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Abstract
This paper introduces several new component clustering techniques
for the optimization of asynchronous systems. In particular, novel
“Burst-Mode aware” restrictions are imposed to limit the cluster sizes
and to ensure synthesizability. A new control specification language,
CH, is also introduced which facilitates the manipulation and optimi-
zation of handshake control components. The new method has been
fully integrated into a comprehensive asynchronous synthesis pack-
age, Balsa. Experimental results on several substantial design exam-
ples, including an 32-bit microprocessor core, indicate significant
performance improvements for the optimized circuits.

1. Introduction
Several approaches have been proposed for synthesizing asynchro-

nous circuits from high-level specification languages [1,8,5,4,12].
These approaches generally fall into two categories: algebraic calculi
[5] and CSP-like language compilation [1,4,8,12].

The focus of this paper is on synthesis methods in the latter catego-
ry, which are used in such well-known compilers as Balsa [1] and Tan-
gram [4]. In these methods, a high-level specification is compiled
through syntax-directed translation into an unoptimized intermediate
representation, which is a netlist ofhandshake components. Each
handshake component is then synthesized into a corresponding circuit
using a template-based approach. While such compilation methods
have the advantage of “transparency” (the programmer is controlling
the final results from the high-level program), they also have the dis-
advantage of excluding aggressive transformations, generally using
only simple and local peephole optimizations. In an alternative ap-
proach [8], a high-level specification is compiled into intermediate
components through “process decomposition” and “handshake expan-
sion”, but this method is not entirely syntax-directed.

Generally, two types of optimizations have been proposed to im-
prove the intermediate circuit representation:peepholeandresynthe-
sis. Peephole optimizations replace a fixed pattern of components by
an optimized configuration of existing components. In contrast, resyn-
thesis methods manipulate one or more components and produce new
specifications which do not correspond to existing components; these
specifications are then directly synthesized. Much of Balsa’s and Tan-
gram’s optimization techniques [1,4,12] are peephole style. In Mar-
tin’s approach [8], optimizations such as “guard symmetrization” can
be regarded as a simple form of peephole, while “handshake reshuf-
fling” is a limited form of resynthesis: taking one component and pro-
ducing another one with potentially more optimized behavior.

The optimizations proposed in this paper fall into a separate cate-
gory of resynthesis transformations:clustering[7,11]. The goal is to
cluster several controllers into a single larger controller. Since the
channels connecting the merged components are eliminated, so poten-
tially are the overheads introduced by communications on those chan-
nels. The new controllers are then directly translated into Burst-Mode
asynchronous controller specifications [9,10], and then synthesized us-
ing existing tools.

A small channel-based description language, CH, is introduced
both to specify each handshake component’s behavior and to facilitate
the optimizations. There are two advantages to this approach: (a) opti-
mizations can be regarded as abstract language manipulations through

pattern-matching and template transformations, and (b) the resul
controller descriptions are independent of the synthesizable low-le
specifications into which they are translated. Burst-Mode specific
tions are currently employed, but they are just one of several poss
low-level specification styles.

In particular, the contributions of this paper are as follows:
• new controller specification language: The paper introduces a for-

mal controller description language, CH (an abbreviation of “cha
nel”), which is intermediate between an existing high-leve
description language (Balsa [1]) and low-level asynchronous co
troller specifications. The CH language is especially suitable
model handshake control components [1,4] and directly facilitat
the manipulation and optimization of these components. W
restrictions imposed on its syntax, CH translates to correct-by-co
struction Burst-Mode specifications [9,10].

• system-level control optimization: The paper introduces and for-
malizes several control optimizations as language manipulat
procedures. The optimizations use clustering to eliminate inter
channels, thus merging the components connected by these c
nels. Unlike other approaches, which target area, these optim
tions are targeted to improving speed. The optimizations have all
been formally verified using the trace theory verifier, AVER [17]

• CAD package: The paper introduces a new automated back-end
the Balsa asynchronous synthesis system. The back-end inco
rates a Balsa-to-CH translator, the new controller optimizatio
algorithm, a CH-to-BM translator, and a new interface with th
Synopsys’ Design Compiler for technology mapping.
The integrated CAD back-end is applied to four substantial asy

chronous design examples, including a small 32-bit microproces
core. The complete synthesis flow starts with a high-level Balsa syst
description and includes all steps through technology mapping. P
layout back-annotated Verilog simulations indicate up to 21% spe
improvement over the unoptimized implementations.

The paper is organized as follows. Section 2 presents an overv
of the proposed synthesis approach. Section 3 introduces the CH
guage, while Section 4 presents the two new resynthesis optimizatio
Section 5 briefly discusses the technology mapping process. The
two sections present experimental results as well as conclusions an
rections for future work.
Related Work. The CH description language is first compared wit
some existing asynchronous description languages. Then, our opt
zation techniques are compared with well-known peephole optimiz
tions, as well as with resynthesis approaches closer to ours.

CH is an intermediate-level description language for handsha
components, and it naturally captures channel behaviors and com
nication protocols between components. In contrast, both Balsa [1] a
Tangram [4] are higher-level languages more suitable for system-le
description rather than for individual component manipulation. At th
opposite extreme, the Caltech handshake expansion language [
much more low-level: it explicitly indicatesevery individual signal
transition, and thus is more cumbersome for modelling channel-ba
optimizations.

Closer to our work, there exist three intermediate-level languag
for formally specifying individual handshake components [3,4,12].
each approach, a specification defines both the channel interface o
component as well as the component’s operation and interface pr
col. Of these, van Berkel’s [4] uses “generic operators” to describe
component’s behavior. A drawback is that, in effect, it defines abstr

✞This work was supported by NSF ITR Award No. NSF-CCR-0086036 and
by EPSRC Grant No. GR/N19618.
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classesof related handshake components; therefore, the language can-
not distinguish subtle differences in protocol between related control-
lers. In contrast, our approach is able to model a variety of different
protocols for a given operation by using a set of concrete “interleaving
operators”. van Berkel also uses a separate language to describe con-
crete handshake behaviors for each component; however, unlike our
approach, this modelling loses information about component ports and
is at a much lower-level (modelling individual signal transitions rather
than channels).

In an alternative approach, Bardsley [3] adopts all of van Berkel’s
generic operators, but, unlike van Berkel, each operator is assignedex-
actly one associated behavior, i.e. handshake expansion. In contrast,
CH defines more language operators, which specify a variety of feasi-
ble interleaving protocols, thus allowing for modelling multiple relat-
ed components. Finally, Peeters [12] uses much lower-level
descriptions (traces of individual signal transitions) to specify a com-
ponent’s operation. All three languages are capable of specifying both
control and datapath handshake components; however CH currently
can only specify control components.

Peephole optimizations have been proposed by both van Berkel [4]
and Peeters [12]. There are two main types: higher-level ones (on
handshake components) and gate-level ones (on netlists of gates).
Higher-level optimizations include parallel compositions, sharing, re-
ordering, and multi-channel optimizations; they typically consider
small windows of 2-4 components and transform them to one or sever-
al other library handshake components. Gate-level optimizations form
a region around a netlist of gates, and transform them into an optimized
netlist of gates. In contrast, our proposed optimizations operate on
much larger windows of components, and do not operate at the gate
level.

Finally, closer to our work, clustering optimizations for asynchro-
nous control components have been proposed by both Pena et al. [11]
and Kolks et al. [7]. These approaches use behavioral [7] and structural
[7,11] composition to obtain a single specification for the entire control
part. The behavioral methods use trace structures [15] to perform com-
position, while the structural ones manipulate Petri nets to weave to-
gether controllers’ behaviors. In each case, Petri nets are used as low-
level specifications for the clustered controllers, which are then synthe-
sized using Petrify [16].

There are three main differences between these approaches and
ours. First, we use an intermediate-level description language, CH, for
modelling and manipulating control components, while they use only
low-level language models (Petri nets). Second, their approaches are
targeted towardsunlimitedclustering, which may result in synthesis
run-time problems. In contrast, our approach results in smaller clusters,
and shows improvements in synthesis run time while still allowing for
optimizing medium to large systems. Also, our approach is targeted to-
wards Burst Mode [9] controllers, which have been shown to have
good performance, while neither one of the previous papers have re-
ported figures for speed improvement. Finally, the new back-end has
been integrated into a comprehensive environment for asynchronous
synthesis (Balsa), which provides an entire design flow from a high-
level system specification down to layout.

2. Overview of the Approach
The proposed new flow for the Balsa system back-end is shown in

Fig. 1. The shaded boxes indicate research contributions.
The new back-end splits the control and datapath handshake com-

ponents synthesized by Balsa. The control part is then optimized, syn-
thesized using a Burst-Mode CAD package, and technology mapped
using a commercial tool. Datapath components are synthesized using
the existing Balsa system technology mapper.

Control optimization is performed for an entire Balsa procedure
(i.e. process), which describes a system or component to be synthe-
sized. The idea is to eliminate internal channels between control hand-
shake components and collapse them into larger controllers (see Fig.
2). The result of collapsing two components is a new controller with
the same interface as the initial two controllers, minus the eliminated
channels, and with the same observable behavior on the remaining

channels. In the end, the whole control part is reduced to a network
resynthesized controllers that communicate with each other, as we
with the datapath and other processes.

A small language (called CH) is introduced to allow for the descri
tion of control handshake components. The language also facilita
the new optimizations, which are treated as simple language man
lation procedures. The CH language contains a small set of chan
types, as well as looping and interleaving operators. The opera
were chosen with two aims: first, to be expressive enough to captu
number of useful component behaviors; and second, to be sufficien
constrained such that the specifications written in this language can
translated to correct-by-construction Burst-Mode specifications, t
intended medium for controller synthesis.

The Minimalist package [6,10] is used to synthesize the optimiz
hazard-free controllers. The package enables the designer to direc
synthesis towards improvements in speed, area or power. Minima

 Figure 1: Balsa System Back-End
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synthesizes the controllers into two-level circuits containing generic
gates; these circuits are then technology mapped using Synopsys’ De-
sign Compiler [14]. Finally, the technology-mapped datapath and con-
trol components are merged together to obtain the final optimized
circuit implementation of the Balsa process.

3. The CH Language
The CH language is an intermediate control specification language

between a high-level description language and a low-level controller
specification language.

A CH program can be used to model both the interfaces and behav-
ior of a singlecontroller. The language has two types of expressions:
channel declarationsandoperators. The language treats the two types
uniformly: both channels and operators have an associated four-phase
expansion and an “activity” type (passive or active), as discussed be-
low.

A CH channel declaration defines the four-phase handshake expan-
sion on a given channel. In practice, a channel is used to connect a con-
troller with other controllers, datapath components or external
interfaces. Connections can be either point-to-point or multi-way. A
channel connecting various controllers is identified by using the same
channel name in the CH program of each of the connected controllers.
Channels are always assumed to be dataless (in Balsa, simple datapath
components are used for data transfer, and are not associated with the
control part). For example, apassivepoint-to-point channel A is de-
scribed by the CH expression:
(p-to-p passive A)
and its four-phase handshake expansion is:
[(i a_r +)] [(o a_a +)] [(i a_r -)] [(o a_a -)]
wherei indicates an input,o indicates an output, and the handshaking
is initiated by an input request. A transition is denoted by the signal
type (input or output), the signal name, and the transition type: + for
rising, and - for falling, transitions. In contrast, anactivechannel has a
handshake expansion that is initiated by an output request (see below).

Unlike channels, CH operators have up to two arguments. Each ar-
gument can be either a channel declaration or another operator. Just
like channels, each operator is considered as having four distinct
events, which follow either a passive or active protocol. In particular,
the result of applying an operator to its arguments is a four-phase ex-
pansion which depends on both the operator’s type and the type of its
arguments (passive or active). The operator effectively defines, and re-
turns, aninterleavingof the events of its arguments, which are also
grouped into four “higher-level” atomic events. As an example, given
two channels, A passive and B active, which have four-phase hand-
shake expansions, respectively:
[(i a_r +)] [(o a_a +)] [(i a_r -)] [(o a_a -)]
and
[(o b_r +)] [(i b_a -)] [(o b_r -)] [(i b_a -)] ,
a CH expression which interleaves them using anearly-enclosure op-
erator is:
(enc-early (p-to-p passive A) (p-to-p active B))
which represents the following interleaving:
[(i a_r +)(o b_r +)(i b_a -)(o b_r -)(i b_a -)]
[(o a_a +)] [(i a_r -)] [(o a_a -)] ,
In this interleaving, immediately after the initial input requesta_r+ on
channel A, the entire four-phase handshake on B is completed, fol-
lowed by the remaining three events on channel A. Note that the oper-
ator effectively groups the input request and the entire four-phase
handshaking on B into a single new event.

The reminder of this section now formally describes the syntax and
the semantics of CH channel declarations and operators. It concludes
with several examples of modelling handshake components and a dis-
cussion of compiling  CH programs into Burst-Mode specifications.

3.1 Channel Declarations
There are six types of channels. The term channel is used in a gen-

eral sense, as a means of synchronization on a group of wires, between
a controller described by a CH expression and one or more other con-
trollers and datapath components. Each channel type is introduced by

its corresponding language keyword.
• p-to-p (point-to-point) channels connect two components; they a

the most common type of handshake channels. They consist of
wires: a request and an acknowledge. The syntax is:(p-to-p
activity name) , where activity is either passiveor
active. If the channel is active, its expansion is[(o name_r
+)] [(i name_a +)] [(o name_r -)] [(i name_a
-)] ; if it is passive, the channel expands to[(i name_r +)]
[(o name_a +)] [(i name_r -)] [(o name_a -)] ,
where the square brackets enclose events, and the round o
enclose a transition.

• mult-ack channels connect one component to several, and con
of a single request wire and multiple acknowledge wires. A tran
tion on the request wire is followed by synchronized transitions o
all acknowledge wires. The syntax is:(mult-req activity
name n) , whereactivity is either passive or active, andn is
the number of acknowledge wires. The resulting channel activity
given by theactivity parameter. All of the acknowledge transi
tions can be regarded as grouped into a single event. For exam
(mult-req active c 2) expands to[(o c_r +)] [(i
c_a1 +) (i c_a2 +)] [(o c_r -)] [(i c_a1 -)
(i c_a2 -)] .

• mult-req channels connect one component to several, and con
of multiple request wires and a single acknowledge wire. Tran
tions on all request wires are then followed by a transition on t
acknowledge wire. The syntax is:(mult-ack activity
name n) , whereactivity is either passive or active, andn is
the number of request wires. The resulting channel activity
given by the activity parameter. All transitions on request wires a
grouped into a single event.

• mux-ack channels connect one component to several, and con
of a single request wire and multiple acknowledge wires. Unlike
mult-ack channel, a request transition is followed by a transitio
on exactlyone acknowledgment wire; if the ith acknowledgment is
received, then the ith CH expression in a list is executed. This
channel type isalways active. For example:
(mux_ack a ( op1 arg1 ) ( op2 arg2 ))
expands to:
[(o a_r +) choice

( op1 [][(o a_a1 +)][(i a_r -)][(o a_a1-)]
arg1 )

( op2 [][(o a_a2 +)][(i a_r -)][(o a_a2-)]
arg2 )

][][][]
where channela is the mux-ack channel,arg1 and arg2 are the
two CH expressions in the list,op1andop2are interleaving opera-
tors which define the interleaving of the events on the mux-a
channel and the respective CH expression to be executed (arg1 or
arg2), choice is a keyword which indicates mutual exclusion
between two events, and the four events returned by the mux-
expansion are a single complex interleaving and three null even

• mux-req channels connect several components to one, and con
of multiple request wires and a single acknowledge wire. Unlike
mult-req channel, a transition occurs onexactlyone request wire;
if the ith request is received, then the ith CH expression in a list is
executed, including signaling on the acknowledge wire. This cha
nel type isalways passive. For example:
(mux_req a ( op1 arg1 ) ( op2 arg2 ))
expands to:
[choice

( op1  [(i a_r1 +)][(o a_a +)][(i a_r1 -)]
[(o a_a-)] arg1 )

( op2  [(i a_r2 +)][(o a_a +)][(i a_r2 -)]
[(o a_a-)] arg2 )

][][][]
• void channels are channels whose all events are empty and are

ther passive nor active. These channels are only used intern
during the optimization process.
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• verb channels are channels whose events and activity are entirely
specified by the user. The activity of this channel is given by the
first transition.

3.2 Looping Operators
There are two categories of CH operators:loopingoperators andin-

terleavingoperators. The operators of the former type provide a means
for repeating the behavior of CH expressions.
• rep operators have only one argument. The expansion given by

each such argument is repeated forever, unless interrupted by a
break (discussed below). The syntax is:(rep expr) . If expr is
passive then therep expression is passive, otherwise it is active.
The result of therep expression is one non-empty event (contain-
ing the four-phase expansion ofexpr ), followed by three empty
events; in effect, the four-phase handshake expansion is degener-
ate. For example, the expansion of(rep c) is [label c
(goto label)][][][] , wherec is the expansion ofrep ’s
argument, andlabel and goto are keywords, as generated by
the parsing algorithm.

• break operators end the inner-most loop. The syntax is(break) .
This operator is neither passive nor active. The operator expands to
[(bgoto label)][][][] , wherebgoto and label are
keywords generated by the parsing algorithm.bgoto is similar to
goto , but is handled differently by the parsing algorithm.

3.3 Interleaving Operators
The CH language has six interleaving operators: three for enclo-

sures, two for sequencing and one for mutual exclusion. An enclosure-
type interleaving on two channels is initiated and terminated by events
on the first channel, and the events on the second channel are enclosed
within the first handshake. A sequencing-type interleaving of two
channels is initiated by events on the first channel and terminated by
events on the second one. The mutual-exclusion interleaving of two
channels places the events on each channel one after the other. How-
ever, this interleaving is more complex than a straight sequencing of
the events, because the order of the two handshakes is determined by
the environment. All interleaving operators take exactly two argu-
ments.1 (The expansions are presented in more detail in Table 2.)
• enc-early: this operator models the enclosure of the second argu-

ment’s handshake expansion between the first and second events of
the first argument’s expansion. The syntax is(enc-early a1
a2) . If the first argument is active, then the operator is active, oth-
erwise it is passive.

• enc-middle: this operator models the interleaving of the two argu-
ments as follows: events 1 and 2 (3 and 4) of the second argu-
ment’s expansion are enclosed between events 1 and 2 (3 and 4) of
the first argument’s expansion. The syntax is:(enc-middle
expr1 expr2) . If the first argument is active, then the operator
is active, otherwise it is passive. This is a powerful operator that
can model C-element-like synchronization of channels as well as
fork components.

• enc-late: this operator models the enclosure of the entire second
argument’s handshake expansion between the third and fourth
events of the first argument. The syntax is:(enc-late expr1
expr2) . If the first argument is active, then the operator is active,
otherwise it is passive.

• seqoperator models the sequencing of its two arguments. The syn-
tax is (seq expr1 expr2) . If the first argument is active,
then the operator is active, otherwise it is passive. If more than two
channels are to be sequenced, then the extra channels can be recur-
sively embedded in the second argument: for example(seq c1
c2 c3) =(seq c1 (seq c2 c3)) .

• seq-ovoperator models the overlapped sequencing of its two argu-
ments. The syntax is(seq_ov expr1 expr2) . It is defined

only for active-active arguments; for all other activity pairs,
degenerates into other interleaving operators. This operator is u
ful in modelling transferrers [4].

• mutex operator indicates the mutually-exclusive execution of i
two arguments. The syntax is(mutex expr1 expr2) . This
operator is defined only for passive arguments, since it mod
external input choices. Therefore, this operator is always pa
sive.The returned expansion of(mutex c1 c2) is [(choice
c1 c2)] [][][] ; the first event contains the arguments
expansions plus the keywordchoice to indicate input choices,
while the last three events are null. If the component allow
mutual exclusion between n>2 expressions, then alternatives
can be recursively embedded in the second argument: for exam
(mutex c1 c2 c3) =(mutex c1 (mutex c2 c3)) .

3.4 Handshake Components: Modelling Examples
This subsection illustrates the CH language by modelling thr

common handshake components: a sequencer, a call module and a
sivator.

A sequencer [1,4] has three channels: one passive one, P, and
active ones, A1 and A2 (see Fig. 3). The component is activated on
passive channel, and then completes handshakes on each of the tw
tive channels before completing the handshake on the passive one.
CH program for the sequencer is:
(rep (enc-early (p-to-p passive P)

(seq (p-to-p active A1)
(p-to-p active A2))))

A call module [1,4] has two passive channels (A1 and A2) and o
active one (B). The environment starts a handshake on either A1 or
the call module then performs a full handshake on B before finishi
the handshake on A1 or A2 (whichever was selected by the envir
ment). The CH expression for the sequencer is:
(rep (mutex

(enc-early (p-to-p passive A1)
(p-to-p active B))

(enc-early (p-to-p passive A2)
(p-to-p active B))))

The final example is a passivator [1,4]. This component has tw
passive channels (A and B); it waits for the environment to start han
shakes on both A and B, and then acknowledges on both channel
then waits for the environment to start the return-to-zero phase on b
A and B, and then finishes the two handshakes concurrently. The
expression is:
(rep (enc-middle (p-to-p passive A)

(p-to-p passive B)))

3.5 Burst-Mode Aware Restrictions on CH
An important practical issue in modelling asynchronous controlle

using the CH language is to ensure they can be compiled into spe
cations that are easily synthesizable. Since our focus is on Burst-M
controllers, restrictions on CH operator usage must be imposed

1. The only exceptions are when definingmux-ack  andmux-req  chan-
nels, as discussed in Section 3.1. In these cases, the enclosure and
sequencing operators only have one explicit argument, but, in each case,
the implicit argument is the mux-ack or mux-req channel, respectively.

A B
A1
A2

BP
A1
A2

; call

 Figure 3: Symbols and Burst-Mode
Specification for Three Handshake Components
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guarantee that Burst-Mode specifications are always produced.
In particular, only certain combinations of interleaving operators

and argument types are allowed; these combinations are called “Burst-
Mode aware”. Table 1 summarizes theexactcombinations of operators
and argument types which result in correct-by-construction Burst-
Mode specifications during the CH-to-BM translation. The rows rep-
resent the operator types, while the columns indicate the possible com-
binations of argument types (passive or active). If an entry corresponds
to a “no”, then no valid Burst-Mode specification can be obtained; if it
is a “yes”, then a correct specification can be obtained. The translation
into Burst-Mode specifications for each “yes”/“no” combination has
been manually verified for correctness.

Table 2 indicates the resulting four-phase expansion of each inter-
leaving operator and combination of argument types. Only Burst-
Mode aware entries are included. The four events of the first argu-
ment’s expansion are named a1 ... a4, and the four events of the second
argument’s expansion are named b1 ... b4. As before, the square brack-
ets enclose an event in the returned result.

3.6 Compiling CH into Burst-Mode Specifications
Once a control component is modelled in CH, it can be translated

into a lower-level asynchronous controller specification. This subsec-
tion briefly introduces Burst-Mode (BM) specifications, the target of
our synthesis path, and then presents the new compilation algorithm.

Burst-Mode is a commonly-used Mealy-type of specification for
asynchronous controllers [9,10] (see Fig. 3). A specification consists
of a set of states and a set of arcs. An arc is labelled with an input burst
followed by an output burst, and connects two states. An input (output)
burst describes a set of input (output) events or transitions: rising tran-
sitions are marked with a ‘+’, and falling ones are marked with a ‘-’. A
BM machine waits for an input burst to arrive; transitions may come in
any order and at any time. Once the complete input burst has arrived,
the output burst is generated and the machine moves to the next speci-
fication state.

The new compilation algorithm, CH-to-BMS, translates CH pro-
grams into Burst-Mode specifications. The compilation algorithm has
two steps: first, the CH program is translated into an intermediate form;
then the Burst-Mode specification is obtained from the intermediate
form.

The intermediate form is a list of signal transitions, with inserted la-
bels for states, goto statements, and keywords indicating external input
choices. The intermediate form is obtained by traversing the CH pro-
gram recursively. As intermediate nodes (operators) are encountered,
the traversal expands the operator hierarchically. When a terminal or
leaf node (channel) is finally encountered, the recursion terminates and
the four-phase expansion of the channel is returned. As recursion un-
winds through the intermediate nodes, the partial results are combined
into “higher-level” handshake expansions, according to the rules pre-
sented in Table 2, and Sections 3.2 and 3.3. If the intermediate node

contains a control flow construct (rep, break, mutex), Section 3.2 a
3.3 indicate the additional keywords that are inserted into the ha
shaking expansion. In the end, a straight line four-phase handshake
pansion for the entire CH program is obtained.

The resulting intermediate form is then translated into a Burs
Mode specification as follows. The list is traversed in linear order. I
itially, a start state is created for the Burst-Mode specification. An i
put burst is created from the appropriate signal transitions at the s
of the list, followed by a subsequent output burst. If a new input bu
is encountered, the output burst is complete, so a new state is gener
as the next state, as well as an arc connecting the two states and a
tated with the corresponding input/output burst. If, instead, a go
statement is encountered, the program checks the existing state as
ated with the goto, and similarly makes it the next state; an input/out
burst is created on an arc connecting the two states. The translation
minates when the list is empty.

Fig. 3 shows the Burst-Mode specifications of the three handsha
components described above. For example, while in state zero, the
component waits for a rising transition on eithera1_r or a2_r . If
a1_r+ has arrived (the environment starts a communication on the
channel), thenb_r+ is generated and the machine moves to state
The machine then waits for the next input burst (b_a+ ), and, after gen-
erating b_r- it moves to state 2. The machine returns to the starting s
(zero) after two more transitions (b_a- /a1_a+ anda1_r- /a1_a- ).
The behavior is similar if the environment starts a handshake on the
channel.

4. Optimizations
In this section, new optimizations are introduced which attempt

improve the speed of the control part of the circuits. To do so, the ha
shake components are clustered into larger controllers. The poten
for improvements comes from the elimination of handshaking on t
internal channels.

Currently, two new optimizations are proposed:activation channel
removalandcall distribution. The first optimization eliminates activa-
tion channels between handshake components, while the second
eliminates call modules by inlining them directly into their calling
sites. Each optimization is discussed in turn in the next two subs
tions. The section ends with a discussion of the formal verification
these optimizations, and also with a summary of the optimization alg
rithms.

4.1 Activation Channel Removal
The idea behind this optimization lies in a fundamental character

tic of several control handshake components: in order to start their
havior, the components are first “activated” along a passive channel
the channel that activates them is eliminated, then the handshak
overhead on that channel is also eliminated.

The following terminology will be used below: anactivation chan-
nel is the handshake channel that connects the activating and activ
components (it is an active channel for the first component and pass
for the second one), and which encloses the “useful” behavior of
activated component within its handshake expansion. Thebodyof a
component is the “useful” part of that component, enclosed within
handshake on an activation channel (if present).

The optimization proceeds in two steps. It first hides the activati
channel in the activated component (by replacing it with avoid chan-
nel), and then inlines this component’s body directly into the CH e
pression of the activating component.

To illustrate the optimization, let us take two components: a de

Table 1: Legal Combinations of Operands and Arguments

Operator active/
active

active/
passive

passive/
active

passive/
passive

enc-early Yes No Yes Yes
enc-late No No Yes Yes
enc-middle Yes No Yes Yes
seq Yes No Yes Yes
seq-ov Yes No No No
mutex No No No Yes

Table 2: The Four-Phase Expansion of CH Operators
Operator active/active active/passive passive/active passive/passive

enc-early [a1][a2b1b2b3b4][a3][a4] - [a1b1b2b3b4][a2][a3][a4] [a1b1b2b3b4][a2][a3][a4]
enc-late - - [a1][a2][a3][b1b2b3b4a4] [a1][a2][a3][b1b2b3b4a4]

enc-middle [a1b1][b2a2][a3b3][b4a4] - [a1b1][b2a2][a3b3][b4a4] [a1b1][b2a2][a3b3][b4a4]
seq [a1a2a3a4b1][b2][b3][b4] - [a1a2a3a4b1][b2][b3][b4] [a1a2a3a4b1][b2][b3][b4]

seq-ov [a1a2][b1b2][a3a4][b3b4] - - -
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sion-wait and a sequencer. A decision-wait component [3,4] is used to
sample passive channels. It consists of an activation channel and sev-
eral pairs of passive-active channels. When the component is activated
and a handshake is initiated on exactly one of its passive channels, the
component performs a full handshake on the corresponding active
channel, before completing the handshakes on both the passive and ac-
tivation channels. The sequencer is activated on its passive channel,
and then performs handshakes in order on each of its active channels.
The CH expression for decision-wait (the activating component) is:
(rep (enc-early (p-to-p passive a1)

(mutex
(enc-early (p-to-p passive i1)

(p-to-p active o1))
(enc-early (p-to-p passive i2)

(p-to-p active o2) ))))
and for the sequencer (the activated component) is:
(rep (enc-early (p-to-p passive o2)

(seq (p-to-p active c1)
                    (p-to-p active c2)) ))

Channelo2 is an activation channel for the sequencer, so it may be
optimized out. The activation point is highlighted in bold in the CH de-
scription of decision-wait, and the body of the sequencer is also high-
lighted in bold.

First, a hide operation is performed on channel o2 in the sequencer:
(rep (enc-early void

(seq (p-to-p active c1)
                    (p-to-p active c2))))

Then, the body of the new component is directly inlined into the de-
cision-wait component’s expression to replace theo2  channel:
(rep (enc-early (p-to-p passive a1)

(mutex
(enc-early (p-to-p passive i1)

(p-to-p active o1))
(enc-early (p-to-p passive i2)

(enc-early void
(seq (p-to-p active c1)
(p-to-p active c2)) )))))

The above optimization can also be illustrated on the corresponding
handshake circuits, as shown in Fig. 4. The activation channel between
the original components is highlighted in bold, and the two corre-
sponding BM specifications are shown. On the right, the final merged
component is given, after optimization, along with its BM specifica-
tion.

An important restriction in applying this optimization is that the re-

sulting Burst-Mode specification should still be synthesizable, as d
cussed in Section 3.5. The CH language introduces a set of “Bu
Mode aware” restrictions on operators usage. Before the optimizat
is applied the activating component is BM aware, but during the op
mization the activating channel disappears, and the body of the acti
ed component is inserted in its place. Therefore, we must check ag
after clustering, that the operator in the activating component and
two arguments (one of which is now the inlined code, with its own pa
sive/active type) are still legal according to Table 1. If it is, the optim
zation succeeds; otherwise it fails, and the optimization cannot
performed.

4.2 Call Distribution
The final clustering optimization is to eliminate call handshak

components, by folding the individual call statements into their ca
sites.

An n-way call component [1,4] has n passive channels and one
tive one; it receives mutually exclusive activations on the n channe
and, for each activation, performs a single handshake on its active
terface before completing the handshake on the activating channe

The new optimization works as follows. It first breaks an n-wa
call component into n simple fragments, each of which has a sin
passive and single active channel. The active channel is a replica
of the original one, and the passive channel is one of the original n p
sive channels of the call component. The behavior of each call fra
ment is to enclose the handshake on the active channel within
handshake on the passive one. During optimization, these simple fr
ments are inlined into other controllers. If all n fragments are inline
into the same controller, then the optimization has succeeded; oth
wise, the original call component is restored. In case of success, th
activation channels of the initial call component are thus eliminated

To illustrate this optimization, an example taken from one of th
simulated circuits (the systolic counter) is presented. The example c
sists of two handshake components, a sequencer and a call mod
Both branches of the sequencer activate the call module:
SEQ: (rep (enc-early (p-to-p passive a)

(seq (p-to-p active b1)
(p-to-p active b2))))

CALL: (rep (mutex
(enc-early (p-to-p passive b1)

(p-to-p active c))
(enc-early (p-to-p passive b2)

(p-to-p active c))))
Initially, the call module is split into two fragments:

CALL1: (rep (enc-early (p-to-p passive b1)
 (p-to-p active c)))

CALL2: (rep (enc-early (p-to-p passive b2)
 (p-to-p active c)))

The first optimization can then be applied to both CALL1 an
CALL2, and the new controller has the behavior:
(rep (enc-early (p-to-p passive a)

(seq (enc-early void (p-to-p active c))
(enc-early void (p-to-p active c))))

This optimization is also illustrated in Fig. 5. The optimization ca
be applied because the two call fragments are inlined into thesamefi-
nal controller. If they cannot be inlined together, the optimizatio
would not be applied and the sequencer and the call would remain
two separate modules.

4.3 Formal Verification
The optimizations described above were proved to be correct us

a trace theory verifier, Aver [15,17]. To do so, we have checked the
havior of two optimized controllers (using Activation Channel Remov
al) against the combined behavior of the same controllers (obtain
using the “compose” and “hide” operators from trace theory [15]) f
“conformation equivalence”.

The verification procedure is as follows. Two CH simple program
containing just one operator each (one in the activating component
one in the activated one), and sharing an activation channel, are ma

DW
;

Decision-Wait Sequencer New-Component
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 Figure 4: Activation Channel Removal
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ally translated into Petri nets. Then, using Aver, the two Petri nets are
transformed into trace structures, composed [15], and the activation
channel is hidden [15]. The result is a single trace structure that de-
scribes the external behavior of the two CH programs. In a separate
step, the two CH programs are also optimized using Activation Chan-
nel Removal. The resulting program is then manually translated into a
Petri net, read into Aver, and translated into a trace structure. The two
trace structures are then checked for conformation equivalence. The
process is repeated for all possible combinations of operators in the ac-
tivating and activated CH programs.

The experiment has succeeded for all operator combinations. This
indicates that the Activation Channel Removal optimization is behav-
ior preserving, and therefore it is correct.

4.4 Optimization Algorithms
The optimization algorithms are introduced as systematic and auto-

matic methods of applying the two new optimizations of Sections 4.1
and 4.2. They receive as an input a collection of CH programs (describ-
ing the handshake components) and a list of point-to-point channels
connecting the control components (currently, only point-to-point
channels are considered for optimization). The algorithms return a set
of CH programs modelling the clustered components.

Intuitively, the Activation Channel Removal algorithm forms as
large clusters as possible, according to the pseudo-code shown below
(procedure T1_clustering). The algorithm starts with the netlist of con-
trol components. In its inner loop, the algorithm picks a point-to-point
channel connecting two components, and merges their behaviors. If the
composed behavior is still Burst-Mode synthesizable, the new compo-
nent is returned to the current netlist of control components; otherwise
the netlist is not updated. The algorithm iterates until all point-to-point
channels have been inspected. At this point, the algorithm returns the
netlist of clustered control components.

The Call Distribution algorithm (procedure T2_clustering, shown
below) has three steps. Starting with the initial netlist of control com-
ponents, all call components are split, as explained above. Then, the
Activation Channel Removal algorithm (T1_clustering, shown above)
is called as a subroutine to obtain the netlist of clustered components.
Finally, the algorithm checks that all call fragments obtained from the

same original call component have been inlined into the same fi
controller. If that is not the case, the call component (the CH progra
describing it) is restored.

Note that in our approach, using T1_clustering and T2_clusterin
the size of the clustered components is not directly controllable by
designer. Instead, the inherent restrictions on applying “Activatio
Channel Removal” and “Call Distribution”, as well as the “Burst
Mode aware” restrictions on the CH language, determine how ma
components can be clustered together. In practice, the algorithms
to yield netlists of several clustered components, as opposed to a
gle, monolithic controllers.

5. Technology Mapping
Before technology mapping, the Minimalist tool [6] synthesizes th

Burst-Mode specifications into hazard-free two-level logic impleme
tations. The technology mapping flow is then as follows (more deta
are explained below). First, the two-level logic implementations a
modelled in Verilog HDL. Next, Synopsys’ Design Compiler is use
to technology map these controllers. In general, note that this meth
is not necessarilysound, since the internals of Synopsys’ Design Com
piler are not published and, therefore, it has the potential to introdu
hazards. As a consequence, the technology-mapped circuits are
mally analysed for hazard-freedom conditions. In all examples
which we have applied this method, the controllers are hazard-free

The individual steps are now considered in more detail. A simp
solution is used for structural modelling of the two-level logic imple
mentations in Verilog HDL. The two-level nand-nand implementatio
of the controllers is divided into three separate Verilog modules: o
for each of the two logic levels and a hierarchical module for the ent
controller. Each module contains only inverters and nand functio
Next, each module is technology mapped separately with the Syn
sys’ Design Compiler.

In the final step, each technology-mapped controller is forma
verified for hazard freedom by analysing its decomposition into libra
gates. In particular, to verify hazard freedom, the transformations
troduced by Synopsys’ Design Compiler were analysed to determin
all werehazard-non-increasing. In the literature, a number of common
algebraic transformations have been identified as not introducing n
hazards and therefore their application is safe; these include DeM
gan’s laws, factoring, associativity law, etc. [18].

The above technology mapping method is fairly unoptimized a
may not yield the best possible results. Therefore, further research i
needed to take full advantage of the existing technology-mapping
gorithms and improve the quality of the circuits.

6. Results
The entire synthesis flow has been tested for a number of examp

Each example is described using the Balsa language, and synthes
with balsa-c , to obtain the initial netlist of control and datapath
handshake components. These components are then read by the
mization program to obtain the BM descriptions of the new controlle

a

b1

b2

c a c

Sequencer Call Result

; Call

 Figure 5: Call Distribution Example
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procedure  T1_clustering (N);
// N = netlist of control components

for  c = 1 ... (# point-to-point channels in N)
(x, y) = components connected by c;

// create the clustered component of x & y
clustered_comp = activation_channel_removal (c, x, y);

// if clustered component still synthesizable,
// update netlist and continue

if  (BM_synthesizable? clustered_comp) then
N = update (N, clustered_comp);

end_for
return  (N);

end_procedure

procedure  T2_clustering (N);
// N = netlist of control components

C = get_call_components (N); // list of call components
// Split each call component into a set of call
// fragments. Group all sets into a list C’.

C’ = split_call_components (C);
// update the netlist of components

N’ = update (N, C’);
// apply Activation Channel Removal to new netlist

N” = call  (T1_clustering (N’));
// check for successful Call Distribution

foreach  c in C’ // for each set of call fragments
if  (all call fragments in c clustered together) then

// Success. Do not update the netlist
else

N” = restore_call_component (N”, c);
end_for
return  (N”);

end_procedure
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Each Burst-Mode controller is synthesized with Minimalist [6],
running the speed optimization scripts. The results are then passed to
Synopsys’ Design Compiler for technology mapping using the AMS
0.35 micron library. Datapath components are technology-mapped
separately into the same library using Balsa tools. Finally, the control
and datapath are merged together into the final circuit implementation,
which is back-annotated usingpearl and simulated with Cadence
Verilog-XL.

The new optimization software consists of over 2500 lines of
Scheme and Tcl code. The code is divided into several tools: a Balsa-
to-CH translator, the new optimization algorithms, a CH-to-BM trans-
lator, interfaces with Minimalist and Synopsys’ Design Compiler, and
pla2verilog  which translates Minimalist results into Verilog.

Four substantial examples have been optimized using the presented
tools. These examples include an 8-handshake systolic counter [4], an
8-place 8-bit word wagging register [4], an 8-place 8-bit word stack,
and a small 32-bit non-pipelined RISC-like microprocessor core. The
microprocessor core (called SSEM) was described in [2]. Each exam-
ple was simulated in a benchmark run. The systolic counter was simu-
lated for an entire 8-handshake cycle, the wagging register has been
simulated for forward latency, and the stack was simulated for a cycle
of three push operations followed by three pop operations. The micro-
processor core was simulated for a small program that writes consecu-
tive memory locations with numbers 0 through 4.

Table 3 shows, for each of the four examples, the speed improve-
ments and the area overheads compared to the unoptimized Balsa cir-
cuits. The optimizations presented in this paper attempt to improve
only the control parts. Therefore, the overall speed improvement de-
pends on the ratio between the control and the datapath: if the circuit is
control dominated (for example, the systolic counter) then larger im-
provements can be expected; if the circuits are datapath dominated (for
example, the microprocessor core), then the speed improvements tend
to be smaller. Performance improvements range up to 21.16%.

In all four examples, the optimized circuits show area overheads
over the unoptimized ones. There are several reasons for this result.
The controllers were synthesized using Minimalist’s speed scripts, so
they were minimized using single-output optimization. The area of the
synthesized circuit is often adversely affected because this Minimalist
mode usually duplicates gates in order to decrease critical paths.

Our technology mapping method may also introduce area over-
heads. The two-level logic implementation of the controllers is split
into three modules, each one being technology-mapped separately.
This prohibits the Synopsys’ Design Compiler from finding an optimal
implementationacrossthe two levels of logic. For example, an “and”
gate in the first level of logic, followed by an “inverter” in the second
one could be techology-mapped to a single “nand” gate, with much
smaller area. However, our method currently prohibits this kind of sim-
ple optimization since the two levels are tech-mapped separately. In
contrast, the original Balsa control components are manually designed
and they have highly-optimized implementations.

7. Conclusions and Future Work
This paper discusses the implementation of a new back-end for the

Balsa system. A channel description language has been introduced to
facilitate control modelling and optimization. The proposed flow opti-
mizes the control handshake components through clustering, and uses
Minimalist and the Synopsys’ Design Compiler to synthesize and tech-
map the controllers. The entire flow has been validated through a

number of examples.
The CH language may be extended to use other low-level spec

cation styles (Extended Burst-Mode or Petri nets). Each of these sty
may enable more optimizations, by removing some of the propos
Burst-Mode aware restrictions. However, removing restrictions m
result in unlimited clustering, and the synthesis run-time may be affe
ed [7,11]. There are two ways to alleviate this problem: either follo
clustering by a decomposition step, or, more interestingly, elaborat
set of restrictions such that the synthesis step becomes manageab

Relative timing [13] has been proved successful in a number of c
cuits. As it is, the CH language is not suited to handle relative-timin
assumptions. Further research in modifying the language is neede
handle this type of optimization.

References
[1] A. Bardsley and D. Edwards, “Compiling the Language Balsa to Delay-I
sensitive Hardware”,Hardware Description Languages and their Applications
(CHDL), April 1997, pp. 89-91.
[2] A. Bardsley, “Balsa: An Asynchronous Circuit Synthesis System”, MPh
Thesis, Department of Computer Science, University of Manchester, 1998
[3] A. Bardsley, “Implementing Balsa Handshake Circuits”, PhD Thesis, D
partment of Computer Science, University of Manchester, 2000.
[4] K. van Berkel, “Handshake Circuits: an Asynchronous Architecture fo
VLSI Programming”,International Series on Parallel Computation, Vol. 5,
Cambridge University Press, 1993.
[5] J. Ebergen, “Arbiters: an exercise in specifying and decomposing asynch
nously communicating components”,Science of Computer Programming,
18(3), pp. 223-245, 1992.
[6] R.M. Fuhrer, S.M. Nowick, M. Theobald, N.K. Jha, B. Lin, and L. Plana
“Minimalist: An Environment for the Synthesis, Verification and Testability o
Burst-Mode Asynchronous Machines”,Technical Report CUCS-020-99, Co-
lumbia University, July 1999.
[7] T. Kolks, S. Vercauteren, and B. Lin, “Control Resynthesis for Contro
Dominated Asynchronous Design”,Proceedings of the International Symposi
um on Advanced Research in Asynchronous Circuits and Systems (Asyn,
IEEE Computer Society Press, November 1996, pp. 233-243.
[8] A.J. Martin, “Programming in VLSI: From Communicating Processes
Delay-Insensitive Circuits”, inDevelopments in Concurrency and Communica
tion, UT Year of Programming Institute on Concurrent Programming, Addiso
Wesley, 1990, pp. 1-64.
[9] S.M. Nowick, “Automatic Synthesis of Burst-Mode Asynchronous Contro
lers”, Technical Report CSL-TR-95-686, Stanford University, March 1993.
[10] R.M. Fuhrer and S.M. Nowick, "Sequential Optimization of Asynchronou
and Synchronous Finite-State Machines: Algorithms and Tools", Kluwer Ac
demic Press, 2001.
[11] M.A. Pena and J. Cortadella, “Combining Process Algebras and Petri N
for the Specification and Synthesis of Asynchronous Circuits”,Proceedings of
the International Symposium on Advanced Research in Asynchronous Circ
and Systems (Async96), IEEE Computer Society Press, November 1996, p
222-232.
[12] A.M.G. Peeters, “Single-Rail Handshake Circuits”, PhD Thesis, Ein
hoven University of Technology, 1996.
[13] K. Stevens, S. Rotem, S.M. Burns, J. Cortadella, R. Ginosar, M. Kis
inevsky, and M. Roncken, “CAD Directions for High Performance Asynchro
nous Circuits”,Proceedings of the ACM/IEEE Design Automation Conferenc,
IEEE Computer Society, 1999, pp 116-121.
[14] “Design Compiler Family Datasheet”, http://www.synopsys.com/pro
ucts/logic/design_comp_ds.html.
[15] D. L. Dill, “Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits”, ACM Distinguished Dissertations, MIT Pre
1989.
[16] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakov
lev, “Petrify: a tool for manipulating concurrent specifications and synthesis
asynchronous controllers”,Proceedings of XI Conference on Design of Inte
grated Circuits and Systems, November 1996.
[17] D. Dill, S.M. Nowick, and R. Sproull, “Specification and Automatic Veri-
fication of Self-Timed Queues”,Formal Methods in System Design, v1, pp. 29-
60, 1992.
[18] D.S. Kung, “Hazard-non-increasing gate-level optimization algorithms
IEEE/ACM International Conference on Computer-Aided Design (ICCAD
1992, P, 1992, pp. 631-634.

Table 3: Experimental Results
Speed (ns) Area (mm2)

Unoptimized Optimized Improvement Unoptimized Optimized Overhead

Systolic counter 51.29 40.43 21.16% 39.68 50.43 27.09%
Wagging register 49.82 42.43 14.83% 228.93 283.71 23.92%

Stack 121.58 107.70 11.41% 282.48 335.19 18.66%
Microprocessor core 66.48 60.65 8.76% 453.76 563.47 24.17%
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