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Abstract. AMULET3 is the third fully asynchronous implementation of the ARM architectu
designed at the University of Manchester. It implements the most recent version of the ARM a
tecture (v4T), including the Thumb instruction set. Significant architectural changes from its pr
cessors help achieve higher performance without sacrificing the advantages of asynchronous
One of these changes is to incorporate a highly parallel instruction prefetch unit.

This paper introduces the instruction prefetch unit in AMULET3, highlighting where speed-in
pendent control circuits are implemented using signal transition graphs (STGs). In order to
how control circuits are implemented in the instruction prefetch unit of AMULET3, we prese
several examples with relevant STGs and the synthesized circuit results.

1: Introduction

AMULET3 is the third asynchronous implementation of the ARM architecture [1] to
produced at the University of Manchester. Its predecessors, AMULET1 [2] and AMULE
[3], were intended to demonstrate that asynchronous circuits of this complexity are fea
and practical; AMULET3 has been designed to be a commercially competitive macro
It is therefore required to deliver a performance similar to that of the contemporary
chronous ARM, the ARM9TDMI [4], and to implement the most recent version (v4T [5
of the instruction set architecture including the 16-bit Thumb instruction set
AMULET3 is being implemented in the same generic 0.35µm 3 metal layer process as the
ARM9TDMI. This implies a performance target of well over 100 MIPS (measured w
Dhrystone 2.1), compared to the 40 MIPS delivered by AMULET2e on a 0.5µm process.

Achieving this performance has necessitated a considerably different microarchite
from the earlier AMULET processors. Most notable among the changes are the use
Harvard architecture to increase memory bandwidth and the inclusion of a reorder buf
handle data forwarding and memory faults. To cope with the former change, the instru
prefetch unit and the data interface are decoupled, whereas they were combined in the
plex single address unit in AMULET2e. This paper is confined to describing asynchron
control circuit design in the instruction prefetch unit; readers having interests in o
aspects of AMULET3 are referred to a related paper [11].

As in the previous AMULET processors, the architectural design is based on an a
chronous Micropipeline [7] structure using four-phase [8] control signals. All control c
cuits are developed on the basis of the speed-independent circuit assumption an
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property is ensured using Petrify, an asynchronous synthesis tool [12]. Most of the co
logic was specified with STGs [14][16], and each STG synthesized with Petrify. This pa
does not show all of the control circuits implemented in the instruction prefetch unit
presents the general rules used to implement the control circuits including several exam

In section 2, the specification of the instruction prefetch unit is given. This sectio
reproduced from a previous paper [11] with only minor changes and presents the co
for the work reported here. The most recently updated information is added like the rev
figure 1. The top-level STG definition of the instruction prefetch unit is shown in sectio
Section 4 introduces general rules used in the control circuit design. In sections 5 to 7
eral design examples are shown to explain how real control circuits are made. In sec
simulation results are presented to show the performance of the instruction prefetch u
terms of speed. The conclusions are given in section 9.

2: Instruction prefetch unit

The instruction prefetch unit (figure 1) is responsible for generating addresses fo
instruction memory which are sent via the Instruction Address Register (‘IAR’ in figure
[13]. The instruction prefetch unit has a highly parallel organization, speculatively com
ing the outcome of all scenarios in parallel and then selecting the appropriate cour
action in the final multiplexer. Although such speculation causes some unnecessary ac
(and therefore wastes power) it is necessary here to meet the required throughput.

Usually the output addresses form an ascending sequence and are provided by a
loop containing an incrementer (‘INC’). When a branch occurs this loop may be interru
asynchronously (via an arbiter) and loaded with a new address from the ALU. Howeve
AMULET3 several other functions are performed here also.

IND

PC

IARmux

to Memory Control Unit

from ALU

PCmux

Interrupts

Indirect PC

CC,link

BTBINC EU

IAR

Figure 1: Instruction prefetch unit organization



sys-
proc-

eline

ly a
as
wo

ith
B the
ay

pro-

ed
e
peat
10%-

his
and a

mb
oice
2.1: Branch prediction

Branches disturb program flow and incur a considerable penalty in deeply pipelined
tems. Sophisticated branch prediction mechanisms are now in use on state-of-the-art
essors, but even a relatively simple branch predictor can significantly reduce pip
disruption.

AMULET3 uses the same branch prediction mechanism as AMULET2 [9], name
Branch Target Buffer (‘BTB’) which predicts a previously-taken invariant branch
‘always taken’ until it is displaced from the BTB by a new entry. However there are t
significant differences between the BTB in AMULET2 and that in AMULET3 [13].

The AMULET2 BTB records an address containing a branch instruction together w
its target address. However, if a branch instruction address subsequently hits in the BT
instruction is still fetched from memory and executed as it may be conditional and it m
require a return address saving (if it is a BL – Branch-and-Link – instruction, used for
cedure entry).

The information which AMULET2 gets from memory when it fetches a predict
branch amounts to only five bits (four condition bits and the ‘L’ bit). In AMULET3 thes
five bits are stored in the BTB so that the instruction does not have to be fetched in re
encounters and the instruction memory may be bypassed. As branches account for
15% of ARM instructions [10], and the majority of these are cached in the BTB [9], t
reduces the number of instruction fetches, yielding both a considerable power saving
potential speed advantage (exploited automatically by the asynchronous pipeline).

The second BTB difference from AMULET2 is due to the presence of the Thu
decoder. ARM instructions are fetched as 32-bit words. When running Thumb code a ch

Hit logic Hit logic

CAM
(even)

Random

Thumb
PC[1] Gate

CAM
(odd)

BTB write

BTB lookup

allocation

PC[31:2]

RAM
(even)

RAM
(odd)

target[31:1]

hit odd
hit even

disable

decode

Figure 2: BTB CAM organization
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must be made whether to fetch the 16-bit Thumb instructions individually or in pairs.
the speed and power consumption of a memory cycle is almost independent of the tra
size the decision was made to fetch Thumb instructions in pairs. However, as either or
of these instructions may be cached branches, the BTB must be able to cope with zer
or two simultaneous hits.

This is achieved by splitting the BTB Content Addressable Memory (CAM) into tw
sections (see figure 2). In Thumb mode each section works with one half word of
instruction pair; any potential conflicts are resolved by taking the ‘even’ half word (
Thumb instruction at the lower address) prediction because this will always be first in
instruction sequence.

When running ARM code the two sections are merged. This allows the BTB to cac
mixture of ARM and Thumb branches simultaneously without compromising the num
of usable entries in either case

2.2: Halting and interrupts

Most current CMOS technology dissipates very little power when not switching. T
has been exploited in AMULET2e by causing the system to halt when no useful work
be performed, with demonstrable power-efficiency benefits [3].

Halting an asynchronous pipeline at any point soon causes the whole system to
Because there is no free running clock this reduces the number of transitions – and
the power consumption – to near zero. In a synchronous system the clock oscillator
be stopped, but this is quite a complex procedure. The asynchronous system also re
quickly (as there is no clock to restart). AMULET2e and AMULET3 exploit this by deco
ing a branch back to itself as a ‘Halt’ instruction and use this to stall the pipeline; thi
fully compatible with much existing ARM code. The halt state is exited by the assertio
an enabled interrupt.

As alluded to above, the stall can occur anywhere within the pipeline. AMULET2,
example, stalls in the execution stage. AMULET3 adopts a somewhat cleaner mod
stalling at the prefetch stage. This means that the processor restarts with an empty pi
which provides the fastest possible response, any ‘rubbish’ being cleared out at halt 

The interrupt signals are fed into the prefetch unit rather than the instruction deco
This rather unusual feature provides both a clean interrupt model and a low inte
latency. When an (enabled) interrupt is asserted it is arbitrated into the prefetch cycle
treated much like a predicted ‘BL’. The interrupt ‘hijacks’ an instruction address, bypas
the memory, and proceeds down the execution path to save the return address. The
loaded with the address of the service routine (which is a constant, generated in the E
tion Unit, ‘EU’ in figure 1) in parallel and the prefetching of this code begins immediate

A consequence of this approach is that the prefetch unit must store an up-to-date
of the interrupt enable status. One danger is that this may be out of date because an op
already prefetched may change it. Another, related, problem is that the hijacked ad
may be in the ‘shadow’ of a branch and the interrupt may try to save an incorrect re
address.

Both these problems are solved by treating control instructions (such as enabling/
bling interrupts) as branches, and branches as potential control instructions. This is no
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ticularly onerous because almost all instructions which can alter these flags (e.g. sof
interrupts, return from interrupts, etc.) also cause flow changes anyway. If an interrup
occurred in a branch shadow it will be discarded in the same way as any other errone
prefetched instruction. Concurrently, the branch will reach the prefetch unit, re-enable i
rupts, and immediately cause the interrupt entry mechanism to repeat, this time savin
branch target as the return address.

2.3: Indirect branches

ARM programs often load the Program Counter (PC) directly from memory as part
subroutine return (and, less frequently, as a result of a jump table lookup). Typically a
routine return restores the PC together with a set of working registers using a load mu
(LDM) instruction. The load ordering is such that the lowest numbered register is loa
first, and thus the PC (R15) is loaded last. This delays the start of instruction fetching
the return address and compromises performance.

AMULET3 incorporates an optimization which exploits the separate instruction me
ory port. The execution unit passes the load address of the PC value back to the pr
unit via the branch address path in parallel with initiating the other register transfers in
data interface. This ‘branch’ terminates prefetching from the redundant instruction str
and prompts a single read cycle which fetches the new PC. This is then returned t
prefetch unit (via ‘IND’ in figure 1) where instruction fetching resumes. With a typical su
routine return much of this should happen whilst the data transfers are proceeding a
the new instructions should be available before the LDM has completed.

Note that this feature imposes a significant constraint on the memory designer
instruction and data memories must be coherent because a PC value is stored via th
port and then read via the instruction port. The first AMULET3-based system has a un
memory which is dual-ported to give independent instruction and data ports. Coheren
therefore not an issue here.

3: Control path overview

The control path in the instruction prefetch unit can be viewed as a large arbitration b
including a fork and join connection as shown in figure 3. Note that figure 3 is a very s
plified STG of the instruction prefetch unit from a high-level viewpoint. Furthermore, t
STG uses a more abstract labelled Petri net when compared to the original STG defin
We labelled each transition according to a logical function in the instruction prefetch u
not a detailed control signal transition. However, other STGs used in this paper are b
on the original STG definition.

Arbitration occurs between two requests; one is PCreq and the other is BRAreq (se
ure 3). The fork is situated in the IARmux and the join in the PCmux (see figure 1 and fig
3).

Each dot in figure 3 represents an initial token when the circuit is in the reset state
each bar represents the behaviour of each block in figure 1.

The name of each transition is the same as the corresponding block name in fig
except the PCreq, BRAreq, PCaccept, BRAaccept and BRAdone transitions. The P
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transition represents the recirculating request from the incremented PC value which is
erated entirely within the instruction prefetch unit. The BRAreq transition represen
request for a new value (a branch target PC) from outside the instruction prefetch unit.
new value will replace the old value in the internal recirculating loop.

The box labelled ‘ARB’ represents an asynchronous arbiter. The token in place A
bles either the PCaccept or the BRAaccept transition to fire (assuming their respe
requests are active), but only one at a time. When both requests fire at nearly the sam
the arbiter ensures that one, and only one, is granted.

Assume that the circuit has just been reset. The STG in figure 3 has two initial requ
one is from the PC block and the other is from the ALU block (see figure 1). The forme
PCreq and the latter is BRAreq in figure 3.

When the arbitration takes place (in ARB) either the PCaccept or the BRAaccept
sition may fire. No matter which one fires, the other can’t fire until the token is back in pl
A. That is, arbitration starts when place A sends a token to one of transitions; PCacce
BRAaccept, and ends when a token is put in place F.

Next, place F gets a token from one of the input transitions, PCaccept or BRAac
The token enables to the transition named IARmux in figure 3, which represents the ins
tion prefetch unit receiving a new address either from the PC block inside the instruc
prefetch unit or from the ALU block outside the instruction prefetch unit, depending on
arbitration result. This IARmux transition fires tokens to each block in the instruct
prefetch unit such as the IND, the INC, the BTB and the EU (see figure 1) and to the mem

P B

p b
PCaccept BRAaccept

BRAdonePCreq

F

A

IARmux

IND INC BTB EU

PCmux

J1 J2

ARB

Figure 3: Top-level STG of the instruction
prefetch unit

From the ALU

BRAreq
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control unit in AMULET3. At the moment the IARmux fires, the control path in the instru
tion prefetch unit forks.

The IND, INC, BTB and EU transitions in figure 3 represent the behaviour of each bl
in the instruction prefetch unit and these transitions are described in the following sec
in detail. After these transitions fire, four tokens are joined at the transition named PC
The behaviour of the PCmux is to select one of addresses from the IND, the INC, the
and the EU for the next program counter and then store this address in the program co
address flip/flop.

The places named J1 and J2 play the role of feeding tokens to either the PCreq tran
or the BRAdone transition. Whether tokens go to PCreq or BRAdone is decided by the
tration that happened in the ARB. If BRAaccept fires, the arrowb feeds a token to BRAdone
and if PCaccept fires, the arrowp provides a token to PCreq. When either PCreq or BRA
done fires, a token is put back in place A. This means that all of the arbitration behav
is finished in the instruction prefetch unit and a new arbitration can occur between P
and BRAreq. Note that the BRAreq transition can fire only when the ALU sends a n
branch PC to the instruction prefetch unit.

4: 4-phase control design strategy

Since the 4-phase broad protocol is used for the AMULET3 design, there is a retur
zero phase to recover the control signal as shown in figure 4. This phase could be a
vantage in terms of speed since the phase does nothing but the return-to-zero. W
designer tries to implement dynamic datapath circuits, however, this return-to-zero p
could be usefully employed for precharging the circuits.

If we view the request signal (rising edge) in figure 4 as the arrow from place F in fig
3, and the acknowledge signal (falling edge) in figure 4 as the arrow to place A either
PCreq in figure 3 or from BRAdone in figure 3, one cycle time in the instruction prefe
unit is defined from the rising edge of the request signal in figure 4 to the next rising e
of the same signal. The AMULET3 specification requires this cycle time to be less th
nanoseconds and this guarantees that the final chip speed will be well over 100 MIPS w
is comparable with the latest synchronous ARM microprocessors.

The strategy used to design control circuits depends on the manner in which the dat
circuits are implemented; static or dynamic. When static datapath circuits are used, the
trol circuit design is rather straightforward since the AMULET3 design adopts the bund

Request

Data

1 cycle

Acknowledge

return-to-zero

return-to-zero

Figure 4: 4-phase broad protocol
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data scheme, where completion signals are generated by mimicking the worst-case
consumed in the datapath. That is, delay elements are inserted into the path of the re
signal and the resulting delayed request signal provides the request signal to the next
as shown in figure 5.

What is needed is to detect the longest path (in terms of time) of the processing b
and to put delay cells (the same delay time as the longest path plus a silicon process m
on the request signal.

When dynamic datapath circuits are used, the return-to-zero phase could be used fo
charging the dynamic datapath circuits. During the evaluation phase, the same techni
used for the request signal; putting delay cells to mimic the longest path (in terms of t
of the processing block. When the return-to-zero phase starts on the request signal
falling edge), this could be a trigger for the precharge phase of the dynamic datapath ci
(see scheme 2 in figure 6).

The EU block in figure 1 is comprised only of static datapath circuits and therefore
return-to-zero phase of the request signal performs no useful work. The BTB and
blocks consist of dynamic datapath circuits. For these blocks the return-to-zero phase
be used to perform the precharge phase.

However, even though dynamic datapath circuits are used, the return-to-zero phas
no use if a fully decoupled control circuit [8] is used to give a highly concurrent circuit op
ation. In general higher concurrency might be expected to make a faster circuit, sin
soon as the request signal is transferred to the processing block, the acknowledge sig
the block is issued back to the previous block (without waiting for the acknowledge sig

Processing
Block

delay cellsrequest
next
request

datapath
to the
next
block

acknowledge

longest path

Figure 5: Control scheme for a datapath

Request

EvaluationPrechargeUnused

Evaluation Precharge

Scheme 1

Scheme 2

Figure 6: Dynamic circuit control timing
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from the next block) and the next request signal is transferred to the next block concurre
Does higher concurrency always mean a faster control circuit for dynamic datapath

cuits? The answer is no in our design.
If we use fully decoupled control circuits for the INC and BTB blocks, we can use c

trol timing following scheme 1 in figure 6. This looks faster than scheme 2 in figure 6. Ho
ever, there are two disadvantages in terms of the speed and size of circuits.

Let’s consider the speed issue first. As shown in figure 7, the INC and BTB transit
occur in the middle of the instruction prefetch unit between the IARmux and the PCm
transitions and the cycle of the instruction prefetch unit is finished when either the PC
transition or the BRAdone transition sends an acknowledge signal (falling edge) back t
arbiter. The BRAdone and PCreq transitions are implemented at the IAR and PC bloc
figure 1 respectively.

The cycle time in the instruction prefetch unit depends on how fast the request signa
reach the BRAdone and PCreq transitions. If we use control scheme 1 in figure 6 fo
INC and BTB blocks, a more complex circuit is needed to implement a fully decoupled
cuit, since the fully decoupled circuit must retain some control state. The state is neede
two possible cases. One is when the precharge phase is finished before a new reques
edge arrives at the control circuit and the other is the reverse case. In the former cas
information that the precharge phase is finished must be memorized until the new re
rising edge enters the control circuit and vice versa in the latter case. The more com
circuit will reduce the speed of forwarding the request signal from the main_req to the B
done and PCreq transitions in figure 7. Since the INC and BTB blocks are in the midd
the instruction prefetch unit, there is no advantage if the rest of blocks are not finished,
though these blocks finish their functions.

Secondly, consider the size issue. The PCmux transition will happen after the EU, B
INC and IND transitions are finished as shown in figure 3. In order to use a fully decou
control circuit, we need storage elements in the datapath circuits at the ends of the BT
the INC blocks. Otherwise data could change when the PCmux transition is being activ
Therefore we must add a large number of latches or flip-flops (in our case 31x2 latches
was pointed out, we need more complex control circuits and this will increase the num

A
R

B
EU

BTB

INC

IND

BRAdone

PCreq

Acknowledge

IA
R

m
ux

P
C

m
ux

Figure 7: Request and acknowledge signals in
the instruction prefetch unit

main_req eu_req

Nbtb_req

Ninc_req
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So we use scheme 2 in figure 6 for the BTB and the INC dynamic datapath circuits. S

the precharge time is always smaller than the return-to-zero phase time of the request
in our design, there is no increase on the cycle time of the instruction prefetch unit. In c
where the return-to-zero phase time is smaller than the precharge time, a fully deco
control circuits could be considered.

5: The design of the INC block

The behaviour of the INC block is shown in figure 8, where the main_req and
Ninc_req signals are as same as in figure 7. The Nprech signal controls the precharge
of the INC block and the Ncomp signal indicates the evaluation phase of the INC bloc
finished (completion signal).

Since we choose to use scheme 2 in figure 6, we have a serial forward connection
the main_req to the Ninc_req as shown in the first line of figure 9. Note that Nprech, Nc
and Ninc_req are active low signals and main_req is an active high signal. However, w
use a decoupling technique for the precharge phase as shown in the second and thir
of figure 9. The second line shows that the precharge phase starts immediately
main_req- (triggering the precharge phase of the INC datapath circuit) enters the INC b
and the third line shows that the return-to-zero phase of the request signal is transfer
the next block (PCmux in figure 7) at the same moment as the precharge phase starts
is called semi-decoupling [8].) Therefore we can reduce the time needed for the retur
zero phase of the request signal.

Control

Circuit

Control

Circuit

INCaddress address + 4

main_req Nprech

Ncomp

Ninc_req

Figure 8: INC control circuit

main_req+ Nprech+ Ncomp- Ninc_req-

main_req-Nprech-Ncomp+

Ninc_req+

Figure 9: STG for the INC block
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The synthesized control circuit of the STG in figure 9 is shown in figure 10, where a
gate is used.

The C-gate is widely used in asynchronous design. If we have a C-gate as in figur
the behaviour is as follows. When the A, B and C inputs are high, the output O will cha
to high. In this case the input D does not affect the change of the output O. When the
and D inputs are low, the output O will change to low. The input A does not have an im
on the output O in this case. Between these two cases, the output O will remain at the
logic level. Assume that the A, B and C inputs are now high. This leads the output O
change to high. Then the input B changes low. The output O will remain high rather
change to low. The same notation is used for the rest of this paper.

6: The design of the BTB block

The behaviour of the BTB block is different from the INC block in that it has a Boole
input signal labelled bypass (see figure 12). This bypass signal can be used when the
block is not to be turned on. When this signal is activated the request signal bypasse
BTB block and the BTB operation is not activated. Other signals in figure 12 have the s
functions as defined in the INC block, though some signals have different names su
Nenable, done and Nbtb_req (equivalent to Nprech, Ncomp and Ninc_req in figu
respectively in terms of their functions). Note that Nenable and Nbtb_req are active low
nals and main_req and done are active high signals. The bypass boolean input must
the BTB block before main_req and must maintain its logic level until the return-to-z
phase of the Nbtb_req is finished.

Figure 10: Schematic of the INC control circuit

+

-

A

B

C

D

OC

Figure 11: 4 input asymmetric C-gate
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The STG of the BTB block is more complex than that of the INC block since there
boolean logic signal named bypass (see figure 13). The P0 and P1 places and the b
and bypass- transitions are to model the boolean input signal. Depending on the logic
of the bypass signal, when main_req enters the BTB block the token in place P3 wi
either to the Nbtb_req- transition or to the Nenable- transition. The former is the case w
bypassing the BTB block and is a straightforward 4-phase protocol. The latter is the s
behaviour as used in the INC block as shown in figure 9.

The synthesized result for the BTB control circuit is shown in figure 14.
In figure 14, the done signal is forked; one fork going to a complex gate and the oth

an inverter. The inverted done signal is then used to drive an input to a C-gate. This
violate the conditions of speed-independence [15]. However, the control circuit is syn
sized locally (ensuring that the logic components of the circuit are laid out closely) and
ulation of the layout confirms that the circuit works correctly. The same procedure is u
to check the speed-independence assumption throughout the control circuit design w
ever there is an inverted input.

Control

Circuit

BTBaddress
predicted

main_req

Nenable done

Nbtb_req

address

bypass

Figure 12: BTB control circuit

main_req+

Nenable- done+

Nbtb_req-

main_req-

Nenable+

done-

Nbtb_req+
Nbtb_req-

main_req-

Nbtb_req+

bypass+

bypass-

P1P0

P2

P3

Figure 13: STG for the BTB control circuit
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7: The design of the EU and IND blocks

The EU block has static datapath circuits and the control circuits are directly im
mented using the delay matching method explained in section 4.

The IND transition in figure 3 is chopped off and the function is merged into place J
figure 3 (equivalent to the PC block in figure 1), since indirect program address loadin
not always initiated but when the boolean signal ‘indir’ at the control circuit in figure 15
activated. The indirect branch mechanism is shown in the block diagram of figure 15.
IAR and PC blocks are the same as in figure 1. When the indir signal is high (meaning
an indirect branch operation is needed), the control circuit for the PC block waits for
indirect request signal and the bundled indirect channel. This bundled data comes fro

Figure 14: Schematic of the BTB control circuit

Control

Circuit

IAR

Instruction

PC

Memory

indir
rin
ain

indir_req
indir_ack

rout

aout

address

indirectly loaded
program counter
address

Figure 15: Block diagram of the indirect
branch mechanism
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instruction memory by indirect addressing via the IAR.
After finishing the indirect channel communication, the main_ack goes back to the A

in figure 3. This behaviour can be explained as follows. The token in place J1 of figu
goes to either the PCreq transition or the BRAdone transition depending on the result o
arbitration in ARB. However, when an indirect branch is required, the PCreq and the B
done transitions can’t fire until the indirect branch is finished.

rin+

rout+

indir+

indir-

P1P0

P2

P3
indir_req+

rout+

ain+

rin-

rout-

aout+ ind_ack+

ind_req-

ind_ack-

ain-

aout-

P4

aout+ ain+

rin-

rout-

aout-
ain-

Figure 16: STG for the PC block

Figure 17: Schematic of the PC block
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The STG of this control circuit is shown in figure 16. The indir signal is a boolean sig
and the same technique used for the bypass signal in figure 13 is exploited again in
16. Therefore the change of the indir signal must arrive at the control circuit before
request signal ‘rin’ reaches the circuit and must be maintained until the return-to-zero p
of the acknowledge signal ‘ain’ is finished. The semi-decoupled technique is adopte
this control circuit to boost speed when rout+ in figure 16 is activated. At the same mom
that rout+ is invoked to send a request signal to the next block, ain+ happens to retu
acknowledge back to the previous block. There is no need for ain+ to wait for the a
response from the next block.

The synthesized result for the PC control circuit is shown in figure 17.

8: Simulation results

Now, we present the performance figures of the instruction prefetch unit in term
speed.

The definition of the speed in asynchronous design is different from synchronous de
since synchronous design can only be measured in terms of the worst case. In synchr
design the worst delay of a block in a chip defines a fixed global clock cycle time regard
of different delays in each block.

In asynchronous design, however, the same logic block can finish its process in diff
times depending on its running function. In our instruction prefetch unit design two ca
can be defined by different running conditions. Since we use a fork and join form in
design, forked blocks must finish their processes before the join. The EU, INC and
blocks must finish their processes before the PCmux transition is activated in figure 3.
IND block is merged in the PC block as explained in section 7.) The EU and the INC blo
must be used every time for the function of the instruction prefetch unit, whereas the
block can be turned off by a user. Therefore we can have two operation modes in ou
formance simulation as shown in table 1.

The normal case in the instruction prefetch unit is that the BTB block is turned on. W
an indirect branch happens the cycle time will be longer than the normal case since
time is required for the indirect channel communication. However, this condition is
included in the performance test since it depends on the speed of the instruction me

9: Conclusions

We have shown how asynchronous design can be achieved using STGs, which ca
designers reliable speed-independent circuits. We have exploited different asynchro

Operation modes cycle time (nanoseconds)

BTB on 7.0

BTB off 5.5

Table 1: Cycle time in the instruction prefetch unit
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design techniques for the control circuits depending on different situations given by a s
or dynamic implementation of the datapath circuits, and determined by the decouplin
the dependency of the input and output sides of the control circuit.
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