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Abstract

Quality of Service (QoS) refers to a capability of a net-
work to provide better service to a particular flow of data
and it is a very important feature of modern networks. QoS
provision has usually been based on a strict synchronised
behaviour of a network where QoS packets traverse the
network in prereserved time-slots.

This paper investigates the ability of an asynchronous
on-chip network to provide QoS. It discusses the problems
of self-timed design to provide guaranteed bandwidth and
proposes solutions to the problems.

1. Introduction

Current System on a Chip (SoC) designs implement bus
architectures [1][2][3] to interconnect “only” dozens of IP
blocks, but as we move into deep-submicron technologies
with billions of transistors on a single chip and tens or even
hundreds of different IP blocks talking to each other, it has
become clear that the days of on-chip busses are numbered.
The reason for this is the lack of scalability inherited by
centralised arbitration and low overall bandwidth as a con-
sequence of a single shared data path. Therefore, research-
ers are looking to implement more complex interconnect
architectures to improve performance and scalability. Fig-
ure 1 shows an example of a two-dimensional mesh net-
work which presents a very natural solution for an on-chip
implementation.

An SoC can implement various components each with
different traffic characteristics and constraints. While an
uncompressed video data stream requires high-bandwidth
and relatively high latency, an interrupt signal requires low
latency and low bandwidth. It is therefore essential for an
on-chip network to provide various services at the network
layer of OSI specification [4] in terms of guaranteed
throughput and latency. 

This paper introduces the concept of QoS for asynchro-
nous on-chip networks. It discusses the problems of self-

timed design to provide guaranteed bandwidth and pro-
poses solutions to the problems.

The organization of the paper is as follows. Section 2
provides the reader with an understanding of a QoS con-
cept. Section 3 describes the characteristics that distiguish
on-chip networks from off-chip ones and explains why
some types of networks are more applicable for on-chip
implementation than others. It analyses the problems of
reserving bandwidth and buffer space in asynchronous net-
works and presents a possible solution. Furthermore, the
section also deals with QoS routing and an implementation
of switching fabric. Finally, section 4 concludes the paper.

2. Quality of Service (QoS)

Quality of Service (QoS) refers to a capability of a net-
work to provide better service to selected traffic or a
selected connection over the network. The primary goal of
QoS is to produce dedicated bandwidth, bounded latency,
and improved loss characteristics. For example, a video
data stream from a camera to an MPEG encoder is entirely
static and requires high-bandwidth with predictable delay.
This entirely static traffic has to share the network
resources with dynamic traffic, such as processor memory
references, that cannot be predicted before run-time. QoS
has to guarantee this throughput for the particular connec-
tion even when the network traffic reaches saturation point.

Figure 1: Two-dimensional mesh network
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Furthermore, it is also very important to ensure that QoS
provides some bandwidth for the rest of the traffic.

2.1. Basic QoS architecture

There are three fundamental aspects of the QoS architec-
ture:
• QoS identification technique for identifying QoS flows

between network elements,
• QoS within a single network element (for example,

queuing, scheduling, switching ...) and
• QoS policy and management to control end-to-end traf-

fic across a network.

2.1.1. QoS identification

In order to provide preferential service for a specific
connection or a type of traffic, it must first be identified. In
order to identify QoS packets, a header of a packet has to
contain information about the class of QoS that it belongs
to.

2.1.2. QoS within a single network element

Routing, scheduling, buffering and flow-control provide
QoS within a single network element. When a packet
arrives at a network node all those mechanisms have to
meet QoS demands to provide the required service for the
connection.

2.1.3. QoS policy and management

QoS policy and management is a set of methods to deter-
mine weather the traffic characteristics of the network ena-
ble the required level of QoS. When a QoS technique has
been deployed to target the particular traffic, QoS manage-
ment has to test weather QoS goals have been reached.

In local area networks (LANs) and wide area networks
(WANs) this is an ongoing process while for on-chip net-
works QoS policy and management is usually conducted
only once during the design process.

2.2. End-to-end QoS levels

A network can provide various services with different
levels of QoS. A level of QoS defines the strictness of
requirements of an end-to-end connection regarding band-
width, delay, jitter and loss characteristics. In general, the
different network services can be classified as follows:
• Best-effort (BE) services make no commitments about

QoS. They refer to the basic connectivity with no guar-
antees. An example of such a service is first-in, first-out
(FIFO), or first-come, first-served (FCFS).

• Differentiated services, also known as soft QoS make no

deterministic guarantees about delay, but make best ef-
fort to try to support requested QoS requirements.

• Guaranteed throughput services, ensure each flow a ne-
gotiated bandwidth regardless of the behaviour of all
other traffic.

• Bounded delay jitter services guarantee upper and lower
bounds on observed packet delays. An example of this
service is the time division multiplexing (TDM)
scheme.

3. On-Chip Networks

Although the same principles apply to interconnects at
all scales, on-chip networks have several characteristics
that make their design unique. On-chip networks have
enormous wiring resources at their disposal and it is quite
easy to achieve several thousand ‘pins’ connecting a single
IP block. In contrast, off-chip networks are pin limited to
far less than 1,000 total pins. This large difference allows
the designer to trade wiring resources for network perform-
ance, making a qualitative difference in network architec-
ture.

Energy consumption constraints are specific to on-chip
networks since a large proportion of the power in modern
VLSI systems is consumed by interconnect [5], while for
off-chip networks power dissipation is usually not an issue.

On-chip networks exhibit much less non-determinism
because the traffic characteristics of connected components
are well known at design time. This means that almost all
management of the network resources can be done at design
time, eliminating complex and expensive hardware that
provides dynamic resource managment during operation.

Basically, networks may provide two types of services,
connection-oriented and connectionless which can either
be reliable or unreliable. In a connection-oriented service a
path has to be established between a sender and a receiver
prior to the transmission of the actual data. This ensures in-
order-delivery because all packets follow the same path
through the network. In a connectionless service packets
are sent independently and may arrive out of order. This
requires additional reordering hardware at the receiving
end of the connection. Moreover, a reliable service is one
where no packets are lost while traversing the network, thus
there is no need to retransmit the packets. 

Therefore, to minimize the complexity and increase the
throughput, an on-chip network should support only relia-
ble and order-preserving services to the clients.

3.1. QoS for asynchronous networks

In order to provide QoS a network has to be able to
reserve resource for the particular flow. This effectively
means that all the packets that belong to a flow have to fol-



low the same route. Routing packets all around the network
makes it hard to guarantee anything. Therefore, a QoS con-
nection requires a virtual path to be set up from the source
to the destination which all the packets that belong to the
flow must follow. Once we have a route for a connection, it
becomes possible to reserve resources down that route to
ensure that the needed capacity is available. Those
resources consist of bandwidth and buffer space.

3.2. Reserving bandwidth

Reserving bandwidth means not oversubscribing any
output line. If a flow requires 1 Mbps and the output chan-
nel has a capacity of 2 Mbps, trying to direct three flows
through that channel is not going to work.

As we stated in section 2 QoS policy and managment for
on-chip networks is conducted at design time. It is entirely
up to a designer to manage the network resources and to
make sure that physical channels do not get oversubscribed.
To be able to do that efficiently an on-chip network has to
exhibit highly deterministic behaviour with the ability to
support different types of traffic such as guaranteed
throughput (GT) and best effort (BE) traffic.

Time division multiplexing (TDM) to support GT traffic
is the technique often used in synchronous networks. TDM
partitions the time axis into time-slots where each time-slot
presents a unit of time in which a single flow can transmit
data over a physical channel. Guaranteed throughput is pro-
vided by reserving a proportion of time-slots for a particular
flow. For example, if a connection requires 50% of the
available bandwidth, a network has to ensure that every
other time-slot is available for that particular connection.
Reserved slots traverse the network in a well synchronised
manner without having to arbitrate for the output link with
the rest of the traffic. Although TDM provides a high level
of QoS it is unsuitable for asynchronous implementation
because it requires global synchronization beetween net-
work elements.

Another way to provide a GT service is to employ a
packet scheduling algorithm that will prioritize input traffic
in terms of the level of QoS required. Figure 2 shows an
example of three asynchronous inputs competing for a
physical output. The capacity of the output channel is 1 and

inputs A and B require a GT service with at least 1/2 and 1/
3 of the available bandwidth, respectively. Input C requires
only BE service. We assume that GT inputs A and B are not
oversubscribed whereas input C tries to acquire as much
bandwidth as possible and is constantly competing for the
output. Each packet has a fixed length and needs exactly
one unit of time to transmit. All inputs have some buffering
capacity to store incoming data if it cannot be forwarded
immediately. 

We applied three different scheduling algorithms:
round-robin arbitration, priority arbitration and a combina-
tion of priority and round robin arbitration, against two dif-
ferent types of traffic: uniformly distributed and bursty
traffic. All the arbiters follow asynchronous behaviour
meaning that inputs are served on a first-come, first-served
basis and only pending requests are served according to the
scheduling algorithm implemented in the arbiter. When
multiple inputs arrive at approximately the same time the
outcome of the arbitration is random. We also assume that
the arbiters do not enter a metastable state or metastability
is resolved fast enough not to degrade the performance of
the arbiter.

Figure 3 shows the sequences of the arbiters with uni-
formly distributed input traffic. The departure events from
the arbiters are depicted on the right side, and the arrival
events are on the left. Note that all sequences assume the
worst case scenario when the arbiters cannot guarantee
deterministic behaviour. As expected a round-robin arbiter
does not guarantee the level QoS for the GT inputs because
it does not differentiate beetween the GT and the BE inputs
and distributes the bandwidth equally between all inputs. 

A priority arbiter provides QoS for the GT inputs in
terms of throughput but it cannot guarantee low latency for
the medium priority inputs. This is especially evident when
the input traffic is of a bursty nature as shown in figure 4,
where all the packets from the highest priority input (A) are
served before the packets from input B.

As a third option we propose a combination of a round
robin arbiter and priority arbiter. The arbiter prioritizes GT
inputs over BE inputs but employs round robin arbitrationFigure 2: Three input arbiter
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among the inputs at the same priority level. Figure 4 shows
that the arbiter provides GT service with low latency even
for bursty traffic.

3.3. Reserving buffer space

The necessity of packet buffering arises when the band-
width of incoming traffic exceedes the physical bandwidth
of an output channel. When this situation occurs a network
has to store incoming packets until the output channel is
available. Buffer memory is a limited resource and if the
output channel stays blocked for a long time the input
buffer will eventually fill up. If this happens the network
can either discard new packets or signal the sender to stop
sending new data. The first option results in non-blocking
networks, while the latter results in blocking networks.

Some types of traffic such as video and data streams tol-
erate a certain amount of a lost packet but most types of
traffic require a 0% loss characteristic. We believe that on-
chip networks should provide reliable and lossless connec-
tions to clients in order to utilize physical channels effi-
cently and to reduce the complexity of the network
elements.

Furthermore, the organization of the buffer memory has
to enable independent packet allocation for different
classes of traffic. Figure 5 shows an example of an input
queued switch with a head-of-line (HOL) blocking situa-
tion. Packet Z2 is blocked and cannot traverse the switch
because its output is occupied by another input. This pre-
vents all packets further down the queue from traversing the
switch although their output channels are available. If those
packets require guaranteed throughput or low latency QoS
is compromised.

In [6] Borkar et al. presented the idea of logical channels
where several logical channels share the bandwidth of a
physical channel in order to provide guaranteed throughput
for special classes of messages. Logical channels are time-
multiplexed onto physical busses with a fair arbitration.
Therefore, some minimum bandwidth is guaranteed to each
logical channel and thus to the messages carried by the
channel, since the total number of logical channels sharing
the same physical bus is bounded. Moreover, the multiplex-

ing of logical channels to physical busses is designed such
that idle logical channels do not consume any physical
bandwidth. The concept was latter adopted by Dally in [7]
where he presented virtual-channel flow control to increase
throughput of a network, and we adopted the same termi-
nology.

Figure 6 shows an implementation of virtual channels to
provide a QoS architecture for on-chip networks. Instead of
implementing a conventional input buffer organization
where each input is associated with a FIFO queue, an input
channel is associated with several lanes of small FIFO buff-
ers in parallel. The buffers in each lane can be allocated
independently of the buffers in any other lane. A blocked
packet holds only a single lane idle and can be passed using
any of the remaining lanes. Each QoS connection is
assigned to an individual virtual channel and BE traffic
shares a single virtual channel. A network is therefore able
to provide N-1 QoS connections over a physical channel
where N is the number of implemented virtual channels.
Note that virtual channel 0 is reserved for best-effort traffic.
Of course, different organizations are possbile.

Virtual channels compete for a physical channel on a flit
by flit basis (figure 7), where a flit represents the smallest
transmission unit upon which flow control is imposed. If
flits are smaller than packets then high priority packets can-
not get stuck behind long low-priority ones. It is essential
for an on-chip network to enable fragmenting and interleav-
ing of packets to improve link efficiency especially when

Figure 4: Bursty traffic
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variable length packet organization is employed.
Figure 7 presents a variable length packet organization

for an on-chip network. A packet consists of flits where
each flit has three different tags of information: data pay-
load, a control tag and a virtual channel identification tag.
A control tag identifies the type of a flit, such as a header,
a trailer or a body of the packet, and a virtual channel iden-
tification tag identifies the virtual channel the flit belongs
to. This enables a receiver to separate interleaved packets.
Note that virtual channel identification tags are generated
by the network.

When a client wants to establish a QoS connection it
sends a special header flit to the receiving node. The header
contains an address of a recepient, an address of the sender
and a level of QoS required. The level of QoS is defined by
the virtual channel the connection has to acquire. When the
header arrives at a network node it reserves a particular lane
buffer for the connection and then gets forwarded to the
next node according to a routing algorithm until it reaches
the recepient and the virtual path between the sender and
the receiver has been established. The virtual path persists
until the sender closes the connection by sending a trailer
flit through the network. Note that data flits following the
header do not require individual routing and thus do not
contain any routing information. Furthermore, virtual chan-
nels are allocated strictly on first-come, first served basis.
If a sender requires a virtual channel that has already been
allocated the request will get blocked until the connection
is released. It is entirely up to a designer to prevent these
clashes from happening by carefully planning the initiali-
zation of the network.

After a connection has been established the sender starts
sending data over the network. Every flit now competes for
a physical bus with at most N-1 other flits (N is the number
of virtual channels). To preserve the physical bandwidth a
virtual channel can acquire the bus only when it has a non-
empty input queue and when there is enough buffer space
at the receiving end.

In order to prevent sending data to a non-empty queue a

transmitter has to keep track of the empty slots in each of
the receiver’s queues. With every flit it sends along a virtual
channel, the transmitter decrements the empty-space coun-
ter for the virtual channel. Every time the receiver removes
data from its input queue it sends information back to the
transmitter via a flow-control feedback channel shown in
figure 6 which increments the empty-space counter.

3.4. QoS Routing

Routing determines the path selected by a packet to
reach its destination. The regular topologies of on-chip net-
works permit algorithmic routing, as opposed to routing
based on tables. In distributed algorithmic routing, the net-
work node decides along which link to forward the packet.
In source routing, the entire path for a packet is decided by
the source node itself. Distributed routing can either be
deterministic or adaptive. In deterministic routing, the
entire route is determined by the source and destination
node while adaptive routing algorithms try to adapt the
route of the packets according to the current traffic condi-
tions in the network.

Source routing presents a flexibile and cheap solution
for on-chip networks. It gives a designer the ability to pro-
gram the routes of the connections and thus the ability to
manage the traffic over the network precisely. But there is
the problem of a routing information overhead. For exam-
ple, in a 16-node mesh network a packet traveling diago-
nally from the upper right corner to the bottom left corner
of the mesh would require 16 bits of routing information as
opposed to only 4 bits of information needed for algorith-
mic routing. As the number of network nodes grows the
routing information overhead becomes too high to justify
the flexibility of the source routing approach.

Deterministic routing algorithms are simple to imple-
ment and they exhibit deterministic behaviour. However,
they do not provide flexibility in terms how the routes for
connections are set.

Therefore, we propose for on-chip networks to support
both source routing and algorithmic routing. Source routing
should generally be used to establish QoS connections.
This does not introduce a lot of additional traffic overhead
because QoS connections in on-chip networks are usually
established during the initialization phase and persist for
the entire operation of the network. BE traffic on the other
hand, is less deterministic and consists mostly of short
packets. Source routing would thus introduce too much
data overhead, especially for larger networks.

3.5. Switching fabric

Typically, a network router implements a crossbar
switch to steer incoming packets to the proper outputs.

Figure 7: Packet organization
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There are several different organizations of a crossbar
switch in terms how many packets the crossbar can forward
in a single clock cycle. Figure 8 shows a non-multiplexed
crossbar switch where every virtual channel has a physical
connection between input and output buffers. Once a virtual
path is established the packets do not have to compete for
the crossbar and are immediately forwarded to the output
buffers where they wait to be scheduled for departure.
Although this organization is very suitable for QoS it has
one drawback: size. A four input switch with four virtual
channels per physical link would require a fully connected
crossbar with 16 inputs and 16 outputs. If we consider an 8-
bit wide data path the crossbar would implement around
5000 two input gates. If delay-insensitive implementation
is required the size would further increase to approximately
10,000 gates. 

To reduce the size of the crossbar designers often multi-
plex inputs (figure 9) and outputs. This reduces the size of
the crossbar by roughly 75% but requires additional hard-
ware to multiplex virtual channels and to schedule packets
over the fabric. In synchronous networks there is a single
control unit which schedules packets over the crossbar. The
scheduler optimizes the sequence in which packets traverse
the crossbar to achieve optimal throughput.

In asynchronous networks this would be rather imprac-

tical because the fastest output would have to wait for the
slowest output to finish transmitting data. Thus we require
each output to have separate control logic.

In terms of QoS the multiplexed crossbar switch intro-
duces a problem providing low-latency for the packets. Let
us examine a scenario where all outputs require data from
the same input link but from different virtual channels at
aproximately the same time. The flits have to arbitrate for
the crossbar, and in the worst case, the flit has to wait for
all the other virtual channels to send data through the cross-
bar. If the crossbar and the output channels operate at the
same cycle time then the worst-case guaranteed latency is
M-1 cycles, where M is the number of outputs and assum-
ing that M is lower or equal to the number of virtual chan-
nels.

With a speed-up of the crossbar we can reduce this
latency to theoretically zero. If the crossbar operates M
times faster than the output channel then it will be able to
forward all the inputs in a single output cycle time and no
additional latency is introduced. For asynchronous net-
works speed-up is relatively easy to achieve because self-
timed logic automatically adapts its speed of operation
without any additional control logic. All we have to do is to
provide some aditional output buffering to decouple the
crossbar from the output link (figure 9).

At the first glance, a speed-up of a crossbar seems unrel-
istic beause of the large capacitance loads in the transmis-
sion path, but as we move into deep-submicron
technologies where the wire delays prevail over the gate
delays [8], we believe that the speed-up of the crossbar is
achievable at least to some extent. Furthermore, if the
required speed-up is not possible, we can emply a partly
multiplexed crossbar where a sub-group of virtual channels
share the same input to the crossbar.

4. Conclusions

We have investigated the ability of an asynchronous on-
chip network to provide QoS for a particular flow of data.
We showed that with a proper arbitration policy self-timed
logic can support guaranteed throughput traffic although
the nature of asynchronous behaviour does not provide us
with a precise accuracy of data delivery in terms of band-
width and especially in terms of latency.

Still, if we consider worst case conditions and manage
network bandwidth and latency according to those condi-
tions by not oversubscribing physical links, we can trust the
network to deliver data within the specified boundaries. If
the network operates under better conditions (which is very
likely) bandwidth is not wasted because it is available for
best effort traffic.

Figure 8: Non-multiplexed switch

Figure 9: Multiplexed switch
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