A Burst-Mode Oriented Back-End for the Balsa Synthesis Systeth

Tiberiu Chelcea Andrew Bardsley ~ Doug Edwards ~ Steven M. Nowick

*Department of Computer Science ™ Department of Computer Science

Columbia University
1214 Amsterdam Av., New York, NY 10027, USA
{tibi,nowick}@cs.columbia.edu

The University of Manchester
Oxford Road, Manchester M13 9PL, UK
{bardslea,doug}@cs.man.ac.uk

Abstract pattern-matching and template transformations, and (b) the resulting
This paper introduces several new component clustering technique§ontr_o_|Ier_desc_riptions_ are independent of the synthesizable Iow_—l'evel
for the optimization of asynchronous systems. In particular, novel SPecifications into which they are translated. Burst-Mode specifica-
“Burst-Mode aware” restrictions are imposed to limit the cluster sizes tions are currently employed, but they are just one of several possible

and to ensure synthesizability. A new control specification language,/ow-level specification styles.

CH, is also introduced which facilitates the manipulation and optimi-
zation of handshake control components. The new method has been
fully integrated into a comprehensive asynchronous synthesis pack-
age, Balsa. Experimental results on several substantial design exam-
ples, including an 32-bit microprocessor core, indicate significant
performance improvements for the optimized circuits.

1. Introduction

Several approaches have been proposed for synthesizing asynchro-
nous circuits from high-level specification languages [1,8,5,4,12].
These approaches generally fall into two categories: algebraic calcule
[5] and CSP-like language compilation [1,4,8,12].

The focus of this paper is on synthesis methods in the latter catego-
ry, which are used in such well-known compilers as Balsa [1] and Tan-
gram [4]. In these methods, a high-level specification is compiled
through syntax-directed translation into an unoptimized intermediate
representation, which is a netlist dfandshake componentEach
handshake component is then synthesized into a corresponding circui
using a template-based approach. While such compilation methods
have the advantage of “transparency” (the programmer is controlling
the final results from the high-level program), they also have the dis-
advantage of excluding aggressive transformations, generally using
only simple and local peephole optimizations. In an alternative ap-

In particular, the contributions of this paper are as follows:

new controller specification languag€&he paper introduces a for-
mal controller description language, CH (an abbreviation of “chan-
nel”), which is intermediate between an existing high-level
description language (Balsa [1]) and low-level asynchronous con-
troller specifications. The CH language is especially suitable to
model handshake control components [1,4] and directly facilitates
the manipulation and optimization of these components. With
restrictions imposed on its syntax, CH translates to correct-by-con-
struction Burst-Mode specifications [9,10].

system-level control optimizatioihe paper introduces and for-
malizes several control optimizations as language manipulation
procedures. The optimizations use clustering to eliminate internal
channels, thus merging the components connected by these chan-
nels. Unlike other approaches, which target area, these optimiza-
tions are targeted to improving spedte optimizations have all
been formally verified using the trace theory verifier, AVER [17].
CAD packageThe paper introduces a hew automated back-end for
the Balsa asynchronous synthesis system. The back-end incorpo-
rates a Balsa-to-CH translator, the new controller optimization
algorithm, a CH-to-BM translator, and a new interface with the
Synopsys’ Design Compiler for technology mapping.

The integrated CAD back-end is applied to four substantial asyn-

proach [8], a high-level specification is compiled into intermediate chronous design examples, including a small 32-bit microprocessor
components through “process decomposition” and “handshake expaneore. The complete synthesis flow starts with a high-level Balsa system
sion”, but this method is not entirely syntax-directed. description and includes all steps through technology mapping. Pre-

Generally, two types of optimizations have been proposed to im-layout back-annotated Verilog simulations indicate up to 21% speed
prove the intermediate circuit representatipeepholeandresynthe- improvement over the unoptimized implementations.
sis. Peephole optimizations replace a fixed pattern of components by The paper is organized as follows. Section 2 presents an overview
an optimized configuration of existing components. In contrast, resyn-of the proposed synthesis approach. Section 3 introduces the CH lan-
thesis methods manipulate one or more components and produce neguage, while Section 4 presents the two new resynthesis optimizations.
specifications which do not correspond to existing components; theseSection 5 briefly discusses the technology mapping process. The last
specifications are then directly synthesized. Much of Balsa’s and Tan-two sections present experimental results as well as conclusions and di-
gram’s optimization techniques [1,4,12] are peephole style. In Mar- rections for future work.
tin’s approach [8], optimizations such as “guard symmetrization” can Related Work. The CH description language is first compared with
be regarded as a simple form of peephole, while “handshake reshufsome existing asynchronous description languages. Then, our optimi-
fling” is a limited form of resynthesis: taking one component and pro- zation techniques are compared with well-known peephole optimiza-
ducing another one with potentially more optimized behavior. tions, as well as with resynthesis approaches closer to ours.

The optimizations proposed in this paper fall into a separate cate- CH is an intermediate-level description language for handshake
gory of resynthesis transformatiordustering[7,11]. The goal is to components, and it naturally captures channel behaviors and commu-
cluster several controllers into a single larger controller. Since thenication protocols between components. In contrast, both Balsa [1] and
channels connecting the merged components are eliminated, so poteff-angram [4] are higher-level languages more suitable for system-level
tially are the overheads introduced by communications on those chaneescription rather than for individual component manipulation. At the
nels. The new controllers are then directly translated into Burst-Modeopposite extreme, the Caltech handshake expansion language [8] is
asynchronous controller specifications [9,10], and then synthesized usmuch more low-level: it explicitly indicatesveryindividual signal
ing existing tools. transition, and thus is more cumbersome for modelling channel-based

A small channel-based description language, CH, is introducedoptimizations.
both to specify each handshake component’s behavior and to facilitate Closer to our work, there exist three intermediate-level languages
the optimizations. There are two advantages to this approach: (a) optifor formally specifying individual handshake components [3,4,12]. In
mizations can be regarded as abstract language manipulations througkach approach, a specification defines both the channel interface of the
component as well as the component’s operation and interface proto-
col. Of these, van Berkel's [4] uses “generic operators” to describe a
component’s behavior. A drawback is that, in effect, it defines abstract

FThis work was supported by NSF ITR Award No. NSF-CCR-0086036 and
by EPSRC Grant No. GR/N19618.

classeof related handshake components; therefore, the language can-
not distinguish subtle differences in protocol between related control-
lers. In contrast, our approach is able to model a variety of different
protocols for a given operation by using a set of concrete “interleaving balsa-c
operators”. van Berkel aIso uses a separate language to descrIbe con- sbreeze files
crete handshake beh_awors for_ each component; however, unlike our Unoptmized NeTsTof
approach, this modelling loses information about component ports and (Handshake Component
is at a much lower-level (modelling individual signal transitions rather)
than channels). Datapath Synthesis paitioning N\ COntrol Synthesis
In an alternative approach, Bardsley [3] adopts all of van Berkel's
generic operators, but, unlike van Berkel, each operator is asségred
actly one associated behavior, i.e. handshake expansion. In contrast,
CH defines more language operators, which specify a variety of feasi-
ble interleaving protocols, thus allowing for modelling multiple relat- Balsa Tech-Mappin

. (“balsa-netlist”)
ed components. Finally, Peeters [12] uses much lower-level CH prgm.

descriptions (traces of individual signal transitions) to specify a com- =
\ . o -to-BMS
ponent’s operation. All three languages are capable of specifying both

1ol

Balsa-to-CH

Optimizations:
component clustering

.bms fil
control and datapath handshake components; however CH currently) r- bms files — 1
. .v files
can only specify control components. | MINIMALIST
Peephole optimizations have been proposed by both van Berkel [4] ((Tech-Mapped Datapa)q _sol files DC script

and Peeters [12]. There are two main types: higher-level ones (on

handshake components) and gate-level ones (on netlists of gates). L _plfvemog_
Higher-level optimizations include parallel compositions, sharing, re- vfiles

ordering, and multi-channel optimizations; they typically consider SynODS(ézTS%%q[)Mapping
small windows of 2-4 components and transform them to one or sever- =

al other library handshake components. Gate-level optimizations form
aregion around a netlist of gates, and transform them into an optimized S
netlist of gates. In contrast, our proposed optimizations operate on
much larger windows of components, and do not operate at the gate
level. _ S Figure 1: Balsa System Back-End

Finally, closer to our work, clustering optimizations for asynchro- .
nous control components have been proposed by both Pena et al. [1ﬂhannels._ln the end, the whole control_part |s_reduced to a network of
and Kolks et al. [7]. These approaches use behavioral [7] and Structuralie_synthesued controllers that communicate with each other, as well as
[7,11] composition to obtain a single specification for the entire control With the datapath and other processes. .
part. The behavioral methods use trace structures [15] to perform com-_ A Smalllanguage (called CH) is introduced to allow for the descrip-
position, while the structural ones manipulate Petri nets to weave totion of Contr_ol_har_Idshake_components_ The I_anguage also fac|||te_1tes
gether controllers’ behaviors. In each case, Petri nets are used as lowjl€ Néw optimizations, which are treated as simple language manipu-
level specifications for the clustered controllers, which are then synthe-ation procedures. The CH language contains a small set of channel
sized using Petrify [16]. types, as well as looping and interleaving operators. The operators

There are three main differences between these approaches antfere chosen with two aims: first, to be expressive enough to capture a
ours. First, we use an intermediate-level description language, CH, folUmber of useful component behaviors; and second, to be sufficiently
modelling and manipulating control components, while they use only constrained such that the specifications written in this language can be
low-level language models (Petri nets). Second, their approaches arffanslated to correct-by-construction Burst-Mode specifications, the
targeted towardsinlimited clustering, which may result in synthesis intended medium for controller synthesis. _ o
run-time problems. In contrast, our approach results in smaller clusters, The Minimalist package [6,10] is used to synthesize the optimized
and shows improvements in synthesis run time while still allowing for hazard-free controllers. The package enables the designer to direct the
optimizing medium to large systems. Also, our approach is targeted to-Synthesis towards improvements in speed, area or power. Minimalist
wards Burst Mode [9] controllers, which have been shown to have Balsa Component
good performance, while neither one of the previous papers have re- g) Before Optimizations b) After optimizations
ported figures for speed improvement. Finally, the new back-end has
been integrated into a comprehensive environment for asynchronous
synthesis (Balsa), which provides an entire design flow from a high- || — —L— —
level system specification down to layout.

2. Overview of the Approach

I

I

The proposed new flow for the Balsa system back-end is shown in | |

Fig. 1. The shaded boxes indicate research contributions. |
The new back-end splits the control and datapath handshake com-

ponents synthesized by Balsa. The control part is then optimized, syn- |

thesized using a Burst-Mode CAD package, and technology mapped | |

I

I

I

I

(Final Optimized Circuit)

Datapath Components Datapath Components

o
|
|

L

Control Handshake Componen

using a commercial tool. Datapath components are synthesized using
the existing Balsa system technology mapper.

Control optimization is performed for an entire Balsa procedure
(i.e. process), which describes a system or component to be synthe-
sized. The idea is to eliminate internal channels between control hand-
shake components and collapse them into larger controllers (see Fig.
2). The result of collapsing two components is a new controller with
the same interface as the initial two controllers, minus the eliminated - —
channels, and with the same observable behavior on the remaining Figure 2: Control Optimization

Final Two Controllers

r
I

I

I

I

I
L — —
L — —

synthesizes the controllers into two-level circuits containing generic its
gates; these circuits are then technology mapped using Synopsys’ De-
sign Compiler [14]. Finally, the technology-mapped datapath and con-
trol components are merged together to obtain the final optimized
circuit implementation of the Balsa process.

3. The CH Language

The CH language is an intermediate control specification language
between a high-level description language and a low-level controller
specification language.

A CH program can be used to model both the interfaces and behav-
ior of asinglecontroller. The language has two types of expressions:
channel declarationandoperators The language treats the two types
uniformly: both channels and operators have an associated four-phase
expansion and an “activity” type (passive or active), as discussed be-
low.

A CH channel declaration defines the four-phase handshake expan-
sion on a given channel. In practice, a channel is used to connect a con-
troller with other controllers, datapath components or external
interfaces. Connections can be either point-to-point or multi-way. A
channel connecting various controllers is identified by using the same
channel name in the CH program of each of the connected controllers.
Channels are always assumed to be dataless (in Balsa, simple datapath
components are used for data transfer, and are not associated with the
control part). For example, passivepoint-to-point channel A is de-
scribed by the CH expression:

(p-to-p passive A)

and its four-phase handshake expansion is:

[(ar +)] [(0caa+)]I[iar-)]I[oaa-)

wherei indicates an inpup indicates an output, and the handshaking

is initiated by an input request. A transition is denoted by the signal
type (input or output), the signal name, and the transition type: + for
rising, and - for falling, transitions. In contrast, activechannel has a
handshake expansion that is initiated by an output request (see below).

Unlike channels, CH operators have up to two arguments. Each ar-
gument can be either a channel declaration or another operator. Just
like channels, each operator is considered as having four distinct
events, which follow either a passive or active protocol. In particular,
the result of applying an operator to its arguments is a four-phase ex-
pansion which depends on both the operator’s type and the type of its
arguments (passive or active). The operator effectively defines, and re-
turns, aninterleavingof the events of its arguments, which are also
grouped into four “higher-level” atomic events. As an example, given
two channels, A passive and B active, which have four-phase hand-
shake expansions, respectively:

[(a_r +)] [(0caa+)]I[(iar-)]I[oaa-)

and

[(0 b_r #)] [(i b_a -)] [(0 b_r -)] [(i b_a -)]

a CH expression which interleaves them usingary-enclosure op-
eratoris:

(enc-early (p-to-p passive A) (p-to-p active B))

which represents the following interleaving: .
[a_r +)(0 b_r +)(i b_a -)(0 b_r -)(i b_a -)]
[(ca_a+)][(ia_r-)][(ca_a-)]

In this interleaving, immediately after the initial |nput requast+ on
channel A, the entire four-phase handshake on B is completed, fol-
lowed by the remaining three events on channel A. Note that the oper-
ator effectively groups the input request and the entire four-phase
handshaking on B into a single new event.

The reminder of this section now formally describes the syntax and
the semantics of CH channel declarations and operators. It concludes
with several examples of modelling handshake components and a dis-
cussion of compiling CH programs into Burst-Mode specifications.

3.1 Channel Declarations

There are six types of channels. The term channel is used in a gen;
eral sense, as a means of synchronization on a group of wires, between
a controller described by a CH expression and one or more other con-
trollers and datapath components. Each channel type is introduced by

corresponding language keyword.
p-to-p (point-to-point) channels connect two components; they are
the most common type of handshake channels. They consist of two
wires: a request and an acknowledge. The syntaxpido-p
activity name) , Where activity is either passiveor
active If the channel is active, its expansion[® name_r
+)] [(i name_a +)] [(0 name_r -)] [(i name_a
-)] ;ifitis passive, the channel expands[(b name_r +)]
[(o name a +)] [(i name_r -)] [(0 name_a -)]
where the square brackets enclose events, and the round ones
enclose a transition.
mult-ack channels connect one component to several, and consist
of a single request wire and multiple acknowledge wires. A transi-
tion on the request wire is followed by synchronized transitions on
all acknowledge wires. The syntax ignult-req activity
name n), whereactivity is either passive or active, amdis
the number of acknowledge wires. The resulting channel activity is
given by theactivity parameter. All of the acknowledge transi-
tions can be regarded as grouped into a single event. For example,
(mult-req active ¢ 2) expandstg(o c_r +)] (i
cal +) (i ca2 +)] [0 c_r -)] [(i ccal -)
(ic_a2-)]
mult-req channels connect one component to several, and consist
of multiple request wires and a single acknowledge wire. Transi-
tions on all request wires are then followed by a transition on the
acknowledge wire. The syntax is:(mult-ack activity
name n), whereactivity is either passive or active, amdis
the number of request wires. The resulting channel activity is
given by the activity parameter. All transitions on request wires are
grouped into a single event.
mux-ack channels connect one component to several, and consist
of a single request wire and multiple acknowledge wires. Unlike a
mult-ack channel, a request transition is followed by a transition
on exactlyone acknowledgment wire; if th&ﬁacknowledgment is
received, then the"i CH expression in a list is executed. This
channel type islwaysactive. For example:
(mux_acka(oplargl)(op2arg2))
expands to:
[(0 a_r +) choice
(op1 [[(0 a_al)i a_r -)[(0 a_al-)]
argl)
(op2 [ll(c a_a2 +)[(i a_r -)l[(0 a_a2-)]

arg2)

1000

where channed is the mux-ack channefrgl andarg? are the
two CH expressions in the lisbplandop2are interleaving opera-
tors which define the interleaving of the events on the mux-ack
channel and the respective CH expression to be execatgtl ¢r
arg2), choice is a keyword which indicates mutual exclusion
between two events, and the four events returned by the mux-ack
expansion are a single complex interleaving and three null events.
mux-req channels connect several components to one, and consist
of multiple request wires and a single acknowledge wire. Unlike a
mult-req channel, a transition occurs exactlyone request wire;
if the it" request is received, then tHB CH expression in a list is
executed, including signaling on the acknowledge wire. This chan-
nel type isalwayspassive. For example:
(mux_reqa(opl argl) (op2 arg2))
expands to:
[choice

(op1[(ia_rl+)(oa_a+)(ia_rl-)]

[(0a_a-)] argl)
(op2 [(ia_r2 +)][(oa_a+)][(ia_r2-)]
[(oa_a’)] arg2')

1000
void channels are channels whose all events are empty and are nei-

ther passive nor active. These channels are only used internally
during the optimization process.

« verb channels are channels whose events and activity are entirely
specified by the user. The activity of this channel is given by the
first transition.

3.2 Looping Operators

There are two categories of CH operatdospingoperators anth-
terleavingoperators. The operators of the former type provide a means
for repeating the behavior of CH expressions.
* rep operators have only one argument. The expansion given by

each such argument is repeated forever, unless interrupted by a

break (discussed below). The syntax(rep expr) .If expr is
passive then theep expression is passive, otherwise it is active.
The result of theep expression is one non-empty event (contain-
ing the four-phase expansion expr), followed by three empty

events; in effect, the four-phase handshake expansion is degener-

ate. For example, the expansion @ép c) is [label c
(goto labeD][00 , Wherec is the expansion ofep 's
argument, andabel andgoto are keywords, as generated by
the parsing algorithm.

» break operators end the inner-most loop. The syntabisak)
This operator is neither passive nor active. The operator expands to
[(bgoto labe][00 , wherebgoto andlabel are .
keywords generated by the parsing algorithigoto is similar to
goto , but is handled differently by the parsing algorithm.

3.3 Interleaving Operators

The CH language has six interleaving operators: three for enclo-
sures, two for sequencing and one for mutual exclusion. An enclosure-
type interleaving on two channels is initiated and terminated by events

on the first channel, and the events on the second channel are enclosed

within the first handshake. A sequencing-type interleaving of two
channels is initiated by events on the first channel and terminated by
events on the second one. The mutual-exclusion interleaving of two

Sequencer

Al Al @
_BA_Q(:)O_B
P_O:Az A2

Call Passivator

a_r+b_r+/
a_a+b_a+

al_r-/ a2 r-/
al_a- a2 a-
Figure 3: Symbols and Burst-Mode

Specification for Three Handshake Components
only for active-active arguments; for all other activity pairs, it
degenerates into other interleaving operators. This operator is use-
ful in modelling transferrers [4].
mutex operator indicates the mutually-exclusive execution of its
two arguments. The syntax (mutex exprl expr2) . This
operator is defined only for passive arguments, since it models
external input choices. Therefore, this operator is always pas-
sive.The returned expansion @hutex cl1 c2) is[(choice
cl c2)] 01 ; the first event contains the arguments’
expansions plus the keyworhoice to indicate input choices,
while the last three events are null. If the component allows
mutual exclusion between n>2 expressions, then alternatives 2..n
can be recursively embedded in the second argument: for example
(mutex c1 c2 c3) =(mutex c1 (mutex c2 c3))

a2_at+/a2_r-

channels places the events on each channel one after the other. How3.4 Handshake Components: Modelling Examples

ever, this interleaving is more complex than a straight sequencing of

This subsection illustrates the CH language by modelling three

the events, because the order of the two handshakes is determined ldmmon handshake components: a sequencer, a call module and a pas-
the environment. All interleaving operators take exactly two argu- sivator.

ments! (The expansions are presented in more detail in Table 2.)

A sequencer [1,4] has three channels: one passive one, P, and two

* enc-early. this operator models the enclosure of the second argu-active ones, A1 and A2 (see Fig. 3). The component is activated on its
ment's handshake expansion between the first and second events ghssive channel, and then completes handshakes on each of the two ac-

the first argument’s expansion. The syntaXaac-early al

tive channels before completing the handshake on the passive one. The

az) . If the first argument is active, then the operator is active, oth- CH program for the sequencer is:

erwise it is passive.
« enc-middle this operator models the interleaving of the two argu-
ments as follows: events 1 and 2 (3 and 4) of the second argu-

(rep (enc-early (p-to-p passive P)

(seq (p-to-p active Al)
(p-to-p active A2))))

ment’s expansion are enclosed between events 1 and 2 (3 and 4) of A call module [1,4] has two passive channels (Al and A2) and one

the first argument’s expansion. The syntax (enc-middle
exprl expr2)

active one (B). The environment starts a handshake on either Al or A2;
. If the first argument is active, then the operator the call module then performs a full handshake on B before finishing

is active, otherwise it is passive. This is a powerful operator that the handshake on Al or A2 (whichever was selected by the environ-
can model C-element-like synchronization of channels as well asment). The CH expression for the sequencer is:

fork components.

* enc-late this operator models the enclosure of the entire second
argument’s handshake expansion between the third and fourth
events of the first argument. The syntax(enc-late exprl
expr2) . If the first argument is active, then the operator is active,
otherwise it is passive.

(rep (mutex

(enc-early (p-to-p passive Al)
(p-to-p active B))
(enc-early (p-to-p passive A2)
(p-to-p active B))))
The final example is a passivator [1,4]. This component has two

» seqoperator models the sequencing of its two arguments. The syn{assive channels (A and B); it waits for the environment to start hand-

tax is(seq exprl expr2) If the first argument is active,

shakes on both A and B, and then acknowledges on both channels. It

then the operator is active, otherwise it is passive. If more than twothen waits for the environment to start the return-to-zero phase on both
channels are to be sequenced, then the extra channels can be recé-and B, and then finishes the two handshakes concurrently. The CH

sively embedded in the second argument: for exar(geg cl
c2 c3) =(seqcl (seqc2 cl))

« seq-ovoperator models the overlapped sequencing of its two argu-
ments. The syntax iseq_ov exprl expr2) . It is defined

1. The only exceptions are when definmgx-ack andmux-req chan-
nels, as discussed in Section 3.1. In these cases, the enclosure and

expression is:
(rep (enc-middle

(p-to-p passive A)
(p-to-p passive B)))

3.5 Burst-Mode Aware Restrictions on CH

An important practical issue in modelling asynchronous controllers

using the CH language is to ensure they can be compiled into specifi-
cations that are easily synthesizable. Since our focus is on Burst-Mode

sequencing operators only have one explicit argument, but, in each casegontrollers, restrictions on CH operator usage must be imposed to

the implicit argument is the mux-ack or mux-req channel, respectively.

contains a control flow construct (rep, break, mutex), Section 3.2 and

Table 1: Legal Comb"t‘.a“‘/’”s of OtF’er;"‘”ds and AIguments 3.3 indicate the additional keywords that are inserted into the hand-
Operator active aclive/ | passive/ | passive shaking expansion. In the end, a straight line four-phase handshake ex-
active passive active passive . : ; ;
pansion for the entire CH program is obtained.
enc-early Yes No Yes Yes The resulting intermediate form is then translated into a Burst-
enc-late No No Yes Yes Mode specification as follows. The list is traversed in linear order. In-
enc-middle Yes No Yes Yes itially, a start state is created for the Burst-Mode specification. An in-

put burst is created from the appropriate signal transitions at the start

seq Yes No Yes Yes) .
seg-ov Yes No No No of the list, followed by a subseqqent output burst. If a new input burst

is encountered, the output burst is complete, so a new state is generated
mutex No No No Yes as the next state, as well as an arc connecting the two states and anno-
guarantee that Burst-Mode specifications are always produced. tated with the corresponding input/output burst. If, instead, a goto

In particular, only certain combinations of interleaving operators statement is encountered, the program checks the existing state associ-
and argument types are allowed; these combinations are called “Burstated with the goto, and similarly makes it the next state; an input/output
Mode aware”. Table 1 summarizes #weactcombinations of operators burstis created on an arc connecting the two states. The translation ter-
and argument types which result in correct-by-construction Burst- minates when the list is empty.

Mode specifications during the CH-to-BM translation. The rows rep- Fig. 3 shows the Burst-Mode specifications of the three handshake
resent the operator types, while the columns indicate the possible comeomponents described above. For example, while in state zero, the call
binations of argument types (passive or active). If an entry correspondsomponent waits for a rising transition on eittek_r ora2_r . If

to a “no”, then no valid Burst-Mode specification can be obtained; if it al_r+ has arrived (the environment starts a communication on the al
is a“yes”, then a correct specification can be obtained. The translatiorchannel), therb_r+ is generated and the machine moves to state 1.
into Burst-Mode specifications for each “yes”/“no” combination has The machine then waits for the next input bulstd+), and, after gen-
been manually verified for correctness. erating b_r- it moves to state 2. The machine returns to the starting state

Table 2 indicates the resulting four-phase expansion of each inter{zero) after two more transitionb (a- /al_a+ andal_r- /al_a-).
leaving operator and combination of argument types. Only Burst- The behavior is similar if the environment starts a handshake on the a2
Mode aware entries are included. The four events of the first argu-channel.
ment’s expansion are named al ... a4, and the four events of the secon — .
argument’s expansion are named b1 ... b4. As before, the square bracéj' Optlmlzatlons

ets enclose an event in the returned result. In this section, new optimizations are introduced which attempt to
- . e improve the speed of the control part of the circuits. To do so, the hand-
3.6 Compiling CH into Burst-Mode Specifications shake components are clustered into larger controllers. The potential

Once a control component is modelled in CH, it can be translatedfor improvements comes from the elimination of handshaking on the
into a lower-level asynchronous controller specification. This subsec-internal channels.
tion briefly introduces Burst-Mode (BM) specifications, the target of Currently, two new optimizations are proposadtivation channel
our synthesis path, and then presents the new compilation algorithm.removalandcall distribution The first optimization eliminates activa-
Burst-Mode is a commonly-used Mealy-type of specification for tion channels between handshake components, while the second one
asynchronous controllers [9,10] (see Fig. 3). A specification consistseliminates call modules by inlining them directly into their calling
of a set of states and a set of arcs. An arc is labelled with an input burskites. Each optimization is discussed in turn in the next two subsec-
followed by an output burst, and connects two states. An input (output)tions. The section ends with a discussion of the formal verification of
burst describes a set of input (output) events or transitions: rising tranthese optimizations, and also with a summary of the optimization algo-
sitions are marked with a ‘+’, and falling ones are marked witha *-". A rithms.
BM machine waits for an input burst to arrive; transitions may come in .
any order and at any time. Once the complete input burst has arrived®-1 Activation Channel Removall
the output burst is generated and the machine moves to the next speci- The idea behind this optimization lies in a fundamental characteris-
fication state. tic of several control handshake components: in order to start their be-
The new compilation algorithm, CH-to-BMS, translates CH pro- havior, the components are first “activated” along a passive channel. If
grams into Burst-Mode specifications. The compilation algorithm has the channel that activates them is eliminated, then the handshaking
two steps: first, the CH program is translated into an intermediate form;overhead on that channel is also eliminated.
then the Burst-Mode specification is obtained from the intermediate ~ The following terminology will be used below: attivation chan-
form. nelis the handshake channel that connects the activating and activated
The intermediate form is a list of signal transitions, with inserted la- components (it is an active channel for the first component and passive
bels for states, goto statements, and keywords indicating external inpufor the second one), and which encloses the “useful” behavior of the
choices. The intermediate form is obtained by traversing the CH pro-activated component within its handshake expansion. biduy of a
gram recursively. As intermediate nodes (operators) are encountered;omponent is the “useful” part of that component, enclosed within a
the traversal expands the operator hierarchically. When a terminal ohandshake on an activation channel (if present).
leaf node (channel) is finally encountered, the recursion terminates and The optimization proceeds in two steps. It first hides the activation
the four-phase expansion of the channel is returned. As recursion unchannel in the activated component (by replacing it witroa chan-
winds through the intermediate nodes, the partial results are combinedtel), and then inlines this component’s body directly into the CH ex-
into “higher-level” handshake expansions, according to the rules pre-Jpression of the activating component.
sented in Table 2, and Sections 3.2 and 3.3. If the intermediate node To illustrate the optimization, let us take two components: a deci-

Table 2: The Four-Phase Expansion of CH Operators

Operator active/active active/passive passive/active passive/passive
enc-early [a][apbybohsbyl[as][ay] - [a1b;bobsbyl[as][ag][ag] [a1b;bobsbsl[asl[ag][agl]
enc-late - - [3l[ayl[az][b 1bobsbsay] [aj][azl[ag][b 1bab3bsay]
enc-middle | [aby[b al[aghsl[b4ay] - [asbyl[boaslfasbsllbda)] | [agbil[boasliaghallbday]
seq [a2,a0a4b1][0,][b][] - [a12,258,01][bo[b3llba] | [2125258,01][b,[balb]
seq-ov [aap][bybyl[azayl[bshy] - - -

sion-wait and a sequencer. A decision-wait component [3,4] is used tosulting Burst-Mode specification should still be synthesizable, as dis-
sample passive channels. It consists of an activation channel and sewussed in Section 3.5. The CH language introduces a set of “Burst-
eral pairs of passive-active channels. When the component is activatetMode aware” restrictions on operators usage. Before the optimization
and a handshake is initiated on exactly one of its passive channels, this applied the activating component is BM aware, but during the opti-
component performs a full handshake on the corresponding activanization the activating channel disappears, and the body of the activat-
channel, before completing the handshakes on both the passive and aed component is inserted in its place. Therefore, we must check again,
tivation channels. The sequencer is activated on its passive channelfter clustering, that the operator in the activating component and its
and then performs handshakes in order on each of its active channel$wo arguments (one of which is now the inlined code, with its own pas-
The CH expression for decision-wait (the activating component) is: sive/active type) are still legal according to Table 1. If it is, the optimi-
(rep (enc-early (p-to-p passive al) zation succeeds; otherwise it fails, and the optimization cannot be
(mutex performed.

(o (P P P e o) 4.2 Call Distribution

(enc-early (p-to-p passive i2) The final clustering optimization is to eliminate call handshake
(p-to-p active 02) ») components, by folding the individual call statements into their call
and for the sequencer (the activated component) is: sites.
(rep (enc-early (p-to-p passive 02) An n-way call component [1,4] has n passive channels and one ac-
(seq (p-to-p active c1) tive one; it receives mutually exclusive activations on the n channels,
(p-to-p active c2))) and, for each activation, performs a single handshake on its active in-
Channeb?2 is an activation channel for the sequencer, so it may be terface before completing the handshake on the activating channel.
optimized out. The activation point is highlighted in bold in the CH de- The new optimization works as follows. It first breaks an n-way
scription of decision-wait, and the body of the sequencer is also high-call component into n simple fragments, each of which has a single
lighted in bold. passive and single active channel. The active channel is a replication
First, a hide operation is performed on channel 02 in the sequencerof the original one, and the passive channel is one of the original n pas-
(rep (enc-early void sive channels of the call component. The behavior of each call frag-
(seq (p-to-p active c1) ment is to enclose the handshake on the active channel within the
(p-to-p active c2)))) handshake on the passive one. During optimization, these simple frag-
Then, the body of the new component is directly inlined into the de- ments are inlined into other controllers. If all n fragments are inlined
cision-wait component’s expression to replacea®ehannel: into the same controller, then the optimization has succeeded; other-
(rep (enc-early (p-to-p passive al) wise, the original call component is restored. In case of success, the n
(mutex activation channels of the initial call component are thus eliminated.
(enc-early (p-to-p passive il) To illustrate this optimization, an example taken from one of the
(p-to-p active 01)) simulated circuits (the systolic counter) is presented. The example con-
(enc-early (p-to-p passive i2) sists of two handshake components, a sequencer and a call module.
(enc-early void Both branches of the sequencer activate the call module:
(seq (p-to-p active c1) SEQ: (rep (enc-early (p-to-p passive a)
(p-to-p active c2))) (seq (p-to-p active b1)
The above optimization can also be illustrated on the corresponding (p-to-p active b2))))
handshake circuits, as shown in Fig. 4. The activation channel betweeit ALL: (rep (mutex
the original components is highlighted in bold, and the two corre- (enc-early (p-to-p passive b1)
sponding BM specifications are shown. On the right, the final merged (p-to-p active c))
component is given, after optimization, along with its BM specifica- (enc-early (p-to-p passive b2)
tion. (p-to-p active c))))
Decision-Wait Sequencer New-Component Initially, the call module is split into two fragments:

CALLZ1: (rep (enc-early (p-to-p passive b1)

'L ol (p-to-p active c)))
al cl CALL2: (rep (enc-early (p-to-p passive b2)
(p-to-p active c)))
i2 c2 The first optimization can then be applied to both CALL1 and

CALL2, and the new controller has the behavior:
(rep (enc-early (p-to-p passive a)
(seq (enc-early void (p-to-p active c))
(enc-early void (p-to-p active c))))

This optimization is also illustrated in Fig. 5. The optimization can
be applied because the two call fragments are inlined intedhefi-
nal controller. If they cannot be inlined together, the optimization
would not be applied and the sequencer and the call would remain as
two separate modules.

4.3 Formal Verification

The optimizations described above were proved to be correct using
atrace theory verifier, Aver [15,17]. To do so, we have checked the be-
havior of two optimized controllers (using Activation Channel Remov-
al) against the combined behavior of the same controllers (obtained
using the “compose” and “hide” operators from trace theory [15]) for
“conformation equivalence”.

The verification procedure is as follows. Two CH simple programs,

Figure 4: Activation Channel Removal containing just one operator each (one in the activating component and

An important restriction in applying this optimization is that the re- one in the activated one), and sharing an activation channel, are manu-

i2
al_r+il r+/ al_r+i2_r+/
ol r+ 02 r+

same original call component have been inlined into the same final
controller. If that is not the case, the call component (the CH program
describing it) is restored.

procedure T2_clustering (N);

// N = netlist of control components

C = get_call_components (N); // list of call components
// Split each call component into a set of call
// fragments. Group all sets into a list C".

C’ = split_call_components (C);
/I update the netlist of components

N’ = update (N, C");
// apply Activation Channel Removal to new netlist

N” = call (T1_clustering (N’));
// check for successful Call Distribution

foreach cin C’ // for each set of call fragments

if (all call fragments in ¢ clustered together) then

Call Result

1.r/ b2 r/ .
1:a- szg- c_atlc_r- // Success. Do not update the netlist
. T else
Figure 5: Call Distribution Example N” = restore_call_component (N”, c);

ally translated into Petri nets. Then, using Aver, the two Petri nets are end_for
transformed into trace structures, composed [15], and the activation return (N”);
channel is hidden [15]. The result is a single trace structure that de- €nd_procedure

Sf”betf] tq&/ e>geHrna| behavior of lthe tvxi_o C_:Hdprograrzs.tlln t".’l secp:)ﬁrate Note that in our approach, using T1_clustering and T2_clustering,
step, he two programs are aiso optimized using Activalion LNany,e gj;6 of the clustered components is not directly controllable by the

nel Removal. The resuiiting program is then manually translated into adesigner. Instead, the inherent restrictions on applying “Activation
Petri net, read into Aver, and translated into a trace structure. The tW~ - - | 'Removal” and “Call Distribution”. as well as the “Burst-

trace structures are then checked for conformation equivalence. Th'ﬁ/lode aware” restrictions on the CH language, determine how many
process is repeated for all possible combinations of operators in the ac(':omponents can be clustered together. In praciice, the algorithms tend

tivating and a.ctlvated CH programs. o . to yield netlists of several clustered components, as opposed to a sin-
The experiment has succeeded for all operator combinations. Thlsgle monolithic controllers

indicates that the Activation Channel Removal optimization is behav-)
ior preserving, and therefore it is correct. 5. Technology Mappmg

4.4 Optimization Algorithms Before technology mapping, the Minimalist tool [6] synthesizes the

The optimization algorithms are introduced as systematic and autoBUrSt-Mode specifications into hazard-free two-level logic implemen-
matic methods of applying the two new optimizations of Sections 4.1 t@tions. The technology mapping flow is then as follows (more details
and 4.2. They receive as an input a collection of CH programs (describ-are explal_ned b_elow). First, the two-level Ioglc_ |mplementat|_ons are
ing the handshake components) and a list of point-to-point channelé'no‘je'led in Verilog HDL. Next, Synopsys’ Design Compiler is used

connecting the control components (currently, only point-to-point to technology map these controllers. In general, note that this method

channels are considered for optimization). The algorithms return a sefS "0t nécessarilgound, since the internals of Synopsys'’ Design Com-

of CH programs modelling the clustered components. piler are not published and, therefore, it has the potential to introduce
Intuitively, the Activation Channel Removal algorithm forms as Nazards. As a consequence, the technology-mapped circuits are for-

large clusters as possible, according to the pseudo-code shown beIoWﬁ”% anaLysed forl_hzz?](d-freeﬁo? ﬁonditioni. In all ﬁxamgl?s on
(procedure T1_clustering). The algorithm starts with the netlist of con- Which we have applied this method, the controllers are hazard-free.

trol components. In its inner loop, the algorithm picks a point-to-point ' he individual steps are now considered in more detail. A simple

channel connecting two components, and merges their behaviors. |fthéoluti0n is used for structural modelling of the two-level logic imple-

composed behavior is still Burst-Mode synthesizable, the new ComIDO_mentations in Verilog HDL. The two-level nand-nand implementation

nent is returned to the current netlist of control components; otherwiseOf the controllers is d'Y'dEd into three_separa_\te Verilog modules: one
the netlist is not updated. The algorithm iterates until all point-to-point 0" €ach of the two logic levels and a hierarchical module for the entire
channels have been inspected. At this point, the algorithm returns th(ﬁlontroller. Each mo_dule contains only inverters and ”Q”d functions.
netlist of clustered control components. ext, each module is technology mapped separately with the Synop-

sys’ Design Compiler.

procedure T1_clustering (N); In the final step, each technology-mapped controller is formally
// N = netlist of control components verified for hazard freedom by analysing its decomposition into library
for c =1 ... (# point-to-point channels in N) gates. In particular, to verify hazard freedom, the transformations in-
(x, y) = components connected by c; troduced by Synopsys’ Design Compiler were analysed to determine if

// create the clustered component of X & y
clustered_comp = activation_channel_removal (c, X, y);
// if clustered component still synthesizable,

all werehazard-non-increasingn the literature, a number of common
algebraic transformations have been identified as not introducing new

// update netlist and continue hazards and therefore their application is safe; these include DeMor-
if (BM_synthesizable? clustered_comp) then gan’s laws, factoring, associativity law, etc. [18].
N = update (N, clustered_comp); The above technology mapping method is fairly unoptimized and
end_for may not yield the best possible results. Therefore, further research is be
return (N); needed to take full advantage of the existing technology-mapping al-

end_procedure gorithms and improve the quality of the circuits.

The Call Distribution algorithm (procedure T2_clustering, shown 6. Results
below) has three steps. Starting with the initial netlist of control com-) .
ponents, all call components are split, as explained above. Then, the The entire synthesis flow has been tested for a number of examples.
Activation Channel Removal algorithm (T1_clustering, shown above) E&ch example is described using the Balsa language, and synthesized
is called as a subroutine to obtain the netlist of clustered componentsWVith balsa-c , to obtain the initial netlist of control and datapath

Finally, the algorithm checks that all call fragments obtained from the Nandshake components. These components are then read by the opti-
mization program to obtain the BM descriptions of the new controllers.

Table 3: Experimental Results

Speed (ns) Area (mr)
Unoptimized Optimized Improvement || Unoptimized Optimized Overhead
Systolic counter 51.29 40.43 21.16% 39.68 50.43 27.09%
Wagging register 49.82 42.43 14.83% 228.93 283.71 23.92%
Stack 121.58 107.70 11.41% 282.48 335.19 18.66%
Microprocessor core 66.48 60.65 8.76% 453.76 563.47 24.17%

Each Burst-Mode controller is synthesized with Minimalist [6], number of examples.
running the speed optimization scripts. The results are then passed to The CH language may be extended to use other low-level specifi-
Synopsys’ Design Compiler for technology mapping using the AMS cation styles (Extended Burst-Mode or Petri nets). Each of these styles
0.35 micron library. Datapath components are technology-mappednay enable more optimizations, by removing some of the proposed
separately into the same library using Balsa tools. Finally, the controlBurst-Mode aware restrictions. However, removing restrictions may
and datapath are merged together into the final circuit implementation result in unlimited clustering, and the synthesis run-time may be affect-
which is back-annotated usimgearl and simulated with Cadence ed [7,11]. There are two ways to alleviate this problem: either follow
Verilog-XL. clustering by a decomposition step, or, more interestingly, elaborate a

The new optimization software consists of over 2500 lines of set of restrictions such that the synthesis step becomes manageable.
Scheme and Tcl code. The code is divided into several tools: a Balsa- Relative timing [13] has been proved successful in a number of cir-
to-CH translator, the new optimization algorithms, a CH-to-BM trans- cuits. As it is, the CH language is not suited to handle relative-timing
lator, interfaces with Minimalist and Synopsys’ Design Compiler, and assumptions. Further research in modifying the language is needed to
pla2verilog which translates Minimalist results into Verilog. handle this type of optimization.

Four substantial examples have been optimized using the presenteaferences

tools. Thesg examples "?CIUde an 8-handshake SyStOHC. counter [4], aﬁ] A. Bardsley and D. Edwards, “Compiling the Language Balsa to Delay-In-
8-place 8-bit word wagging register [4], an 8-place 8-bit word stack, sensitive Hardware'Hardware Description Languages and their Applications
and a small 32-bit non-pipelined RISC-like microprocessor core. The (CHDL), April 1997, pp. 89-91. o ' _
microprocessor core (called SSEM) was described in [2]. Each exami2] A. Bardsley, “Balsa: An Asynchronous Circuit Synthesis System”, MPhil

: . . . Thesis, Department of Computer Science, University of Manchester, 1998.
ple was simulated in a benchmark run. The systolic counter was simuy3}'A" Bardsley, “iImplementing Balsa Handshake Circuits”, PhD Thesis, De-

lated for an entire 8-handshake cycle, the wagging register has beepartment of Computer Science, University of Manchester, 2000.

simulated for forward latency, and the stack was simulated for a cycle[4] K. van Berkel, “Handshake Circuits: an Asynchronous Architecture for

; ; ir.VLSI Programming”,International Series on Parallel Computatiolol. 5,
of three push operations followed by three pop operations. The micro Cambridge University Press, 1993,

processor core was simulated for a small program that writes consecus) j. Ebergen, “Arbiters: an exercise in specifying and decomposing asynchro-
tive memory locations with numbers 0 through 4. nously communicating components3cience of Computer Programming
Table 3 shows, for each of the four examples, the speed improve-18(3), pp. 223-245, 1992.

o .[6] R.M. Fuhrer, S.M. Nowick, M. Theobald, N.K. Jha, B. Lin, and L. Plana,
ments and the area overheads compared to the unoptimized Balsa ci Minimalist: An Environment for the Synthesis, Verification and Testability of

cuits. The optimizations presented in this paper attempt to improveBurst_.Mod_e Asynchronous MachinesTechnical Report CUCS-020-9€0-
only the control parts. Therefore, the overall speed improvement dedumbia University, July 1999.

pends on the ratio between the control and the datapath: if the circuitid/] T: Kolks, S. Vercauteren, and B. Lin, “Control Resynthesis for Control-
ominated Asynchronous DesigrProceedings of the International Symposi-

control dominated (for example, the systolic counter) then larger im- ym on Advanced Research in Asynchronous Circuits and Systems (Async96)
provements can be expected; if the circuits are datapath dominated (fOlEEE Computer Society Press, November 1996, pp. 233-243.
example, the microprocessor core), then the speed improvements teri] A.J. Martin, “Programming in VLSI: From Communicating Processes to

: Delay-Insensitive Circuits”, iDevelopments in Concurrency and Communica-
0 - ! . - b
to be smaller. Performance improvements range up to 21.16%. tion, UT Year of Programming Institute on Concurrent Programming, Addison-

In all four examples, the optimized circuits show area overheadswesley, 1990, pp. 1-64.
over the unoptimized ones. There are several reasons for this resulf9] S.M. Nowick, “Automatic Synthesis of Burst-Mode Asynchronous Control-

; ; . ot ; ers”, Technical Report CSL-TR-95-686tanford University, March 1993.
The contrallers were synthesized using Minimalist's speed scripts, s 10] R.M. Fuhrer and S.M. Nowick, "Sequential Optimization of Asynchronous

they were minimized using single-output optimization. The area of the ang Synchronous Finite-State Machines: Algorithms and Tools”, Kluwer Aca-
synthesized circuitis often adversely affected because this Minimalistdemic Press, 2001. o _
mode usually duplicates gates in order to decrease critical paths.][11]”']\/'-@- Pe_rf1_a atr_md J. Cdogadterllla,_“Coanbmm% PFOCGSEA'Q%ZE*S ag.d Pet”fNetS
; . _for the Specification and Synthesis of Asynchronous CircuRsceedings o
Our technology mapping method may also introduce area OVer-e |nternational Symposium on Advanced Research in Asynchronous Circuits
heads. The two-level logic implementation of the controllers is split and Systems (Async98EEE Computer Society Press, November 1996, pp.
into three modules, each one being technology-mapped separately222-232.

This prohibits the Synopsys’ Design Compiler from finding an optimal [12] A-M.G. Peeters, *Single-Rail Handshake Circuits”, PhD Thesis, Eind-
impl tatioracrossthe two levels of logic. For example, an “and” hoven University of Technology, 1996, ; ;
implemen gic. ple, [13] K. Stevens, S. Rotem, S.M. Burns, J. Cortadella, R. Ginosar, M. Kish-

gate in the first level of logic, followed by an “inverter” in the second inevsky, and M. Roncken, “CAD Directions for High Performance Asynchro-

one could be techology-mapped to a single “nand” gate, with muchnous Circuits” Proceedings of the ACM/IEEE Design Automation Confergnce
i e e -~ IEEE Computer Society, 1999, pp 116-121.

smaller_ar_ea._How_ever, our method currently prohibits this kind of sim 14] “Design Compiler Family Datasheet’. http:/Awww.synopsys.com/prod-

ple optimization since the two levels are tech-mapped separately. IMicts/logic/design_comp_ds.html.

contrast, the original Balsa control components are manually designedl5] D. L. Dill, “Trace Theory for Automatic Hierarchical Verification of

and they have highly-optimized implementations Speed-Independent Circuits”, ACM Distinguished Dissertations, MIT Press,
' 1989.

i [16] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakov-
7. Conclusions and Future Work lev, “Petrify: a tool for manipulating concurrent specifications and synthesis of

This paper discusses the implementation of a new back-end for thexsynchronous controllersRroceedings of XI Conference on Design of Inte-

inti i ated Circuits and Systepidovember 1996.
Balsa system. A channel description language has been introduced 7] D. Dill, S.M. Nowick, and R. Sproull, “Specification and Automatic Veri-

facilitate control modelling and optimization. The proposed flow opti- fication of Seif-Timed QueuesFormal Methods in System Desigi., pp. 29-
mizes the control handshake components through clustering, and uses®, 1992.)) S)
Minimalist and the Synopsys’ Design Compiler to synthesize and tech-[18] D.S. Kung, “Hazard-non-increasing gate-level optimization algorithms”,

map the controllers. The entire flow has been validated through a'lgggmlgc'}"gg‘zte‘r;;e_‘té%nﬁggfnference on Computer-Aided Design (ICCAD),

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

