalized RM (GRM) and Pseudo-Kronecker 
RM (PKRM) forms. In Section 3, the inherent nature and some 
fundamental properties governing Boolean functions exhibiting 
only maximal and exact bit-wise complementary support are 
mentioned. Section 4 discusses some essential graph theoretic 
principles. Section 5 describes the proposed graph structure and 
weighted adjacency matrix formulation with an example. 
Minimization heuristics for some problem categories are also 
described. Besides, the mode of direct synthesis by correlation of 
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the binary data with another proposed information matrix is also 
dealt with in this section for minterms/maxterms as well. Section 6 
briefly highlights the simulation mechanism, examples and also 
tabulates the results obtained for the different cases. Comparison 
between the different synthesis procedures in terms of P and NG is 
also graphically illustrated in this section. Finally, we make the 
concluding remarks in Section 7. 

2. CONVENTIONAL SYNTHESIS  
Conventional logic design is usually based on AND-OR logic and 
OR-AND logic. We have used AOI logic in common with the 
usual library descriptions in the technology domain; this will be 
referred to as Standard form in this paper. We have adopted single 
rail circuits for our implementation. Although double-rail inputs 
are available in the general case for designs targeting 
programmable logic devices, for standard cell based IC designs, 
the circuit inputs are generally single-rail. This is because single-
rail circuits tend to have fewer interconnections and thereby less 
hardware area overhead.                                                                                            
XOR based designs have certain well-known advantages over the 
above classical realization methods. Firstly, they pave way for a 
more concise expression for many basic arithmetic functions. 
Secondly, many practical digital circuits used in the fields of 
coding theory, linear system, telecommunication and arithmetic 
coding contain basic functionality which are inherently mod-2 
sum. Finally, circuits containing XOR gate types have excellent 
design-for-test properties. Such is their significance that even some 
earlier FPGA styles had incorporated 2-input XOR gate in their 
basic granularity blocks, for example the Cli 6006 from Concurrent 
Logic Inc.                                             
Various classes exist in AND-XOR expressions involving only 
AND and XOR gate types. This is because any arbitrary logic 
function can be purely realized using only AND and XOR logic 
gates. For example, the RM, GRM and PKRM forms extensively 
rely upon such gates for implementation. Slight modifications of 
the Shannon expansion (1) are made for the AND-XOR logic to 
derive Davio expansions (2), (3) and given by [10] as,  
 
F = [(x and F x) xor (x’ and F x’)]                                               (1) 
                              
F = [Fx’ xor {x and (Fx xor Fx’)}]                                               (2) 
 
F = [Fx xor {x’ and (Fx xor Fx’)}]                                              (3) 
 
Recursive application of the above tree expansions results in 
various RM trees [10]. If only the positive Davio expansion (2) is 
used repeatedly for variable expansion with some fixed order of 
expansion of variables, a compact RM tree is generated. A GRM 
tree is created when a choice exists between positive Davio 
expansion and negative Davio expansion (3) for each variable. If 
equations (1), (2) and (3) are used along with the choice of 
equations (2) and (3) in each sub-tree, the PKRM structure is 
generated. Importantly, in all these structures only two kinds of 
gates (AND and XOR) are used for circuit realizations. Since 
obtaining minimal expressions for RM, GRM and PKRM forms is 
by itself a separate extensive procedure and due to the necessity 
for a reasonable comparison with those of our proposed 
realizations, we have resorted to factoring those forms with 
elementary minimization rules in line with [3]. The objective of 
factorization is to represent a Boolean function in a logically 
equivalent factored form but with a minimum number of literals. 
We have opted for algebraic factorization as it is simple and 

requires much less CPU execution time compared to Boolean 
factorization. This weak operation has enabled us to greatly 
reduce the literal count as well as the gate count needed for such 
realizations, while still preserving the integrity of those 
structures.  This technique is also justified in the sense that we are 
primarily concerned with AND-XOR logic formats. Hence, the 
corresponding factorized expressions would henceforth be 
identified as f-RM, f-GRM and f-PKRM expansions respectively. 

3. BACKGROUND AND PRELIMINARIES 
3.1 Definition 
Let Z be a logic function with its support and ON-set defined as,              

s[Z] = {xn-1, xn-2, …. , x0}                                                           (4) 

ZON = {mi}; 0 ≤ i ≤ (p-1), where 0 ≤ p ≤ 2|s[Z]|                                           (5) 

where, ZON stands for the ON-set of the function Z and {mi} refer 
to the set of all minterms. Now, for every mj, mk ∈ {m i}, that 
exists, the Boolean distance between the two binary tuples is 
given by HD (mj, mk) and is O(n). 

3.1.1 Property 1                                                                               
For the binary 2-tuple (mj, mk), whose HD is O(n), it naturally 
follows that (mj ∩ mk) = { }  and the converse is also true. 

3.1.2 Property 2  
The upper bound for the number of exact bit-wise complementary 
pairs in the function set would be 2n-1/2|s[Z]|-1. 

3.1.3 Property 3 
For the upper bound of 2n-1 disjoint binary 2-tuples, the bit-wise 
complementary pair is obtained by grouping an element in a finite 
set comprising 2n-1 elements with the absolute value of the 
element being j, such that j = 0,1,….,2(n-1)-1; with an unique 
element of another finite set of a similar cardinality, whose 
absoluteness is described by k, such that k = 2n-m; where             
m = 1,2,….,(n+1).  
The above definition and formulation of properties also hold good 
for the case of functions specified in terms of their OFF-set.  

4. REVIEW OF GRAPH THEORY 
A graph G is a pair G = (V, E), consisting of a finite set V ≠ φ and 
a set E of two-element subsets of V. In graph theory, infinite 
graphs are also studied, however here; we restrict ourselves to the 
finite case. The elements of V are called vertices. An element,      
e = {a, b} of E is called an edge with end vertices ‘a’ and ‘b’. We 
say that ‘a’ and ‘b’ are incident with ‘e’ and that ‘a’ and ‘b’ are 
adjacent or neighbours of each other, and write e = ab [8]. 
Further details regarding the pictorial descriptions and properties 
of all graphs and other network terminologies can be found in [8].   

5. PROPOSED GRAPH & SYNTHESIS 
In our case, the problem under consideration is represented in a 
novel way on the lines of a complete graph specification. The 
complete graph, Kn is a network with |V|=n and |E|=[n(n-1)]/2. 
In other words, the empty graph, Kn’  is a graph with |Kn’|=n  and 
|E (Kn’)|=0 , where Kn’  is the complementary version of Kn [8]. 
The decimal equivalent of each binary minterm/maxterm shall 
correspond to a unique vertex label or identity for the proposed 
network. So, the total number of minterms [maxterms] in the ON-
set [OFF-set) of a completely specified logic function shall 
account for the number of vertices in the graph. As far as 



incompletely specified logic functions are concerned, whose DC-
set ≠ { }, the inclusion of its elements in the ON-set or OFF-set is 
dictated by the optimality of the best minimal solution that is 
predicted.  
The algorithm for such a directed graph (digraph) can be 
implemented by means of any high-level language and run on a 
computer with even an adjacency list representation.   

5.1 Weighted Adjacency Matrix specification 
A directed multigraph G with a non-zero finite vertex set can in 
general be represented in matrix form by an Adjacency matrix. For 
our problem specification, we opt for a slightly modified form of 
the latter, designated a Weighted Adjacency Matrix (WAM). The 
order of an Adjacency matrix would be ‘n × n’ . The added feature 
of a weighted adjacency matrix over the conventional one would 
be that each matrix element representing the presence of a directed 
edge from one vertex to another, aij, is also multiplied by the 
decimal equivalent of the corresponding Boolean distance between 
the two vertices (to be read as an entry corresponding to a row ‘i’  
and a column ‘j’ ), HD (i, j). In other words, every edge of this 
strongly connected graph will be associated with a weight, which 
is the Boolean distance between its end vertices. In order to 
preserve the structural property of an Adjacency matrix and to 
make it appropriate for our problem specification, we introduce 
n(n-1)/2 extra edges, i.e., an edge between two end vertices is 
considered to be bidirectional. So, for the proposed structure, if   
|V| = n, then |E| = n(n-1). Hence the proposed binary network is 
an extension of the complete graph functionality and this leads to a 
dense network with number of edges of O[n(n-1)]. The typical 
structure of a four terminal logic network is shown in Fig. 1. Here 
We(x,y) represents the  weight of an edge  with  its head at vertex ‘y’ 
and tail at vertex ‘x’ and is equal to the decimal equivalent of the 
binary distance between those two vertices. It is also clear from the 
proposed graph that the in-degree/out-degree of each vertex would 
be O(n) and that the  minimum eccentricity (radius)  and maximum  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

eccentricity (diameter) of each of the graph vertices would also 
be equal to unity. The weighted adjacency matrix of Fig. 1 would 
be as follows.  
                w                  x                      y                       z

       0              1 HD(w,x)       1 HD(w,y)          1 HD(w,z)w

x 1 HD(x,w)           0                 1 HD(x,y
    

y

z

× × ×
× × )           1 HD(x,z)

1 HD(y,w)     1 HD(y,x)              0                    1 HD(y,z)

1 HD(z,w)     1 HD(z,x)       1 HD(z,y)                   0

 
 × 
 × × ×
 

× × × 
From the above representation, it can be inferred that the matrix 
is non-negative, square and symmetric which implies that         
|aij| = |aji|. Here ‘i’  and ‘j’  assume row and column indices 
respectively and vice-versa.  

5.1.1 Case 1: Exact grouping procedure for logic 
functions with actual complementary ON-set/OFF-set 
Given a Boolean function, Z, whose ON-set, ZON = {mi}, such 
that |ZON| is even, then for every mj ∈ {mi}, there definitely exists 
another mk ∈ {mi}, where mj ∩ mk = φ, then HD(mj, mk) = n. 
Also, there does not exist any ml ∈ {mi}, such that HD(mj, ml) = 
HD(mk, ml) = O(unity). It has been observed that the number of 
functions belonging to this category grows exponentially with ‘n’ 
and hence the proposed technique would carry much significance 
for higher values of ‘n’. A digraph is then drawn with |V(Kn)|=n 
and |E(Kn)|=n(n-1). A weighted adjacency matrix is then formed 
as shown above. For Max |aij|=Max |aji|=HD[O(n)] , group the 
vertices corresponding to the i th and j th rows or those 
corresponding to the ith and j th columns. The above procedure is 
continued until all the row entries or column entries in the matrix 
are checked. Then the binary information corresponding to the 
term-pair undergoes a literal matching with the information 
matrix mentioned in the next sub-section, so as to enable direct 
logic synthesis. The resulting factors are subjected to a weak 
factorization heuristic to yield the best and minimal irredundant 
solution. The above routine holds good for maxterm dependent 
functions also and takes the least polynomial time since single 
matrix iteration is sufficient to obtain terms, suitable for pairing.  
The above procedure is also ideal for certain self-dual logic 
functions which contain exactly 2n-1 elements in its one-set. A 
self-dual function can be generally described as follows. Let Z be 
a completely specified self-dual Boolean function, so that 
ZON={mi} and ZOFF={M j}; such that |ZON|=|ZOFF| and i ≠ j. Let 
Mk∈{M j}. Then the equality relation based on the indices,          
{i}  xor k ∈ {j} , would hold well. If Z is an incompletely specified 
function, then the values for don’t cares are assigned such that the 
above relation is satisfied and the cardinality of either of the main 
functional sets (ON/OFF-set) would be (n/2). The method 
illustrated is most suitable for effectively synthesizing widely 
used practical digital circuits of any order, which contain such 
functionality, and include parity generator and checker circuits, 
with even number of input literals.   

5.1.2 Case 2: Exact two-level solution for function 
elements exhibiting complete adjacency 
For a logic function, F, whose ON-set is FON = {ma}, then for 
every mb ∈ {ma}, there exists atleast one mc  ∈ {ma}, such that    
mb ∩ mc ≠ { } or HD(mb, mc)<O(n). Hence the minimum binary 
distance is unity and the maximum value is (n-1). Then, similarly, 
a directed graph with |V(Kn)|=n and |E(Kn)|=n(n-1) is sketched. 
A compact weighted adjacency matrix is framed. For |aij| = |aji| = 
HD[O(unity)] , combine those vertices corresponding to the ith 
and j th rows or those corresponding to the i th and j th columns. Figure 1. An example 4-terminal Boolean network 

HD(w,x) = We(w,x) = We(x,w) 

HD(w,y) = We(w,y) = We(y,w) 

HD(w,z) = We(w,z) = We(z,w) 

HD(x,y) = We(x,y) = We(y,x) 

HD(x,z) = We(x,z) = We(z,x) 



Another weighted adjacency matrix is framed for the vertex pair 
entries resulting from the previous matrix. This would constitute 
the second iteration. The shared literal would have to be neglected 
with a don’t care occupying that variable position. For the problem 
under consideration represented by this proposed matrix, the 
notion of adjacency for binary values would be governed by the 
following: 1&0, 0&1, 0&d, d&0, 1&d, d&1 are understood as non-
adjacent (whose HD=1), whereas 0&0 and 1&1 are considered 
adjacent (whose HD=0). Here ‘d’ refers to a don’t care term. In the 
new matrix, the presence of a unity element is to be checked. If 
found, the above process is continued, otherwise all the canonical 
terms would have been already co-joined to result in a minimum 
expression in standard disjunctive normal form. The vertex 
combinations would imply the reduced products and they have to 
be logically summed to obtain the above form. It has been found 
that the results obtained by this method match those obtained by 
standard synthesis solutions such as K-Map, Quine-McCluskey 
method or by a standard two-level logic minimizer such as 
Espresso-Exact. The number of iterations in this case would 
depend upon the degree of grouping attained in the initial stages 
and as such this method covers the issue of output phase 
optimization and is also applicable for functions appearing in 
canonical product forms. An added advantage in this method is 
that it can solve for both the normal phase as well as for the 
inverted phase of the function in parallel and then compare them 
based on the number of literals and realizable gates needed. 

5.1.3 Case 3: NP-hard function enumeration problem   
Given a Boolean function, Z, whose ON-set, ZON = {mi}, such that 
|ZON| is odd, then for every mj ∈ {mi}, there exists an element,      
mk ∈ {mi}, where mj ∩ mk = φ, then HD(mj, mk) = n. In addition, 
there also exists atleast one more element, mp ∈ {mi}, where                     
1 < HD[mp, {mi}] < O(n-1) holds good. To quantify the number of 
functions belonging to this class is by itself an NP-hard problem 
and is beyond the scope of this work. However, amongst the 
functions that can be classified in this category, we have been able 
to achieve good simplification, albeit with mixed performance 
results. 

5.1.4 Case 4: Considering output phase optimization 
Similar to conventional PLA type output phase optimization, for 
the problem type described in the previous cases, binary networks 
can be drawn for both the normal phase of the function (F) as well 
as for the complementary phase (F’ ). Then their corresponding 
minimum solutions can be compared in terms of the number of 
irredundant prime implicants and/or literals to decide on the best 
choice of function polarity.  
If a logic function is described in terms of its OFF-set (with or 
without don’t cares), by default, it is translated into an ON-set 
problem to be solved and the solution is inverted. This is 
necessitated due to the presence of an extra implicant required for 
a minimal OFF-set solution compared with the latter. In turn, this 
is attributed to the nature of the binary information matrix 
specification for maxterms as is evident from equations (8) and (9).      
For minimization problem definitions associated with case 3, the 
technology independent heuristic would make a final choice based 
on the literal count of the resulting solutions corresponding to the 
opposite function polarities. However, a comparison on the basis 
of realizable gates is also possible, if the circuit can be 
standardized to accommodate only gates available in a library. 
This seems to be a reasonable proposition as the directed acyclic 
graph representation for a combinatorial switching network would 
have a similar binary tree construction.  

5.2 Synthesis with Binary Information Matrix  
The proposed synthesis technique, although primarily meant for 
effecting cost optimization by way of reducing the number of 
gates and literals needed for implementation, achieves the 
objective of minimizing the power cost of the Boolean network 
realized. Although power optimization is a consequence of the 
area-centric approach, it is a desirable outcome. The method 
proposed in this paper paves the way for systematic grouping and 
reduction of pair-wise; maximally disjoint binary 2-tuples. This is 
possible by a binary information matrix for a 2-tuple fully disjoint 
ON-set pair described by equations (6) and (7) as follows,  

1 2 1 0

j

k

                x x . . . . . . . . . . . x         x

m   0          1      . . . . . . . . . . .      1           1
        

m   1          0      . . . . . . . . . . .      0           0

n n− −

 
 
 

  

= [ (xn-1 xor  xn-2) and…...….….and (x1 xnor x0) ]                   (6) 
 
= [ (xn-1 xnor  xn-2) or…...….….or (x1 xor x0) ]’                       (7) 
 
A binary information matrix for a 2-tuple disjoint OFF-set pair 
would be described by equations (8) and (9), given below. 

1 2 1 0

j

k

                 x x . . . . . . . . . . . x         x

  0          1      . . . . . . . . . . .      1           1
        

  1          0      . . . . . . . . . . .      0           0

n n

M

M

− −

 
 
 

 

= [ (xn-1 xnor xn-2) or……..….........or (x0 xnor xn-1) ]               (8) 
 
= [ (xn-1 xor  xn-2) and………....….and (x0 xor xn-1) ]’               (9) 
 
It is clear that equations (6) and (7) and similarly equations (8) 
and (9) are equivalent duals of each other. The rows in the above 
matrices correspond to the canonical binary 2-tuple pair and the 
columns represent the support of the function. Hence a basic 
information matrix has an order of ‘2 × n’. The intersection of a 
row index with a column index is assigned a binary 1(0), if the 
variable associated with the minterm (maxterm) is present in 
normal form and 0(1) otherwise.   

6. SIMULATION METHOD & RESULTS 
About 40 arbitrary multiple input, single output non-regenerative 
logic functions, representing all possible problem cases described 
above, were considered for simulation studies. Table 2 in the 
appendix lists some of the examples; for reasons of brevity only a 
representative sample have been included. The MOS transistor 
descriptions corresponding to the synthesized gate level netlist 
were simulated as the back-end using Mentor Graphics tools for a 
0.35 micron TSMC CMOS process technology. The estimation of 
power consumption of circuits based on a finite input vector set is 
through tagged probabilistic simulation scheme [5]. The reason 
for the choice of this scheme is due to the minimal associated 
error component. The simulation results obtained for the target 
technology validate our proposition and arguments for majority 
of samples, detailed in Table 1. The graphical comparison plots 
are depicted by Figs. 2 and 3. Since the solutions obtained by our 
method are comparable with those of the traditional ones and 
industry-standard tools, we have not considered any problem-sets 
for case 2.                  



 

Table 1. Comparison of design metrics for different synthesis styles 

Standard form f-RM form f-GRM form f-PKRM form Proposed form Logic 
Function ID P (nW) NG P (nW) NG P (nW) NG P (nW) NG P (nW) NG 

Case 1 - LF14 10.78 9 13.46 5 13.46 5 13.46 5 9.67 3 

Case 1 - LF24 14.44 9 5.7 3 6.44 5 5.7 5 5.7 3 

Case 3 - LF34 9.65 6 10.4 5 12.16 7 9.65 7 8.15 3 

Case 1 - LF44 20.14 13 11.38 4 14.95 4 11.38 4 11.25 3 

Case 3 - LF54 7.76 6 14.79 6 13.81 6 13.81 6 9.67 3 

Case 3 - LF64 11.18 7 8.64 5 7.8 6 8.64 5 5.99 3 

Case 1 - LF75 16.49 10 16.01 8 18.75 9 18.75 9 9.82 4 

Case 3 - LF85 16.67 9 10.12 4 10.12 4 10.12 4 8.23 3 

Case 1 - LF95 7.76 6 14.79 6 13.81 6 13.81 6 9.67 3 

Case 3 - LF105 29.09 13 16.15 8 17.23 8 23.39 11 12.27 5 

Case 3 - LF115 10.73 14 13.46 5 13.46 5 13.46 5 9.66 3 

Case 3 - LF125 12.51 9 14.5 5 20.57 7 23.6 9 8.15 3 

Case 3 - LF135 12.59 9 16.81 6 14.59 5 21.79 9 8.19 3 

Case 1 - LF145 29.24 15 8.03 3 12.23 5 12.23 5 8.03 3 

Case 3 - LF155 12.75 7 13.82 8 14.14 8 14.14 8 10.56 6 

Case 3 - LF165 19.48 11 13.09 6 13.09 6 13.09 6 13.11 6 

Case 1 - LF175 13.38 8 16.57 10 16.57 10 16.57 10 13.05 7 

Case 1 - LF185 14.49 9 5.7 3 6.44 5 6.44 3 5.7 3 

Case 1 - LF195 26.42 15 11.38 4 14.5 4 14.5 4 9.48 3 

Case 3 - LF205 15.74 8 11.72 7 11.72 7 11.72 7 15.72 8 

Case 1 - LF216 18.15 11 22.34 12 25.95 14 25.95 14 16.34 5 

Case 1 - LF226 25.82 15 20.62 5 19.75 5 20.62 5 17.52 4 

Case 3 - LF236 15.69 10 11.73 7 14.32 8 14.32 8 8.25 4 

Case 3 - LF246 15.68 9 13.42 7 14.14 8 14.14 8 9.89 4 

Case 3 - LF256 16.98 10 17.88 8 23.81 9 23.81 9 12.22 4 

LFMn; LF – Logic Function, M – Function identity, n – Number of input literals  
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Figure 2. Power consumption comparison for different synthesis methods  
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Figure 3. Gate count comparison for various synthesis schemes 

 



Let us consider the output truth vector of a four-variable Boolean 
function  given  by  [0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,0]T,  which  falls 
under case 1. The power consumption metric found out by 
simulation with a technology target, for the solution obtained 
based on the standard form is 16.7 nW. Among the different Reed-
Muller forms, f-PKRM has the lowest value of 10.1 nW and our 
proposed form has a value of 8.2 nW respectively. 
For the truth vector of a four-variable logic function, given by 
[0,0,0,0,0,1,1,1,0,1,1,0,0,0,0,0]T (belonging to case 3), the 
standard, f-GRM and proposed forms have power consumption 
values of 14.4 nW, 13.3 nW and 10.7 nW respectively.  
For case 4, we consider the truth vector of a 4-input logic function 
as, [1,1,1,1,0,1,1,0,0,1,1,0,1,1,1,1]T. In this case, the total power 
metric was found for the standard, f-PKRM and proposed forms 
respectively as 16.0 nW, 10.0 nW and 8.1 nW. 
From the detailed simulation results mentioned in Table 2, we have 
considered the best minimum power amongst those of the other 
conventional methods and compared it with our method. The 
percentage savings/extra expenditure incurred in each case was 
then averaged to arrive at the net savings for all the examples 
considered. The same procedure has been followed with respect to 
gate count and literal count. 

7. CONCLUSIONS      
The computational complexity associated with logic simplification 
has posed challenges since the early 60’s [2]. Exact solutions for 
some central problems have been derived only within the last few 
years and others remain open. This paper has addressed an 
important issue of practical relevance, by means of introducing a 
novel approach to logic reduction for certain classes of Boolean 
functions, based on graph theory and suitable for easier 
implementation with a high-level language. Our approach is 
greatly simplified in comparison with those of existing significant 
works, such as [4] and [6], as it does not expect any 
intuitive/complex analytical solutions, but rather enables a 
systematic reduction procedure. The other advantage is that it also 
minimizes functions not exhibiting auto-symmetry. This adds to 
the pedagogical value of this research work and is ideal for 
enabling hand-crafted solutions for smaller degree problems.   
Algorithmic logic synthesis is usually carried out in two stages, the 
independent stage where the given Boolean equations are 
minimized with no regard to physical properties and the dependent 
stage where mapping to a physical cell library is done. At the logic 
level, although a number of logic types exist within the large 
family of XOR Sum of Products expressions [10], we have 
selected only three of them (RM, GRM and PKRM forms), owing 
to a relatively narrower solution choice and reduced computational 
cost required to arrive at a best minima. The importance of our 
contribution is substantiated by improved results, in quantitative 
comparison with the traditional ones, at both the technology-
independent and dependent phases. Further work is carried out to 
complete the automation of the synthesis process to result in an 
integrated EDA tool for XOR and/or XNOR dominated switching 
circuits.   
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APPENDIX 

                 Table 2. Description of Boolean functions 

Logic 
Function ID 

ON/OFF Set specification 
of the Boolean function 

LF14 {0,3,12,15} 
LF24 {5,6,9,10} 
LF34 {6,7,8,9} 
LF44 {0,3,5,6,9,10,12,15} 
LF54 {0,7,8,15} 
LF64 {5,6,7,9,10,11} 
LF75 {8,11,20,23} 
LF85 {1,2,5,6,25,26,29,30} 
LF95 {0,1,2,3,28,29,30,31} 
LF105 {1,2,9,10,13,14,17,18,20,21,29,30} 
LF115 {0,3,12,15,16,19,28,31} 
LF125 {0,1,2,3,5,6,9,10,12,13,14,15,16,17,18,19,21,22, 

25,26,28,29,30,31} 
LF135 {0,3,4,7,10,11,12,13,14,15,16,17,18,19,20,21,22,  

23,24,27,28,31} 
LF145 {2,3,4,5,8,9,14,15,16,17,22,23,26,27,28,29} 
LF155 {4,5,10,11,20,21,26,27} 
LF165 {1,2,5,6,19,23,25,26,29,30} 
LF175 {5,10,21,26,28,29} 
LF185 {9,11,12,14,17,19,20,22} 
LF195 {0,1,6,7,10,11,12,13,18,19,20,21,24,25,30,31} 
LF205 {8,9,10,11,21,22} 
LF216 {7,8,55,56} 
LF226 {17,18,29,30,52,55,56,59} 
LF236 {17,18,21,22,41,42,45,46} 
LF246 {13,14,17,18,45,46,49,50} 
LF256 {3,4,11,12,51,52,59,60} 

 


