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Abstract 

AMULET3 is a 32-bit asynchronous processor core that 
is fully instruction set compatible with the clocked ARM 
cores. It represents the culmination of ten years of 
research and development into asynchronous processor 
design at the University of Manchester; and is the first step 
into commercial use f o r  this technology. 

AMULET3 shows that asynchronous technology is 
commercially viable, and is competitive in terms of per- 
formance, area and power-efJiciency with clocked design. 
In addition, asynchronous design offers signijicant advan- 
tages in terms of reduced electromagnetic interference and 
unique power management capabilities. 

1. Introduction 

The AMULET group in the Department of Computer 
Science at the University of Manchester, U.K., has spent a 
decade researching the commercial potential of asynchro- 
nous design techniques. The focus of this work has been the 
design of asynchronous implementations of the ARM 32- 
bit RISC architecture [ 1,  21. 

AMULET1 silicon was delivered in 1994. This basic 
processor core showed that asynchronous design was feasi- 
ble, though its performance and power-efficiency were not 
as good as the contemporary ARM6 [3-51. 

AMULET2e silicon was delivered in 1996. This chip 
comprised an improved processor core together with a 
cache memory and a flexible external memory interface. 
This part was competitive with the ARM7 cores, and in 
addition it showed that asynchronous operation offers 
advantages in terms of reduced electromagnetic interfer- 
ence and very simple power management [6]. Although it 
is in use in a number of applications, such as robotics and 
radio networking, AMULET2e is a research prototype and 
it is not suitable for commercial production due to the dif- 
ficulty of testing certain on-chip circuits. 

AMULET3 silicon will be delivered in 2000 as part of 

Figure 1. The DRACO chip 

the commercial DRACO chip (described in section 2). 
AMULET3 is competitive with the ARM9TDMI core and 
retains the advantages of asynchronous operation demon- 
strated by AMULET2e. It shows that asynchronous proces- 
sor cores are commercially viable and are ready for use in 
market niches where their advantages can be exploited 
effectively. 

2. DRACO 

The DRACO (DECT Radio Communications Controller) 
chip is a telecommunications controller intended for ISDN 
(Integrated Services Digital Network) DECT (Digital 
European Cordless Telephone) base station applications. 
The chip area is divided equally between the AMULET3H 
asynchronous processing subsystem (described in section 
3) and a synchronous telecommunications peripheral sub- 
system. The layout of the chip is shown in figure 1. 
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The synchronous telecommunications subsystem 
includes a large number of functions in the synchronous 
peripheral subsystem. ISDN is supported by an ISDN con- 
troller with a 16 Kbit/s HDLC controller and transformer- 
less analogue ISDN interfaces. The DECT radio interface 
includes a baseband controller, an analogue interface to the 
DECT radio subsystem and a DECT encryption engine. 

There is a four-channel full-duplex ADPCMPCM con- 
version signal processor and a telecommunications codec 
with an analogue front-end for speech input and output 
which could alternatively be used for an analogue telecom- 
munications port. 8 Kbytes of shared RAM are used for 
buffer space by the DECT controller. (This is in addition to 
the 8 Kbytes of dual-port RAM in the AMULET3H subsys- 
tem.) 

General-purpose peripherals include two high-speed 
UARTs with an IrDA interface that can be used by either 
UART, an interrupt controller, counter-timers, a watchdog 
timer, and 65 flexible VO ports including an 8-bit parallel 
port with handshake capability. Other interfaces include a 
2 Mbit/s IOM2 highway controller with programmable 
switching functionality, an 12C interface, an analogue-to- 
digital converter (ADC) interface, and two general-purpose 
pulse-width modulation controllers. 

An on-chip clock oscillator produces 38.864 MHz, and 
on-chip phase-locked loops produce the 12.288 MHz mas- 
ter clock required by the ISDN interface and the 
13.824 MHz master clock required by the DECT controller. 
An ISDN-DECT synchronizer phase-locked loop avoids bit 
loss in data transfers between the ISDN and DECT clock 
domains. The clocked system has power-down features. 

Overall the DRACO chip is a state-of-the-art telecom- 
munications SoC (system-on-chip) with one very unusual 
feature: its processing subsystem operates fully asynchro- 
nously. 

3. The AMULET3H SoC subsystem 

DRACO’S asynchronous processing subsystem is based 
around the MARBLE self-timed on-chip bus [7]. This bus 
is a full functionality multi-master on-chip interconnect 
with a central arbiter and address decoder. It supports split 
transactions and, in its current manifestation, can perform 
up to 83 million 32-bit data transfers per second [8]. 

The processor core is a 120MIPS AMULET3 32-bit 
core with on-chip debug hardware support (described fur- 
ther in section 4). 8 Kbytes of dual-port high-speed RAM 
are connected to the processor’s instruction and data mem- 
ory interfaces and both memory ports then connect to the 
MARBLE bus (see figure 2). The bus also hosts a 32-chan- 
ne1 DMA controller (synthesized using Balsa - see section 
5.2), 16 Kbytes of ROM and an external memory interface. 
The programmable external memory interface supports the 
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Figure 2. AMULET3H organization 

direct connection of SRAM, DRAM and flash memory. An 
on-chip reference delay line calibrated by software is used 
to control off-chip memory access timings [9]. 

A bridge connects MARBLE to the synchronous on- 
chip bus that supports the synchronous peripherals. The 
bridge is the sole master of the synchronous bus, which 
therefore has a very straightforward structure. 

A particular feature of the asynchronous subsystem is an 
asynchronous event driven load module that holds the proc- 
essor in its zero-power wait mode while an analogue-to- 
digital conversion completes, thereby synchronizing the 
software to external data rates. 

4. The AMULET3 core 

The AMULET3 processor core supports ARM architec- 
ture version 4T [2], including the Thumb 16-bit com- 
pressed instruction set [ 101. The organization of the 
processor - in coarse outline - is shown in figure 3. 

As implemented the pipeline is somewhat deeper than 
implied in the figure - for example the instruction decoder 
has two stages -but at this level an asynchronous process- 
ing pipeline appears very like its ‘conventional’ synchro- 
nous counterpart. The only difference is that the timing is 
localized such that only units that need to communicate are 
ever in step with each other, and then only for the duration 
of the communication. 
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This gives considerable freedom in design. For example 
the prefetch unit fetches instructions 32 bits at a time (rep- 
resenting one ARM instruction or a pair of Thumb instruc- 
tions). The decoder is then responsible for decoding and 
issuing these packets. In the normal course of executing 
ARM code each packet entering the decoder will result in 
another being generated, some time later. However when 
running Thumb code two instructions will be issued in 
sequence. This slows down the consumption of instruction 
packets and may stall the prefetch unit, but there is no need 
for global control. 

The ability to expand instructions locally is exploited in 
the few multi-cycle instructions (notably multi-register 
PUSWPOP) in the ARM/Thumb instruction sets. The con- 
verse is also possible: all ARM instructions may be condi- 
tional and an instruction which is not going to produce a 
result may be removed without it travelling the length of the 
pipeline. 

The disadvantage - from an architect’s viewpoint - in 
running pipeline stages asynchronously is that many proc- 
essor design ‘tricks’ rely on global synchronisation. A nota- 
ble example is result forwarding where the instruction 
decoder can track the progress of previously issued instruc- 
tions and pirate copies of their results before they are com- 
plete. This requires knowledge of where results are at 
certain times, knowledge that is unavailable to an asynchro- 
nous designer. Instead the architect must derive other tech- 
niques; three examples are given below. 

A feature of the ARM is that the programme counter 
(PC) is available as a general purpose register, despite ‘log- 
ically’ residing in the prefetch unit. Synchronous ARMS 
resolve this by reading the PC and using timing information 
to know how many times it has been incremented since the 
instruction was fetched. 

In AMULET3 register reading has no synchronisation 
with the prefetch unit; instead the PC value is sent down the 
pipeline in parallel with the instruction fetch. Although this 
widens the pipeline considerably the actual cost is low both 
in area (the few latches are grouped adjacently in the data- 
path) and in power (on average very few bits in the PC alter 
from one instruction to the next). 

4.2. The reorder buffer 

Another example of architectural innovation in 
AMULET3 is the implementation of register forwarding 
where, as noted above, conventional techniques based on 
the use of global information available in a synchronous 
implementation are inapplicable. 

AMULET3 issues instructions in order but the stream 
then splits into two: 

internal operations are retired immediately into a reor- 
der buffer where their results are available for forward- 
ing; 
load and store instructions are sidelined to the data inter- 
face where the data memory access is completed, any 
loaded data being returned to the reorder buffer out of 
order with the internal results. 
The reorder buffer thus receives inputs in an arbitrary 

order at random, possibly overlapping, times. However 
some vital information is retained: 

. 

Each result carries with it the identity of its own location 
in the reorder buffer. Locations are assigned by the de- 
coder which therefore knows what will arrive where 
(but not when). 
Every outstanding result will arrive eventually. 
The incoming streams can never contend for the same 
reorder buffer location. 
All results are copied back from the reorder buffer to the 

register file in their order of issue by a simple process that 
waits for each result in turn, copies it back and moves to the 
next. Memory faults are identified during this process, giv- 
ing an exact exception model and allowing the abandon- 
ment of unwanted, speculative results [ 113. 

A reorder buffer is not very useful without the ability to 
forward values to subsequent operations. This is possible in 
the asynchronous domain because the decoder has assigned 
the results to the reorder buffer locations and it knows 
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which registers are awaiting new results. When decoding an 
instruction the decoder can therefore check whether or not 
a register operand was assigned a reorder buffer location in 
the preceding few instructions; if so the appropriate result 
can be intercepted at the reorder buffer. 

The key insight is that the result may be garnered as soon 
as it arrives (it may already be present). Waiting until an 
event occurs is straightforward in the asynchronous domain 
when it is guaranteed that the event has happened, is hap- 
pening, or will happen. 

Of course the forwarding is independent of the register 
copy back process so the result may already have reached 
the register bank too; however, transferring the result from 
the reorder buffer to the register file is a copy back process, 
not a move process, so the value is still present in the reor- 
der buffer and will remain until it is overwritten. Only the 
decoder can reassign that location and it will only do so 
when any expected values have been read safely. Thus the 
forwarding process, both internal and data memory result 
arrival and the register write process can all proceed safely 
with minimal synchronization. 

4.3. Power management 

AMULET3 supports power management through the 
inclusion of an interruptible ‘Halt’ instruction. Halting 
causes a stall in the asynchronous handshake network to 
propagate rapidly throughout the asynchronous subsystem, 
bringing the power consumption down to zero. A real-time 
operating system can simply place a Halt instruction in its 
idle task to obtain optimal results - the processor will use 
no power when there is no work to do. There is no clock to 
scale, no crystal oscillator or PLL to turn off, and no hard 
decisions as to when each of these steps should be taken. 

CAD vendors. Some of these short-comings have been 
addressed by academic tool development, but the asynchro- 
nous design flow is far from being as well-integrated as that 
for conventional clocked systems. 

5. Design flow 

Support for asynchronous design within a conventional 
CAD design flow is limited. The Balsa synthesis tool [ 131 
was used to develop the 32-channel DMA controller but, 
apart from the use of Petrify [ 141 for the synthesis of small 
asynchronous control circuits, the rest of the AMULET3H 
subsystem was designed manually. 

The processor’s datapath uses full custom hand layout 
with control entered as schematics and then laid out using 
automatic place and route tools. The standard cell library 
was supplied by ARM Limited, significantly augmented 
with specialized cells such as C gates and arbiters as 
required for efficient asynchronous design. 

5.1. Controller synthesis 

AMULET3 incorporates many independent small con- 
trol circuits, ranging from the pipeline latch controllers that 
manage data propagation from one stage to the next using 
Request-Acknowledge handshaking [ 15 J to the specialised 
and complex asynchronous token-passing controller that 
handles synchronization for forwarding and sequencing for 
copy back within the reorder buffer. 

Extensive use was made of Petrify [ 141 in the design and 
verification of these circuits. Petrify takes a circuit specifi- 
cation in the form of a Petri Net and converts it into a speed- 
independent circuit. 

5.2. High-level synthesis 
4.4. AMULET3 performance 

The AMULET3 core uses 113,000 transistors and occu- 
pies 3 mm2 on a 3.3 V 0.35 pm process. The core is capable 
of operating at up to 120 MIPS (Dhrystone 2.1) and at max- 
imum throughput consumes about 155 mW, giving a power 
efficiency of 780 MIPS/W. 

The AMULET3H system core uses 825,000 transistors 
and occupies 21 mm2. The memory system reduces the 
maximum throughput to 100 MIPS at 215 mW; the overall 
system power-efficiency is 465 MIPSN.  

The processor core performance, area and power-effi- 
ciency are very similar to the clocked ARM9TDMI core 
[ 121, showing that asynchronous processors need not incur 
any penalty in these areas. In addition, asynchronous oper- 
ation offers significant benefits in terms of reduced electro- 
magnetic interference and simplified power management. 

The down-side, as discussed in the next section, is the 
poor tools support for asynchronous design offered by 

The AMULET designs have grown significantly in com- 
plexity since AMULET]. Balsa has been developed in 
response to the evident need to handle this increased com- 
plexity by moving away from ‘hand’ design to a more auto- 
tnated approach, at least for the non speed-critical parts of 
the design. Balsa is a hardware description language that 
can be used to specify descriptions in a conventional style 
of programming language. These descriptions are then 
compiled into asynchronous networks of macromodular 
components which may be implemented in standard cell 
logic or on FPGAs. In this sense, Balsa is more like existing 
silicon compilers than synthesis with HDLs such as VHDL 
or Verilog. Unlike silicon compilers, research into which 
tends to be focused on automated resource allocation and 
program manipulation, Balsa makes use of syntax-directed 
compilation to produce circuits that reflect the structure and 
resource management decisions of the designer’s original 
description. This ‘transparent’ compilation approach 
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allows the designer to make changes to a circuit’s descrip- 
tion with the goal of improving some desired property such 
as speed, area, power etc., whilst being able to predict the 
effect that the change will have on the structure of the final 
circuit. 

The synthesis mechanism, handshake component set 
and the use of transparent compilation are modelled on the 
Philips Tangram system [16]. Balsa differs from Tangram 
in a number of respects: 

The channel semantics have been extended to include 
the enclosure of commands within a channel-receive 
command allowing the synthesis of Micropipeline [ 171, 
data-driven push-like structures, in addition to the nor- 
mal pull-style control-driven circuits normally pro- 
duced. 
The handshake component library has been extended to 
include components with a greater degree of parameter- 
ization in order to take advantage of conventional forms 
of automated circuit optimization wherever possible. 
The expressiveness of the language in enhanced by a 
number of features such as the support for recursive 
process descriptions. 
Transparent compilation and high-level optimization 

require a fast loop of edit - synthesize - simulate - edit in 
order to be an effective technique for optimizing designs. 
Balsa’s compilation mechanism is very fast, making it an 
excellent language for rapid prototyping. The asynchro- 
nous modelling language LARD [ 181 is used as a simula- 
tion environment allowing designs to be simulated before 
they are committed to a gate level implementation. 

The DMA controller is an ideal vehicle for the applica- 
tion of the Balsa system. The controller is not speed-criti- 
cal, all accesses being across, and therefore limited by, the 
MARBLE bus. The specification of the controller was ini- 
tially ill-defined and the controller straddles the boundary 
of the synchronous and asynchronous domains on DRACO. 
Furthermore its behaviour is algorithmically quite complex 
and ideally suited to be described in a high-level HDL. The 
controller supports: 

16 request clients and 32 channels; 
3 channel types with a complicated register structure; 
programmable client to channel mapping; 

chaining of channel requests; 
interfaces both to synchronous devices and to memory. 

Balsa allows for the inclusion of ‘foreign’, non-Balsa 
parts as long as they are provided with a handshake wrap- 
per. The DMA controller is a mixture of Balsa synthesized 
circuits and custom layout (for the register banks). Initial 
simulation took place entirely within the Balsa system. 
Major changes were made in the specification of the con- 
troller during the development of the design without 

adversely impacting the overall design time (the Balsa 
description was developed in parallel with the custom lay- 
out of the register banks). Transistor-level simulation 
revealed that the design was not able to saturate the MAR- 
BLE bus. Only two days were required to make architec- 
tural changes to the design in order to increase its speed by 
introducing more concurrency, and to produce a new fully 
simulated layout. The Balsa description of the controller 
comprises 900 lines of code and contributes to about 50% 
of the area of the controller which in total occupies an area 
of 2.1 mm2 and consists of 70K transistors. 

Balsa was not used in the design of the AMULET3 proc- 
essor core itself for performance reasons, however current 
research is aimed at improving the efficiency and safety of 
Balsa’s datapath compilation. Techniques for removing 
superfluous datapath-related control overhead generated by 
the current compilation mechanism are being investigated. 
New approaches for delay-insensitive back-ends are also 
being investigated with a view to alleviating the increas- 
ingly difficult problem of timing closure. 

5.3. Timing verification 

Timing verification on the AMULET3H subsystem was 
carried out using TimeMill on an extracted transistor 
netlist. Additional tools written in PERL were used to trawl 
the TimeMill trace file to find any set-up and hold timing 
violations, thereby ensuring that the asynchronous control 
was operating with adequate margins. The coverage 
obtained by this method is only as good as the test program 
run under simulation, and this is not as rigorous as the static 
timing analysis used to verify the timing of clocked 
designs. While there is no fundamental reason why static 
timing analysis techniques could not be applied to asyn- 
chronous designs, there is no commercial support for such 
use at present. 

5.4. Production test strategy 

The DRACO chip has an external memory interface that 
can become a MARBLE bus master for production test pur- 
poses. The general test strategy is to use the tester to load a 
program into on-chip RAM and then to execute the pro- 
gram on the AMULET3 core. The on-chip RAM and proc- 
essor core are viewed as a general-purpose programmable 
BIST engine. Once loaded the test program can be run at 
full processor speed without tester intervention, so the 
tester merely has to wait for the worst-case test time and it 
can then access a signature placed by the test program in a 
particular memory location to see whether the test was 
passed. 

In order to ensure the effectiveness of this test strategy a 
number of features of the system had to be designed to sup- 
port it. For example, the branch target buffer in the proces- 
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sor core is very hard to test through functional operation, so 
it has a special test access port from the MARBLE bus. The 
processor core can test its own branch prediction hardware 
through this port (though branch prediction must be disa- 
bled at the time). 

6. Conclusions 

AMULET3 shows that asynchronous processor cores 
are commercially viable, and potentially advantageous 
when low electromagnetic emissions and/or very flexible 
power management are required. 

Together with the MARBLE bus, fully asynchronous 
system-on-chip design is possible and mixed clocked/asyn- 
chronous systems are practical. DRACO is a commercial 
example of a mixed timing device. 

Asynchronous design is not well supported by commer- 
cial CAD tools, though it is possible to implement asyn- 
chronous designs with existing tools. Once asynchronous 
technology gains a significant foothold in commercial 
design it is likely that the CAD companies will develop 
suitable tools, and academic tools such as Balsa show that 
there are no serious barriers to the development of effective 
design automation for asynchronous systems. 
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