
AMULET3: a 100 MIPS Asynchronous Embedded Processor

S. B. Furber, D. A. Edwards and J. D. Garside,
Department of Computer Science, The University of Manchestel;

Oxford Road, Manchester M13 9PL, UK.
sfurbel; dedwards, jgarside @cs.man.ac.uk

Abstract

AMULET3 is a 32-bit asynchronous processor core that
is fully instruction set compatible with the clocked ARM
cores. It represents the culmination of ten years of
research and development into asynchronous processor
design at the University of Manchester; and is the first step
into commercial use f o r this technology.

AMULET3 shows that asynchronous technology is
commercially viable, and is competitive in terms of per-
formance, area and power-efJiciency with clocked design.
In addition, asynchronous design offers signijicant advan-
tages in terms of reduced electromagnetic interference and
unique power management capabilities.

1. Introduction

The AMULET group in the Department of Computer
Science at the University of Manchester, U.K., has spent a
decade researching the commercial potential of asynchro-
nous design techniques. The focus of this work has been the
design of asynchronous implementations of the ARM 32-
bit RISC architecture [1, 21.

AMULET1 silicon was delivered in 1994. This basic
processor core showed that asynchronous design was feasi-
ble, though its performance and power-efficiency were not
as good as the contemporary ARM6 [3-51.

AMULET2e silicon was delivered in 1996. This chip
comprised an improved processor core together with a
cache memory and a flexible external memory interface.
This part was competitive with the ARM7 cores, and in
addition it showed that asynchronous operation offers
advantages in terms of reduced electromagnetic interfer-
ence and very simple power management [6]. Although it
is in use in a number of applications, such as robotics and
radio networking, AMULET2e is a research prototype and
it is not suitable for commercial production due to the dif-
ficulty of testing certain on-chip circuits.

AMULET3 silicon will be delivered in 2000 as part of

Figure 1. The DRACO chip

the commercial DRACO chip (described in section 2).
AMULET3 is competitive with the ARM9TDMI core and
retains the advantages of asynchronous operation demon-
strated by AMULET2e. It shows that asynchronous proces-
sor cores are commercially viable and are ready for use in
market niches where their advantages can be exploited
effectively.

2. DRACO

The DRACO (DECT Radio Communications Controller)
chip is a telecommunications controller intended for ISDN
(Integrated Services Digital Network) DECT (Digital
European Cordless Telephone) base station applications.
The chip area is divided equally between the AMULET3H
asynchronous processing subsystem (described in section
3) and a synchronous telecommunications peripheral sub-
system. The layout of the chip is shown in figure 1.

329
0-7695-0801-4/00 $10.00 0 2000 IEEE

mailto:cs.man.ac.uk

The synchronous telecommunications subsystem
includes a large number of functions in the synchronous
peripheral subsystem. ISDN is supported by an ISDN con-
troller with a 16 Kbit/s HDLC controller and transformer-
less analogue ISDN interfaces. The DECT radio interface
includes a baseband controller, an analogue interface to the
DECT radio subsystem and a DECT encryption engine.

There is a four-channel full-duplex ADPCMPCM con-
version signal processor and a telecommunications codec
with an analogue front-end for speech input and output
which could alternatively be used for an analogue telecom-
munications port. 8 Kbytes of shared RAM are used for
buffer space by the DECT controller. (This is in addition to
the 8 Kbytes of dual-port RAM in the AMULET3H subsys-
tem.)

General-purpose peripherals include two high-speed
UARTs with an IrDA interface that can be used by either
UART, an interrupt controller, counter-timers, a watchdog
timer, and 65 flexible VO ports including an 8-bit parallel
port with handshake capability. Other interfaces include a
2 Mbit/s IOM2 highway controller with programmable
switching functionality, an 12C interface, an analogue-to-
digital converter (ADC) interface, and two general-purpose
pulse-width modulation controllers.

An on-chip clock oscillator produces 38.864 MHz, and
on-chip phase-locked loops produce the 12.288 MHz mas-
ter clock required by the ISDN interface and the
13.824 MHz master clock required by the DECT controller.
An ISDN-DECT synchronizer phase-locked loop avoids bit
loss in data transfers between the ISDN and DECT clock
domains. The clocked system has power-down features.

Overall the DRACO chip is a state-of-the-art telecom-
munications SoC (system-on-chip) with one very unusual
feature: its processing subsystem operates fully asynchro-
nously.

3. The AMULET3H SoC subsystem

DRACO’S asynchronous processing subsystem is based
around the MARBLE self-timed on-chip bus [7]. This bus
is a full functionality multi-master on-chip interconnect
with a central arbiter and address decoder. It supports split
transactions and, in its current manifestation, can perform
up to 83 million 32-bit data transfers per second [8].

The processor core is a 120MIPS AMULET3 32-bit
core with on-chip debug hardware support (described fur-
ther in section 4). 8 Kbytes of dual-port high-speed RAM
are connected to the processor’s instruction and data mem-
ory interfaces and both memory ports then connect to the
MARBLE bus (see figure 2). The bus also hosts a 32-chan-
ne1 DMA controller (synthesized using Balsa - see section
5.2), 16 Kbytes of ROM and an external memory interface.
The programmable external memory interface supports the

St

Memory I interface

DRAM
control

DMArq

Synchronous
peripheral
subsystem

yetpheral

Figure 2. AMULET3H organization

direct connection of SRAM, DRAM and flash memory. An
on-chip reference delay line calibrated by software is used
to control off-chip memory access timings [9].

A bridge connects MARBLE to the synchronous on-
chip bus that supports the synchronous peripherals. The
bridge is the sole master of the synchronous bus, which
therefore has a very straightforward structure.

A particular feature of the asynchronous subsystem is an
asynchronous event driven load module that holds the proc-
essor in its zero-power wait mode while an analogue-to-
digital conversion completes, thereby synchronizing the
software to external data rates.

4. The AMULET3 core

The AMULET3 processor core supports ARM architec-
ture version 4T [2], including the Thumb 16-bit com-
pressed instruction set [101. The organization of the
processor - in coarse outline - is shown in figure 3.

As implemented the pipeline is somewhat deeper than
implied in the figure - for example the instruction decoder
has two stages -but at this level an asynchronous process-
ing pipeline appears very like its ‘conventional’ synchro-
nous counterpart. The only difference is that the timing is
localized such that only units that need to communicate are
ever in step with each other, and then only for the duration
of the communication.

330

FIQ IRQ
4.1. PC tracking

‘nstruction fetch .

Figure 3. AMULET3 organization

This gives considerable freedom in design. For example
the prefetch unit fetches instructions 32 bits at a time (rep-
resenting one ARM instruction or a pair of Thumb instruc-
tions). The decoder is then responsible for decoding and
issuing these packets. In the normal course of executing
ARM code each packet entering the decoder will result in
another being generated, some time later. However when
running Thumb code two instructions will be issued in
sequence. This slows down the consumption of instruction
packets and may stall the prefetch unit, but there is no need
for global control.

The ability to expand instructions locally is exploited in
the few multi-cycle instructions (notably multi-register
PUSWPOP) in the ARM/Thumb instruction sets. The con-
verse is also possible: all ARM instructions may be condi-
tional and an instruction which is not going to produce a
result may be removed without it travelling the length of the
pipeline.

The disadvantage - from an architect’s viewpoint - in
running pipeline stages asynchronously is that many proc-
essor design ‘tricks’ rely on global synchronisation. A nota-
ble example is result forwarding where the instruction
decoder can track the progress of previously issued instruc-
tions and pirate copies of their results before they are com-
plete. This requires knowledge of where results are at
certain times, knowledge that is unavailable to an asynchro-
nous designer. Instead the architect must derive other tech-
niques; three examples are given below.

A feature of the ARM is that the programme counter
(PC) is available as a general purpose register, despite ‘log-
ically’ residing in the prefetch unit. Synchronous ARMS
resolve this by reading the PC and using timing information
to know how many times it has been incremented since the
instruction was fetched.

In AMULET3 register reading has no synchronisation
with the prefetch unit; instead the PC value is sent down the
pipeline in parallel with the instruction fetch. Although this
widens the pipeline considerably the actual cost is low both
in area (the few latches are grouped adjacently in the data-
path) and in power (on average very few bits in the PC alter
from one instruction to the next).

4.2. The reorder buffer

Another example of architectural innovation in
AMULET3 is the implementation of register forwarding
where, as noted above, conventional techniques based on
the use of global information available in a synchronous
implementation are inapplicable.

AMULET3 issues instructions in order but the stream
then splits into two:

internal operations are retired immediately into a reor-
der buffer where their results are available for forward-
ing;
load and store instructions are sidelined to the data inter-
face where the data memory access is completed, any
loaded data being returned to the reorder buffer out of
order with the internal results.
The reorder buffer thus receives inputs in an arbitrary

order at random, possibly overlapping, times. However
some vital information is retained:

.

Each result carries with it the identity of its own location
in the reorder buffer. Locations are assigned by the de-
coder which therefore knows what will arrive where
(but not when).
Every outstanding result will arrive eventually.
The incoming streams can never contend for the same
reorder buffer location.
All results are copied back from the reorder buffer to the

register file in their order of issue by a simple process that
waits for each result in turn, copies it back and moves to the
next. Memory faults are identified during this process, giv-
ing an exact exception model and allowing the abandon-
ment of unwanted, speculative results [113.

A reorder buffer is not very useful without the ability to
forward values to subsequent operations. This is possible in
the asynchronous domain because the decoder has assigned
the results to the reorder buffer locations and it knows

33 1

which registers are awaiting new results. When decoding an
instruction the decoder can therefore check whether or not
a register operand was assigned a reorder buffer location in
the preceding few instructions; if so the appropriate result
can be intercepted at the reorder buffer.

The key insight is that the result may be garnered as soon
as it arrives (it may already be present). Waiting until an
event occurs is straightforward in the asynchronous domain
when it is guaranteed that the event has happened, is hap-
pening, or will happen.

Of course the forwarding is independent of the register
copy back process so the result may already have reached
the register bank too; however, transferring the result from
the reorder buffer to the register file is a copy back process,
not a move process, so the value is still present in the reor-
der buffer and will remain until it is overwritten. Only the
decoder can reassign that location and it will only do so
when any expected values have been read safely. Thus the
forwarding process, both internal and data memory result
arrival and the register write process can all proceed safely
with minimal synchronization.

4.3. Power management

AMULET3 supports power management through the
inclusion of an interruptible ‘Halt’ instruction. Halting
causes a stall in the asynchronous handshake network to
propagate rapidly throughout the asynchronous subsystem,
bringing the power consumption down to zero. A real-time
operating system can simply place a Halt instruction in its
idle task to obtain optimal results - the processor will use
no power when there is no work to do. There is no clock to
scale, no crystal oscillator or PLL to turn off, and no hard
decisions as to when each of these steps should be taken.

CAD vendors. Some of these short-comings have been
addressed by academic tool development, but the asynchro-
nous design flow is far from being as well-integrated as that
for conventional clocked systems.

5. Design flow

Support for asynchronous design within a conventional
CAD design flow is limited. The Balsa synthesis tool [131
was used to develop the 32-channel DMA controller but,
apart from the use of Petrify [141 for the synthesis of small
asynchronous control circuits, the rest of the AMULET3H
subsystem was designed manually.

The processor’s datapath uses full custom hand layout
with control entered as schematics and then laid out using
automatic place and route tools. The standard cell library
was supplied by ARM Limited, significantly augmented
with specialized cells such as C gates and arbiters as
required for efficient asynchronous design.

5.1. Controller synthesis

AMULET3 incorporates many independent small con-
trol circuits, ranging from the pipeline latch controllers that
manage data propagation from one stage to the next using
Request-Acknowledge handshaking [15 J to the specialised
and complex asynchronous token-passing controller that
handles synchronization for forwarding and sequencing for
copy back within the reorder buffer.

Extensive use was made of Petrify [141 in the design and
verification of these circuits. Petrify takes a circuit specifi-
cation in the form of a Petri Net and converts it into a speed-
independent circuit.

5.2. High-level synthesis
4.4. AMULET3 performance

The AMULET3 core uses 113,000 transistors and occu-
pies 3 mm2 on a 3.3 V 0.35 pm process. The core is capable
of operating at up to 120 MIPS (Dhrystone 2.1) and at max-
imum throughput consumes about 155 mW, giving a power
efficiency of 780 MIPS/W.

The AMULET3H system core uses 825,000 transistors
and occupies 21 mm2. The memory system reduces the
maximum throughput to 100 MIPS at 215 mW; the overall
system power-efficiency is 465 MIPSN.

The processor core performance, area and power-effi-
ciency are very similar to the clocked ARM9TDMI core
[121, showing that asynchronous processors need not incur
any penalty in these areas. In addition, asynchronous oper-
ation offers significant benefits in terms of reduced electro-
magnetic interference and simplified power management.

The down-side, as discussed in the next section, is the
poor tools support for asynchronous design offered by

The AMULET designs have grown significantly in com-
plexity since AMULET]. Balsa has been developed in
response to the evident need to handle this increased com-
plexity by moving away from ‘hand’ design to a more auto-
tnated approach, at least for the non speed-critical parts of
the design. Balsa is a hardware description language that
can be used to specify descriptions in a conventional style
of programming language. These descriptions are then
compiled into asynchronous networks of macromodular
components which may be implemented in standard cell
logic or on FPGAs. In this sense, Balsa is more like existing
silicon compilers than synthesis with HDLs such as VHDL
or Verilog. Unlike silicon compilers, research into which
tends to be focused on automated resource allocation and
program manipulation, Balsa makes use of syntax-directed
compilation to produce circuits that reflect the structure and
resource management decisions of the designer’s original
description. This ‘transparent’ compilation approach

332

allows the designer to make changes to a circuit’s descrip-
tion with the goal of improving some desired property such
as speed, area, power etc., whilst being able to predict the
effect that the change will have on the structure of the final
circuit.

The synthesis mechanism, handshake component set
and the use of transparent compilation are modelled on the
Philips Tangram system [16]. Balsa differs from Tangram
in a number of respects:

The channel semantics have been extended to include
the enclosure of commands within a channel-receive
command allowing the synthesis of Micropipeline [171,
data-driven push-like structures, in addition to the nor-
mal pull-style control-driven circuits normally pro-
duced.
The handshake component library has been extended to
include components with a greater degree of parameter-
ization in order to take advantage of conventional forms
of automated circuit optimization wherever possible.
The expressiveness of the language in enhanced by a
number of features such as the support for recursive
process descriptions.
Transparent compilation and high-level optimization

require a fast loop of edit - synthesize - simulate - edit in
order to be an effective technique for optimizing designs.
Balsa’s compilation mechanism is very fast, making it an
excellent language for rapid prototyping. The asynchro-
nous modelling language LARD [181 is used as a simula-
tion environment allowing designs to be simulated before
they are committed to a gate level implementation.

The DMA controller is an ideal vehicle for the applica-
tion of the Balsa system. The controller is not speed-criti-
cal, all accesses being across, and therefore limited by, the
MARBLE bus. The specification of the controller was ini-
tially ill-defined and the controller straddles the boundary
of the synchronous and asynchronous domains on DRACO.
Furthermore its behaviour is algorithmically quite complex
and ideally suited to be described in a high-level HDL. The
controller supports:

16 request clients and 32 channels;
3 channel types with a complicated register structure;
programmable client to channel mapping;

chaining of channel requests;
interfaces both to synchronous devices and to memory.

Balsa allows for the inclusion of ‘foreign’, non-Balsa
parts as long as they are provided with a handshake wrap-
per. The DMA controller is a mixture of Balsa synthesized
circuits and custom layout (for the register banks). Initial
simulation took place entirely within the Balsa system.
Major changes were made in the specification of the con-
troller during the development of the design without

adversely impacting the overall design time (the Balsa
description was developed in parallel with the custom lay-
out of the register banks). Transistor-level simulation
revealed that the design was not able to saturate the MAR-
BLE bus. Only two days were required to make architec-
tural changes to the design in order to increase its speed by
introducing more concurrency, and to produce a new fully
simulated layout. The Balsa description of the controller
comprises 900 lines of code and contributes to about 50%
of the area of the controller which in total occupies an area
of 2.1 mm2 and consists of 70K transistors.

Balsa was not used in the design of the AMULET3 proc-
essor core itself for performance reasons, however current
research is aimed at improving the efficiency and safety of
Balsa’s datapath compilation. Techniques for removing
superfluous datapath-related control overhead generated by
the current compilation mechanism are being investigated.
New approaches for delay-insensitive back-ends are also
being investigated with a view to alleviating the increas-
ingly difficult problem of timing closure.

5.3. Timing verification

Timing verification on the AMULET3H subsystem was
carried out using TimeMill on an extracted transistor
netlist. Additional tools written in PERL were used to trawl
the TimeMill trace file to find any set-up and hold timing
violations, thereby ensuring that the asynchronous control
was operating with adequate margins. The coverage
obtained by this method is only as good as the test program
run under simulation, and this is not as rigorous as the static
timing analysis used to verify the timing of clocked
designs. While there is no fundamental reason why static
timing analysis techniques could not be applied to asyn-
chronous designs, there is no commercial support for such
use at present.

5.4. Production test strategy

The DRACO chip has an external memory interface that
can become a MARBLE bus master for production test pur-
poses. The general test strategy is to use the tester to load a
program into on-chip RAM and then to execute the pro-
gram on the AMULET3 core. The on-chip RAM and proc-
essor core are viewed as a general-purpose programmable
BIST engine. Once loaded the test program can be run at
full processor speed without tester intervention, so the
tester merely has to wait for the worst-case test time and it
can then access a signature placed by the test program in a
particular memory location to see whether the test was
passed.

In order to ensure the effectiveness of this test strategy a
number of features of the system had to be designed to sup-
port it. For example, the branch target buffer in the proces-

333

sor core is very hard to test through functional operation, so
it has a special test access port from the MARBLE bus. The
processor core can test its own branch prediction hardware
through this port (though branch prediction must be disa-
bled at the time).

6. Conclusions

AMULET3 shows that asynchronous processor cores
are commercially viable, and potentially advantageous
when low electromagnetic emissions and/or very flexible
power management are required.

Together with the MARBLE bus, fully asynchronous
system-on-chip design is possible and mixed clocked/asyn-
chronous systems are practical. DRACO is a commercial
example of a mixed timing device.

Asynchronous design is not well supported by commer-
cial CAD tools, though it is possible to implement asyn-
chronous designs with existing tools. Once asynchronous
technology gains a significant foothold in commercial
design it is likely that the CAD companies will develop
suitable tools, and academic tools such as Balsa show that
there are no serious barriers to the development of effective
design automation for asynchronous systems.

7. Acknowledgments

The development of AMULET3 has been support pri-
marily within the EU-funded OMI-DE2 and OMI-ATOM
projects, and authors are grateful to the European Commis-
sion for their continuing support for this work. ARM Lim-
ited coordinated these projects; their support, and that of the
other project partners, is also acknowledged.

Aspects of the work have benefited from support from
the UK government through the EPSRC.

The VLSI design work has leant heavily on CAD tools
from Compass Design Automation (now part of Avant!)
and EPIC Design Technology, Inc. (now part of Synopsis).

8. References

[I] Furber, S.B., ARM System-on-Chip Architecture, Addison
Wesley Longman, 2000. ISBN 0-201-67519-6

[2] Jaggar, D., Advanced RISC Machines Architecture Refer-
ence Manual, Prentice Hall, 1996. ISBN 0-13-736299-4

[3] Furber, S.B., Day, P., Garside, J.D., Paver N.C. and Woods,
J.V., “The Design and Evaluation of an Asynchronous Micro-
processor”, Proc. ICCD’94, Boston, October 1994, pp. 21 7-220.

[4] Paver, N.C., The Design and Intplementation of an Asyn-
chronous Microprocessor, PhD Thesis, University of Manches-
ter, June 1994.

[5] Woods, J.V., Day, P., Furber, S.B., Garside, J.D., Paver N.C.
and Temple, S., “AMULETI: An Asynchronous ARM Micro-
processor’’, IEEE Trans. Computers, 46(4), April 1997, pp. 385-
398.

[6] Furber, S.B., Garside, J.D., Riocreux, P., Temple, S., Liu, J.,
Day, P., Liu, J. and Paver, N.C., “AMULET2e: An Asynchronous
Embedded Controller”, Proc. IEEE, 87(2), February 1999, pp.
243-256.

[7] Bainbridge, W.J. and Furber, S.B., “Asynchronous Macro-
cell Interconnect using MARBLE’, Proc. Async’98, San Diego,
April 1998.

[8] Bainbridge, W.J., Asynchronous System-on-Chip Intercon-
nect, PhD Thesis, University of Manchester, 2000.

[9] Temple, S. and Furber, S.B., “On-Chip Timing Reference
for Self-Timed Microprocessor”, Electronics Letters, 36(1 1)
May 2000, pp. 942-943.

[IO] Segars, S., Clarke and Goudge, “Embedded Control Prob-
lems, Thumb, and the ARM7TDMI”, IEEE Micro, 15(5), Octo-
ber 1995, pp. 22-30.

[1 1 J Gilbert, D.A., Dependency arid Exception Handling in an
Asyrichronous Microprocessor, PhD Thesis, University of Man-
chester, 1997.

[121 Segars, S., “The ARM9 Family - High Performance Micro-
processors for Embedded Applications”, Proc. ICCD’98, Austin,
October 1998, pp. 230-235.

[131 Bardsley, A and Edwards, D.A., “Compiling the Language
Balsa to Delay Insensitive Hardware”, Proc. CHDL‘97, Toledo,
April 1997. Published in Kloos, C.D. and Cemy, E. (eds.) Hard-
ware Descriptions Languages and their Applications, IFIP &
Chapman Hall, ISBN 01412 78810 1, 1997 pp. 89-91.

[141 Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L.
and Yakovlev, A. “Petrify: a tool for manipulating concurrent
specifications and synthesis of asynchronous controllers” IEICE
Trans. on Information and Systems, E8O-D(3) March 1997, pp.
3 15-325.

[15] Furber, S.B. and Day, P., “Four-Phase Micropipeline Latch
Control Circuits”, IEEE Trans. on VLSI, 4(2), June 1996, pp.
247-253.

[161 van Berkel, K., Handshake Circuits: An Asynchronous
Architecture for VLSI Programming, vol. 5, Intl. Series on Paral-
lel Computation, Cambridge University Press, 1993.

[171 Sutherland, I.E., “Micropipelines”. Communications of the
ACM, 32(6), June 1989, pp. 720-738.

[18] Endecott, P.B. and Furber, S.B., “Modelling and Simulation
of Asynchronous Systems using the LARD Hardware Descrip-
tion Language”, Proc. 12th European Simulation Multiconfer-
ence, Manchester, June 1998, Society for Computer Simulation
International, pp. 39-43. ISBN 1-56555-148-6.

334

