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Abstract

The development of robust and efficient synthesis tools
is important if asynchronous design is to gain more
widespread acceptance. Syntax-directed translation is a
powerful synthesis paradigm that compiles transparently a
system specification written in a high-level language into a
network of pre-designed handshaking modules. The trans-
parency is provided by a one-to-one mapping from language
constructs to the module networks that implement them.
This gives the designer flexibility, at the language level, to
optimise the resulting circuit in terms of performance, area
or power.

This paper introduces new techniques that exploit this
flexibility to improve the performance of synthesised asyn-
chronous systems. The results of a series of transistor level
simulations show that these techniques, combined with op-
timised handshake module implementations, can produce
up to a ten-fold improvement in the performance of a
32-bit, ARM-compatible, asynchronous processor used in
an experimental smartcard SoC, without introducing any
changes to the original processor architecture.

1 Introduction

Most modern embedded systems are synthesised using
CAD tools. Although a large proportion of these systems
are synchronous, interest in asynchronous circuits and tools
is continually growing for their low EMI, robust on-chip
interconnect and their potential to deal effectively with pro-
cess variation.

Several asynchronous synthesis systems have been re-
cently introduced. Some target the synthesis of asyn-
chronous controllers,e.g., Petrify [1] and Minimalist [2].
Others target both control and datapath but may require
user intervention or guidance during the synthesis process,
e.g., TAST [3] and the CSP-like CHP system [4]. Tan-
gram [5, 6] and Balsa [7] are fully-automated systems

that have successfully synthesised large-scale circuits us-
ing syntax-directed compilation. This paper focuses on this
synthesis approach and examines the opportunities to opti-
mise the performance of the generated circuits.

2 Syntax-Directed Synthesis

Syntax-Directed translation is a powerful synthesis tech-
nique. The first stage of the synthesis process involves com-
piling descriptions written in a high-level language into a
network of handshaking modules. This approach gives a
‘transparent’ compilation, i.e., there is a one-to-one map-
ping from a language construct to the network of modules
that implements it. This direct mapping gives the designer
flexibility at the language level to impact the resulting cir-
cuit: incremental changes at the language level result in pre-
dictable changes in the implementation. Clearly, the source
code specification may have a large impact on the perfor-
mance, power consumption and area of the resulting circuit.
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In many cases, the synthesis system can evaluate the gen-
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erated module network to provide the user with an early es-
timate of the performance and area of the resulting circuit.
In such cases, an experienced designer can optimise the re-
sulting circuit in terms of performance, area or power by
choosing the right specification.

Syntax-directed translation has been used successfully in
the synthesis of an 80C51 microcontroller [8], the G3Card
smartcard System-on-Chip [9], and an asynchronous MIPS
microprocessor [10]. The G3Card SoC, shown in Figure 1,
is a good example of an asynchronous embedded system. A
prototype was fabricated in a 0.18µm process and was fully
functional on first silicon. It contains two different, full-
featured implementations of an ARM-compatible, asyn-
chronous processor, a Memory Protection Unit, an asyn-
chronous interface to standard synchronous RAM, a syn-
chronisation coprocessor, and several peripherals, all syn-
thesised using the Balsa synthesis system.

2.1 The Balsa Synthesis System

Balsa is a synthesis system that generates purely asyn-
chronous macromodular circuits, called Handshake Cir-
cuits. Proposed originally for use with the Tangram lan-
guage (upon which Balsa is heavily based), handshake
circuits offer an attractive paradigm for circuit synthesis.
Complex descriptions written in the source language are
translated into a circuit consisting of instances of handshake
components composed in a macromodular style.
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Figure 2. Balsa design flow.

Handshake components are selected from a relatively
small set and are straightforward to implement. They are
interconnected through channels. Each channel connects an
activeport on one component to apassiveport on another.

The sense of the port (active or passive) indicates the direc-
tion of the handshake. An active port initiates a handshake
(sends the request) and the passive port acknowledges re-
quests. Channels can carry data and this can flow in either
the same direction as the handshake (apushchannel) or in
the opposite direction (apull channel). Channels that carry
no data are known assyncchannels or frequently asactiva-
tion channels as they are used to start the operation of many
components when connected to an activation port.

The generation of the Handshake Circuit is the first step
in the Balsa synthesis flow, shown in Figure 2. The Balsa
compiler generates an intermediate netlist, inBreezeformat,
which can be used for functional validation and early per-
formance estimates. The Balsa netlister generates a struc-
tural verilog netlist based on the target library cell and the
selected asynchronous style and data encoding. The verilog
netlist can be processed with commercial layout and extrac-
tion tools for further validation and fabrication.
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Figure 3. SPA Processor.

The G3Card SoC synthesised with Balsa was based on
the SPA processor, a fully synthesised, 32 bit, 100% ARM
compatible processor core. SPA was implemented as a sim-
ple, ARM7 style, 3-stage pipeline, depicted in Figure 3.
Both dual-rail (1-of-2 data encoding, quasi-delay insensi-
tive (QnDI) timing assumptions) andbundled data(single-
rail data encoding, data-bundling timing assumptions) were
implemented from the same Balsa specification.

The main goal of the dual-rail processor implementation
was to defeat power analysis, therefore, a simple, power-
balanced circuit was targeted. Performance was not a sig-
nificant requirement for the smartcard, however, the syn-



thesised SPA was significantly slower than expected. The
following section explores the reasons for the reduced per-
formance and introduces new handshake component de-
signs and performance-oriented techniques that result in im-
proved performance without changes to the original archi-
tecture of the processor.

3 Performance-Driven Synthesis

The Handshake Components and techniques introduced
in this section target optimised performance of Balsa-
synthesised circuits. Reduced power consumption is a sec-
ondary consideration in cases where the choices have no
significant impact on performance. Area is not considered
a significant factor, although the Results Section shows that
significant reductions in area are also achieved.

3.1 Improved Handshake Components

A drawback of syntax-directed synthesis is the overhead
imposed on the circuits by the control-driven approach to
the translation. A Handshake Circuit can be considered as
a large monolithic tree of control components that direct
the movement of data through datapath components. Data
and control are frequently synchronised and, often, control
is slower than data thus reducing the performance of the
circuit as data is stalled while control catches up.

Previous attempts at improving syntax-directed synthe-
sised systems have focused in the optimisation of the con-
trol tree by resynthesis and peephole transformations [11,
12]. The goal of the techniques is to identify sections of the
control structure that can be clustered together and resyn-
thesised. The behaviour of the control tree is not changed,
it is implemented in a more efficient way. Although these
techniques tend to optimise circuit area, up to 21% improve-
ment in performance have been reported.

The basic control commands supported by Balsa are op-
erations such as reading and writing from channels, arith-
metic and logic operations, and channel synchronisation.
Complex commands are formed by composing commands
in parallel or sequentially. These are implemented using
the Concur and Sequence components. Due to the asyn-
chronous operation of the circuits, a FalseVariable compo-
nent is used in every data channel input to detect the arrival
of new data and trigger the control unit. These handshake
components have a large impact on control and have been
redesigned.

The design of the new Handshake Components is not
based on the resynthesis approach used previously. The new
components change the behaviour of the control structure to
improve its performance while maintaining the same overall
operation of the circuit.

The key factors identified as the main contributors to
inefficient control components are:(i) the return-to-zero
phase present in the four-phase handshake protocol,(ii)
unnecessary synchronisation between data and control in
channel inputs, and(iii) power- and time-balanced dual-
rail adder and other datapath components.

The impact of return-to-zero phases is reduced by the
overlapping of two or more phases so they operate concur-
rently rather than sequentially. In addition, some return-
to-zero phases can be overlapped with processing phases
where this does not cause a hazard.

The new input control components trigger the control
units without waiting for the actual arrival of data as, in
asynchronous systems, valid data identifies itself. This
eliminates unnecessary synchronisation and gives control a
head start.

The dual-rail Balsa back-end was optimised to synthe-
sise secure systems, i.e., systems that can resist power and
timing analyses. The adder and other datapath components
were designed for data-independent speed and power con-
sumption. This can only be achieved by making every case
the same as the worst case. A performance-driven approach
must abandon the security goal and optimise the perfor-
mance of the datapath components. In particular, the dual-
rail adder has been redesigned for average-case processing
time and quick, fixed-delay return-to-zero time.

Details of the Handshake Components redesign can be
found elsewhere [13].

3.2 Efficient Pipeline Control

Almost all modern embedded processors are pipelined,
therefore, asynchronous synthesis tools must generate effi-
cient pipeline control logic. Most asynchronous pipelines
follow the micropipeline [14] model, a simple and elegant
way to implement elastic asynchronous pipelines.

PR PR PR PRFETCH DECODE EXECUTE

Figure 4. SPA half-occupancy pipeline.

Balsa has no special language constructs or handshake
components to specify or implement pipelines. Pipeline
stages are usually specified in Balsa procedures and pipeline
registers are implemented using conventional variables.
Balsa does not allow concurrent reads and writes to the
same variable which means that, when a variable is used



as a pipeline register, the stages at either side of the variable
cannot normally process data concurrently.
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Figure 5. New full-occupancy pipeline.

Figure 4 shows how the SPA pipeline was implemented.
As indicated earlier, the pipeline registers are variables in-
side each stage and both input and output registers are used.
This structure essentially implements a half-occupancy
pipeline: a pipeline with twice as many stages, with al-
ternatingprocessingandemptystages. Without the empty
stages, adjacent processing stages would not be able to op-
erate concurrently, severely limiting the throughput of the
pipeline.

The use of the new Handshake Components introduced
earlier results in a more efficient pipeline implementation.
Pipeline registers are not general-purpose variables: they
are always written by a stage and then read by the following
one. This write/read access pattern allows the use of a single
variable as a true pipeline register. The resulting pipeline
structure is shown in Figure 5. In this case, the registers
are specified outside the processing stages and these contain
only combinational logic.

procedure pipeReg
(

parameter DataType : type;
input in : DataType;
output out : DataType

) is
variable reg : DataType

begin
loop

in -> reg
;

out <- reg
end -- loop

end -- procedure pipeReg

Figure 6. Pipeline register specification.

Figure 6 shows how the new pipeline register is specified
in Balsa. The specification is parameterised in the type of
data that the register holds.

Figure 7 shows the handshake circuit for a Balsa-
synthesised pipeline register. The data is stored in a latch
(Variable component) and a Sequence component is used to
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Figure 7. Synthesised pipeline register.

sequence the writing to and reading from the Variable. A
Loop component repeatedly activates the Sequence compo-
nent. A PassivatorPush component synchronises the input
signal with the sequencing control to allow new data in only
when the register is ready to accept it. The pipeline register
implemented using the new Handshake Components turns
out to be very simple and performs quite well compared to
highly optimised controllers [15].
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Figure 8. Pipeline control behaviour.

Figure 8 shows the behaviour of the pipeline controller.
R and A represent the request and acknowledge signals used
to implement thein andout channels, andLt represents the
latch enable signal.

The behaviour depicted in the figure shows that the
Balsa-synthesised pipeline controller implements an effi-
cient, fully-decoupled, request-activated protocol, similar to
those presented in [15]. Figure 9 shows the implementation
of the pipeline register controller as generated by the Balsa
back-end. Theactivate signal is used to initialise the reg-
ister.
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3.3 True Asynchronous Operation

The pipeline structures shown in Figures 4 and 5 oper-
ate in apseudo-synchronousfashion, i.e., the transfers of all
data items from one stage to the next occur simultaneously
as in synchronous systems. Although there is no global
clock, data advances through the pipeline inlockstep, using
local handshake channels. Thisregular operation is easy to
understand and evaluate but can reduce the overall perfor-
mance of the synthesised processor.
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Figure 10. True asynchronous pipeline.

True asynchronous pipelines, on the other hand, make no
attempt to have a lockstep operation, as shown in Figure 10.
Each unit within a pipeline stage is allowed to progress at
its own pace, handshaking individually with units in the pre-
vious and following stages. This means, for example, that
different data items sent by units in the Decoder can arrive
in the Execute stage at completely unrelated times. Conse-
quently, different units in the Execute stage can operate on
data items that correspond to different instructions, giving
some of them a head start. Given the elastic nature of asyn-
chronous pipelines, true asynchronous operation will result
in improved performance in most cases.

3.4 Speculative Operation

Speculative operation is an important tool in the design
of modern embedded processors. Significant performance
improvements can be obtained if the results of speculative
operations are useful most of the time. The ARM ISA es-
tablishes that all instructions are conditional, i.e., they can

be executed or skipped depending on the condition codes.
Program execution statistics show that most instructions are
executed, opening the possibility of speculatively starting
the instruction and throwing away the results only if the
condition code test fails.

Speculative operation is not always straightforward to
implement in synthesised asynchronous systems. In these
systems, handshake channels, and not individual signals,
are used to communicate data. A system is likely to dead-
lock if a channel is prevented from completing a handshake
cycle. For this reason, SPA has no speculative operation: it
evaluates the condition code of an incoming instruction and
starts execution only if the condition passes.
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Figure 11. Speculative operation control.

A performance-oriented implementation can incorporate
speculative operation in the execute unit: the evaluation of
the condition code can be carried out concurrently with the
execution of the instruction. If the condition fails the in-
struction is discarded at a checkpoint without any result be-
ing written back. The key issues are the location of the
checkpoints and the need to allow all handshake channels
to complete their cycles, as shown in Figure 11. In this ex-
ample, data-processing operations are started speculatively
and, if the condition test fails, are discarded before the
write-back of the results. On the other hand, data memory
operations are not started speculatively as the performance
and power penalties for the discarded instruction would be
extremely high. Clearly, this strategy will result in a per-
formance improvement only if the percentage of executed
instructions is high.

3.5 Optimal Combinational Logic

Pipeline stages usually require combinational logic, ei-
ther for datapath operations or for control. The evaluation



of the condition code referred to in the previous section
is a good example. Although Balsa supports a rich set of
functions that can be used to implement this combinational
logic, the use of handshake channels to communicate the
data between several pre-designed Handshake Components
may, in some cases, result in reduced performance.

On the other hand, Balsa supports a Case statement that
can evaluate any expression using variable and channel val-
ues. To improve the results of the synthesis, Balsa Case
commands are synthesised using espresso [16], a power-
ful logic minimiser, which produces efficient and-gate/or-
gate PLA-style structures. The Balsa netlister uses the
espresso results to synthesise a single Handshake Compo-
nent that implements the required behaviour. C-element/or-
gate structures are used in dual-rail implementations while
and-gate/or-gate structures with added handshake signals
are used in bundled data ones. The use of optimised Case
statements results, in most cases, in significantly improved
performance of the synthesised logic.

4 Results

This section shows the results of pre-layout, transistor-
level simulations of several implementations of the SPA
processor using a 0.18µm technology, standard cell library.
The simulations show that the new components and tech-
niques result in significant performance improvements.

The impact of the new components was evaluated using
the original SPA specification. Table 1 contains the results
of the execution of the Dhrystone benchmark program for
different implementations of the SPA processor. The per-
formance of the original SPA is set as the reference.

The table shows that eliminating the security elements
of the dual-rail SPA –by introducing the new QDI adder
and logic– improves its performance by 20% and reduces
the size, in number of transistors, by 10% (see Table 3 be-
low). Although this is an important improvement, it is not
the most significant one.

The table also shows that the new implementations,
which combine the use of all the new Handshake Com-
ponents, obtain impressive 95% (bundled data) and 147%
(dual-rail) performance improvements over the original
SPA processors, with no significant increase in area. This
clearly demonstrates the advantage of exploring and imple-
menting alternative control behaviours over more efficient
resynthesis of the same ones.

The performance-driven techniques described above
were applied in the synthesis of nanoSpa, a new Balsa spec-
ification of the original SPA architecture. NanoSpa is or-
ganised as a 3-stage, Harvard-style pipeline, as shown in
Figure 3, but has a few differences with respect to SPA:
(i) the decoder stage lacks the Thumb module and the co-
processor interface,(ii) the execute stage incorporates all

the functional units present in SPA except for the multiplier
and CLZ units –as it does not implement these instructions,
and(iii) nanoSpa implements user and supervisor operat-
ing modes only, lacking the other ARM modes. Although
not easy to evaluate, these differences should not have a
large impact on the relative performances of the two imple-
mentations.

Table 2 shows the results of the execution of the Dhrys-
tone benchmark program for the original SPA and different
implementations of nanoSpa. The table includes results for
bundled data and dual-rail versions. The performance of the
original SPA is set as the reference.

The table shows that efficient pipeline control, true asyn-
chronous operation, speculation and optimal combinational
logic provide outstanding results: the basic nanoSpa cores,
with the original Handshake Components, are a remarkable
2.85 (bundled data) and 3.65 (dual-rail) times faster that the
original SPA implementations.

Table 2 also shows that the combination of the
performance-driven specification with the use of the new
Handshake Components results in very significant perfor-
mance improvements, reaching 6.17 (bundled data) and
9.79 (dual-rail) times the performance of the original SPA.

Finally, Table 3 shows the transistor counts for the dif-
ferent processor implementations. It is clear from the table
that the new Handshake Components, while significantly
improving the performance of nanoSpa, have little impact
on the size of the circuit. The large differences in transistor
counts with respect to the original SPA indicate that there
is enough room to incorporate the additional functionality
without a large impact on the performance. Preliminary
estimates based on work in progress suggest that a full-
featured nanoSpa will require close to 70% of the number
of transistors in SPA.

5 Conclusions

The work presented in this paper confirms that syntax-
directed compilation is a powerful synthesis approach and,
combined with an efficient set of Handshake Components,
can automatically generate efficient asynchronous systems
for complex, real world applications.

Extensive simulation results show that the introduction
of new Handshake Components, used to implement par-
allel, sequential and input control, can double the perfor-
mance of existing designs without the need to modify the
source descriptions. Additionally, the introduction of new
performance-oriented techniques used to implement effi-
cient pipeline control, true asynchronous behaviour and
speculative operation can triple the performance of exist-
ing designs. The combination of all new components and
techniques has been shown to generate a new implementa-
tion of an existing 32-bit, ARM-compatible processor with



Bundled Data Dual-Rail
Dhrystone Relative Dhrystone Relative

Processor MIPS Performance MIPS Performance

SPA 9.57 1.00 6.18 1.00
SPA1 (SPA + new QDI adder and logic) n/a 7.39 1.20
SPA2 (SPA1 + new control HCs) 18.68 1.95 15.26 2.47

Table 1. Impact of new handshake components.

Bundled Data Dual-Rail
Dhrystone Relative Dhrystone Relative

Processor MIPS Performance MIPS Performance

SPA 9.57 1.00 6.18 1.00
nanoSpa 27.28 2.85 22.57 3.65

nanoSpa1 (nanoSpa + new QDI adder and logic) n/a 25.27 4.09
nanoSpa2 (nanoSpa1 + new control HCs) 59.04 6.17 60.53 9.79

Table 2. Impact of performance-driven specification and new handshake components.

up to ten times the performance of the original one.
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