Workshop on
Hardware Support for Objects
And
Microarchitectures for Java

In conjunction with ICCD'99

Austin, Texas
October 10, 1999

MESSAGE FROM WORKSHOP CO-CHAIRS

Most modern programming languages and techniques include object-oriented methods.
However, mainstream computer architectures have not acknowledged the presence of
objects. With the widespread use of object-oriented programming languages and

techniques, it is becoming important for computer architects to acknowledge the existence
of these methods and their impacts on execution (including high object allocation rates, the
impact of garbage collection, dynamic binding of calls to methods, and dynamic assembly

of programs at run time from components obtained from disparate sources).

Java is an exciting new object-oriented technology. Hardware for supporting objects and

other features of Java such as multithreading, dynamic linking and loading is the focus of

this workshop. The impact of Java's features on micro-architectural resources and issues in
the design of Java-specific architectures are interesting topics that require immediate

attention of the research community.

The purpose of this workshop is to draw together researchers and practitioners concerned
with hardware support for objects and Java implementations for a stimulating exchange of
views. To the organizers' best knowledge, this is the first event of its kind, and as such is an
attempt to begin the task of building a community in this field. We thank all the program
committee members, the authors and the invited panelists for helping us start this process.
Also, we would like to thank the ICCD organizers and Prof. Craig Chase, in particular, for
their support to this workshop. We hope you will enjoy this workshop as much as we did in
organizing this.

Mario Wolczko Vijaykrishnan Narayanan
Sun Microsystems Pennsylvania State University

Organizers

Workshop Co-Chairs

Vijaykrishnan Narayanan, Pennsylvania State Univ.
Mario Wolczko, Sun Microsystems, Inc.

Program Committee

Timothy Heil, Univ. of Wisconsin, Madison
Lizy John, Univ. of Texas at Austin
Vijaykrishnan Narayanan, Pennsylvania State Univ.
Nagarajan Ranganathan, Univ. of South Florida
Mario Wolczko, Sun Microsystems, Inc.

TABLE OF CONTENTS

8:15-9:45a.m. Session 1nnovations in Memory System Design
Chair: Timothy Heil, University of Wisconsin, Madison

* A Case for Using Active Memory to Support Garbage Collection
Sylvia Dieckmann and Urs Hoelzle

» Tolerating Latency by Prefetching Java Objects
Brendon Cahoon and Kathryn McKinley

* DMMX: Dynamic Memory Management Extension
J. Morris Chang, Witawas Srisa-an, and Chia-Tien Dan Lo

10:15-11:45a.m. Session Architectural Issues in Dynamic Translation
Chair: Mario Wolczko, Sun Microsystems, Inc.

* How can hardware support Just-In-Time compilation?
A. Murthy, N. Vijaykrishnan, A. Sivasubramaniam

* Exploiting Hardware Resources: Register Assignment across Method Boundaries
lan Rogers, Alasdair Rawsthorne, Jason Souloglou

» A Decoupled Translate Execute Architecture (DTEA) to Improve Performance of Java
Execution
Ramesh Radhakrishnan and Lizy Jurian John

1:00-2:00p.m. Session Dbject-Oriented Architectural Support
Chair: Lizy John, University of Texas, Austin

* Applying Predication to Reduce the Direct Cost of Virtual Function Calls in Object-
Oriented Programs
Sandeep K. S. Gupta, Chris Sadler

» Hardware Support for Profiling Java Programs
Nathan M. Hanish and William E. Cohen

2:15-3:45p.m. Session Microarchitectures for Java
Chair: Vijaykrishnan Narayanan, Pennsylvania State University

* VLSI Architecture Using Lightweight Threads (VAULT)
lan Watson, Greg Wright, Ahmed El-Mahdy

» A two step approach in the development of a Java Silicon Machine (JSM) for small
embedded systems

Hagen Ploog, Ralf Kraudelt, Nicco Bannow, Tino Rachui, Frank Golatowski, Dirk
Timmermann

* Quantitative Analysis for Java Microprocessor Architectural Requirements: Instruction
Set Design
M. Watheq EL-Kharashi, Fayez ElGuibaly, Kin F. Li

4:00-5:30p.m. Panel Sessiodava Virtual Machines: What can hardware offer to support
them?

Panelists:

David Hardin, Ajile Systems, Inc.

Jim Smith, University of Wisconsin, Madison

Marc Tremblay, Sun Microsystems, Inc.
Moderator: Mario Wolczko, Sun Microsystems, Inc.

Session 1

Innovations in Memory System Design

A Case for Using Active Memory to Support Garbage Collection

Sylvia Dieckmann and Urs Hoélzle
University of California, Santa Barbara
{sylvie,urs}@cs.ucsb.edu

Abstract because it evicts all application-related entries from the
cache. Even worse, GC itself has a poor hit rate because
Most modern programming languages require efficient each collection dereferences all pointers at most once. Tech-

automatic memory management (garbage collection, Gc)niques such as prefetching that exploit access patterns often

as part of the runtime system. Since GC is very memoryfaiI because memory access during GC follows pointer

intensive it can potentially suffer significantly from poor Cchains and can be very irregular. [10, pp. 284]

memory access times. Unfortunately, memory performance &S, memory performance, namely access latency and
improves at a slower pace than processor speed, making@ndwidth, is an issue of great concem for modern
memory accesses relatively more expensive in the futureMachines. Already, the cost of processor-memory commu-
Active Memory architectures aim to overcome this problem hication has a significant impact on overall performance.

by placing additional computational power in memory, thus MOSt researchers agree that it will become even more
allowing the application to execute small but memory- important in the future, since (1) processor speed is growing

intensive functions closer to the data and in parallel. The@t @ faster pace than memory performance, and (2) the I/O
goal is to improve latency and bandwidth for programs thatconnections used to deliver this data to the processors have

can otherwise suffer from slow memory accesses. limited bandwidth [15, 28, 53, 71]. For example, Hennessy
To date, Active Memory has been studied only with and Patterson estimate that since 1985 CPU performance

databases, image processing, arithmetic computations, an@®S 9rown by 50% every year Wpereas DRAM access times
other very regular applications. In this paper, we propose td'av€ improved by only around 7% per year [19]. With faster

analyze its impact on garbage collection. We are convinced?T0cessors but similar memory latencies and bandwidths, it
that garbage collection too will profit from this architecture becomes harder to feed the processing unit with useful input
since GC is simple, repetitive, easy to partition into offload- dat@ to run at peak speed and memory accesses become
able functions, and its performance depends crucially orfelatively more expensive. (In the literature this problem is

fast memory access. We describe a possible incarnation d¥Pically referred to as the increasing Memory-Processor

an Active Memory architecture suitable for GC support and Pérformance Gap.) In addition, modern applications are
argue why GC should benefit from such an architecture. PUtting stronger demands on the memory system as data
sets grow larger [1, 36] and object-oriented and pointer-

based programs with irregular access patterns and auto-
matic memory control are becoming more and more impor-
tant

Efficient and reliable garbage collection (GC) is an \We can address the problem of increasing memory
essential part of most modern (especially object-oriented)access costs in two wayBrocessor-centrioptimizations
programming languages. GC relieves the programmer fromjike prefetching, speculation, multilevel caches and out-of-
error prone explicit deallocation, thus preventing memory order execution aim to better cope with the existing band-
leaks or early deallocation. But GC performance greatlywidth and latency, for example, by exploiting locality in
depends on fast memory access, which can pose a challenggcess patterns. They tend to make things worse, however, if
not only to the GC implementation but also to the design ofthe executed application does not express the expected regu-
the underlying machine. For example, a simple |arities, which is often the case with modern object-oriented
mark&sweep collector first identifies and marks all live and pointer-based programs. Especially during GC,
objects and than reclaims (sweeps) the unmarked spacenemory access follows pointer chains and can be very
Both phases are very memory intensive since they requirgrregular. The cache hit rate can actually deteriorate in the
touching the entire heap (or at least all live objects) and thupresence of GC because every iteration evicts all applica-
can potentially suffer significantly from poor memory tion related entries from the cache. Even worse, GC itself
performance. Traditional techniques designed to improvehas a poor hit rate since most algorithms dereference each

memory performance do not always work for GC. For pointer only once during each GC phase, thus defeating the
example, GC can have a negative effect on the cache hit ratgdvantage of caching data.

1. Motivation

In contrastmemory-centri@pproaches hand attempt by simulation or with a prototype—were usually tested
to move at least part of the computation closer to the datawith relatively regular applications from the areas of data-
it processes, thus actively improving latency and band-bases, image processing and arithmetic computation only.
width. This concept is represented by a new breed of hardAlthough these studies generally show promising
ware,Active Memory6, 16, 17, 23] (or the closely related speedups for the selected type of applications as well as
Active Diskd1, 22]) which aims to enhance the memory technical feasibility of Active Memory hardware, further
unit with computational logic so that it can take over sometests with more sophisticated programs are required to
or all of the processor’s work. Often, Active Memory is show general applicability.
implemented by integrating additional logic into the
DRAM chip, thus allowing the main processor to offload 2 Active Memory
small functional units calledghemlet$ to be computed
directly in memory. For example, the Active Pages model

proposed by Oskin et al. [16] suggests assigning a small Since the research community became interested in

embedded processor or an array of FPGASs to every 512; Cc;[g/;SMﬁglgrybggcnh'terc:ucr)esseda];\i\(,)vsgleaarsrsggﬁessev(;;%r
Kbytes of DRAM. prop : pp

We believe that GC is very likely to benefit from Active S|gp|f|cantly n terms of e_xpected benefits, targeted apph
. ; cations, design complexity, software effort, and technical
Memory. Most GC algorithms are composed of highly L . .
o . . . feasibility. Unfortunately, a thorough discussion of some
repetitive and simple components which can easily be .
. o .~ of these proposals would exceed the scope of this paper.
offloaded to an in-memory processor. This is especially ; ; . ;
) . Instead, in this section we sketch an independent model
true for non-incremental algorithm that stop the actual that represents our understanding of Active Memory and
application fnutatol) during the duration of the collection. P 9 y

. ; serves as a baseline for our project.
By delegating GC to Active Memory, one could not only Although this model—which we name ARAM—is
reduce the amount of data passed between processor and . . ;
. ; erived from Active Pages, a model suggested by Oskin et
memory but also parallelize the inner loop of the collector. . .
L . al. [16], it attempts to be more general than that. Despite
We therefore suggest to study the suitability of Active .
. . _ the ongoing work of several research teams, many aspects
Memory to support automatic memory management (i.e., . .
X . . of active memory design are not fully understood yet. Part
garbage collection or simply GC). The ultimate goal of

.) . . of our planned work is to investigate various hardware
this study is to show that garbage collection—which we e L .
. ’) . modifications and their impact onto GC behavior. There-
believe is crucial for runtime performance and thus

. . o fore, the ARAM model is meant to eventually cover a

deserves special effort—will benefit significantly from the : . R
existence of an Active Memory approach in the spirit of large design space. Nevertheless, to provide a first intui-
Active Pages tive notion of ARAM and its capabilities we describe a

We are currently working on a hardware simulator that rather concrete incarnation in this section.
would allow us to empirically evaluate the impact of
ARAM (our Active Memory model) on the performance
of garbage collection in a high-performance Java Virtual . o o
Machine. With the help of this simulator, we hope to The ARAM model described in this section is based on
demonstrate that and how garbage collection can profifwo fundamental principles: (1) traditional applications
to design a suite of GC algorithms partitioned for ARAM Performance—on an ARAM machine (no harm for
and to analyze the impact of software decisions related tg2nybody) and (2) applications that were modified to use
partitioning, page size, allocation strategy, etc. memlets must experience a noticeable speedup (better for

To the best of our knowledge, none of the groupsSOmMe). Although the model leaves many issues to be
working on Active Memory has made an attempt yet to reso!ved in later design pha;es, it aims to proylde enough
utilize this architecture for garbage collection or even for detail so that any ARAM implementation will follow
language support in general. The idea of Active Memory these two guidelines. .
is still relatively new and few proposals have actually been ~AS in most current computer architectures, our model

implemented to date. Those that were evaluated—eithefONSists of a main processor (sometimes also called host
processor), a set of ARAM chips that are physically sepa-

rated from the main processor, and a memory bus to
1 None of the current proposals actually uses the teremlet connect both units. The model includes a (multilevel)
However, Acharya et al. [1] refer ttiskletsas code that is offloaded and memaory hierarchy with caches and virtual address spaces

executed on disk. Accordingly, we refer code that is executed in memorytq gllow fast access for applications with good Iocality. At
as memlets.

2.1 ARAM

ARAM ARAM an IMP and directed to a location on another physical chip
(inter-chip accessesyill be penalized most. We expect
‘ ‘ ‘ this type of access to be significantly more expensive than
c c c a direct access from the main processor.
;f» % ;f» Note that implementation details as well as actual and
relative access costs remain open at this point. Most of
\ \ these aspects depend on technical conditions and cannot
‘ yet be determined anyway. However, any actual ARAM
implementation should be guided by two principles: (1)
applications that do not use memlets should not suffer
@ from the new architecture and (2) those that do, should

;
;
;
;
;

Caches

experience noticeable speedups due to off-loading of

memlets. Therefore, no matter how the final cost model
Figure 1. ARAM Architecture will look, the main processor must be able to access

ARAM almost as efficiently as DRAM and IMPs must

the first sight, an ARAM chip resembles conventional 8cCess at least data in their own domain significantly more

DRAM; but unlike in DRAM, the available storage space €fficiently. - _
in ARAM is divided into one or more units (regiohsf Finall, a modified operating system (OS) must
equal size. Oskin et al. [16] found 512 Kbyte regions to peprovide the traditional OS functionality in combination
most practical for the available hardware. A small With ARAM support. For example, it will be in the respon-
embedded RISC processor calleeMemory Processor ~ Sibility of the OS to set up, invoke and manage the
(IMP) is assigned to each unit. To obtain optimal latency Meémlets (section 2.2 sketches an example API), to
and bandwidth, the physical chip layout determines theSynchronize IMPs and main processor, to deliver
association between regions and their associated procegl€Ssages between the processors, to maintain consistency
sors. Most likely, the user will be unable to dynamically Petween cache and ARAM, and to maintain a virtual
modify either region size or region-processor association. Memory system on top of ARAM. The last point is neces-
We assume that the main processor can access avflY because unlike traditional memory systems, which
ARAM cell almost as fast as a cell in a comparable USe only physical addresses, memlet code contains virtual
DRAM chip. (Synchronization between main processor addresses. Consequently, somebody—either the main
and IMP might add a small overhead, though.) As in Processor or the IMPs themselves—must be able to
DRAM, the costs for accesses by the main processor cafesolve these virtual addresses within the memory system.
vary within a certain range depending on the accessed
location. But for accesses initiated by memlet code on a2.2 Programming Model
certain IMP, the situation is more complex as it most likely
depends much more on the accessed memory location The user interface of ARAM provides the standard
relative to the IMP: here we assume that an IMP canvirtual memory interface extended by a set of functions to
access data residing in its own region (caiteh-region allocate regions, define memlets, bind them to a region or
accessin the remainder of this document) with signifi- a group of regions and activate them. It is in the responsi-
cantly shorter latency and larger bandwidth than the mainbility of the user to partition an application, i.e. write
processor. In fact, one of the motivations for transforming memlets and invoke them from the code. We use a func-
memory intensive functions into memlets is to replace tional model for this proposal since it seems to be the
main processor accesses with cheaper intra-region IMReasiest to integrate into an existing system.
accesses. However, accesses to locations that currently Note that the purpose of this programming model is to
belong to the region of another IMP on the same chiphelp understand the requirements of memlets and applica-
(inter-region, intra-chip accesspare likely to be more tion code and to design GC algorithms independent from
expensive, although probably still competitive with a actual decisions about the underlying hardware. It is
conventional main processor access. Any access issued hyeant as an abstraction that hides away hardware details
such as region-IMP association and must be general
. . : _ enough to express all GC needs. However, by no means
We use the termmegion rather than(active) pageto describe the does it determine an actual ARAM implementation.

memory unit directly associated with a single IMP to emphasize the . h .
difference between a region/active page and an OS page (i.e. virtual The user defines memlets as special functions together

memory page). Active memory is not meant to replace the virtual With t.he _aCtuaI appllqatlon. A memlet qper{:\tes on a
memory system; usually, regions cover several OS pages. domain given as function parameters durlng invocation.

For now, domains always correspond to one ARAM time in garbage collection, which makes good GC perfor-
region; rather than providing a domain parameter with mance all the more important. Write misses, although
every memlet invocation, the user can bind it to a certaingenerally not as critical as read misses, rise to about 28%
IMP up front. A memlet is invoked by a special instruction for one application (javad.
such as a store to a memory-mapped device. It can receive To benefit from Active Memory, an application must be
as many arguments as it needs. For example, the storegartitionable so that enough computational work
address could point to a memlet header with functioninvolving memory accesses can be offloaded and parallel-
pointer, arguments, and IMP identifier. Whenever an IMP ized. We are convinced that GC algorithms generally
detects a write to the magic location, it retrieves this array,fulfill this requirement since most memory activity occurs
determines function and arguments and invokes thein a tight inner loop. In terms of computational
memlet. On termination, the memlet sends a signal back t@womplexity, this loop is simple enough to be offloaded to
the main processor. an IMP with limited power. Although several algorithms
When executing memlet code, the IMP hardware require scratch space, one can usually define an upper
resolves addresses and communicates with other IMPs obound. The inner loop is also likely to benefit from paral-
the same chip using some protocol. The IMP also providedelization; for example, Endo et al. [7] studied a parallel
instructions to indicate the physical location of an addressmark-sweep collector and reported a significant speedup
(to determine the access costs). Any memlet can acces®r parallel marking with work stealing in a shared heap.
the entire virtual address space, although accesses to Parallelization can become a problem for ARAM if the
remote locations might be disproportionately expensive.application contains a high number of inter-region refer-
While intra-chip accesses may be resolved in hardwaregences. In the worst case, every single step could require
off-chip accesses might involve software protocols andinter-region communication (e.g., if a chain of pointers is
use the main CPU to relay data to another ARAM chip. spread over several regions). However, we believe that his
While slower than hardware, a software solution would risk can be reduced by (1) dividing the heap over regions
considerably reduce the complexity of ARAM-based in accordance to the access order imposed by the collector
systems by eliminating the need for inter-rARAM bus scheme (e.g., generational GC, Train Algorithm) or (2) by

logic. instrumenting a copying collector to rearrange objects in
order to reduce region-crossing references.
3. Why GC is Likely to Profit From Active Finally—at least at this point—partitioning an applica-

tion to use ARAM is awkward and requires some internal
knowledge. However, GC is part of the runtime system,
) written by a language implementor. Unlike the end user,
All garbage collectors perform the same basic task:hase system experts can justify spending a great deal of
they determine the set of reachable (i.e., live) objects and; o with low-level optimizations as it will pay off
reclaim the storage used by all unreachable (dead) ObjeCt%ultiple times later during runtime.
Most GC algorithms (with the exception of reference 14 summarize our arguments, we believe that good GC
counting) do this by periodically analyzing a snapshot of ,otormance is crucial for state-of-the-art OO systems and
the heap to detect and reclaim objects that are not longef,at memory latency and bandwidth is a significant factor
reachable. Consequently, the collector needs to access gll ¢ gverhead. The overall structure of most GC algo-
(live) objects, but on each object performs very little (i, js simple, highly repetitive, and memory intensive.
computation before it starts visiting the ch|Id|’eﬂ|'h|_s_ Therefore, most algorithms can naturally be divided into
makes GC inherently memory-intensive. In addition, memjets executed in ARAM, which would parallelize the
accessing objects by following a pointer chain leads 10 acgjection, improve latency and bandwidth for offloaded

very irregular access pattern where each object is visitedrnemory accesses, and greatly reduce the amount of data
only once in each phase. Therefore, caches often perform

poorly for GC.
Preliminary results from a small study of the effect of 2 |n most of these experiments we ran the optimized JDK1.1.5
garbage collection on cache performance of a Java VMexecuting memory intensive programs from the SPECjvm98 benchmark
indicate that garbage collection related activity has asuite on a 147 MHz UItraSPARQ-I with .16 Kbytes L1 anq 512 Kbytes
significantly higher L1 miss rate than the actual applica- L2 caches‘. The UItraSPARC famll)_/ provides har(_jyvare registers to cognt
tion code (8-16% for GC vs. 6-9% for the application) some basic events during execution at no additional costs. By polling
o : 0 pp * these counters before and after each GC one can observe cache access
They also show that the JDK1.1.5 spends up to 30% of itsand miss rates of a life application with virtually no impact on the

application’s performance.
Since polling hardware counters requires modifying source code, we
1 Inthis respect GC resembles a pointer chase problem. have not yet repeated the same experiments for a more competitive JVM.

Memory

transferred to the main processor. This is especially[15]

important for

GC performance since conventional

methods to improve memory performance such as caches

do not always suffice for this type of algorithms.

4.

(1]

(2]

(3]

[4]

5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

(16]

References
[17]

A. Acharya, M. Uysal, and J. Saltz. Active Disks:
Programming model, algorithms and evaluation. In [18]
Proceedings of ASPLOS VlIgan Jose, CA, October
1998.

R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. [19]
Maps: A compiler-managed memory system for RAW
machines. IProceeding®f ISCA-26, Atlanta, GA, June

1999. [20]

N. Bowman, N. Cardwell, C. Kozyrakis, C. Romer, and H.
Wang. Evaluation of existing architectures in IRAM
systems. I'Workshop on Mixing Logic and DRAM: Chips

that Compute and RemembBenver, CO, June 1997. [21]

D. Burger, J. Goodman, and A. Kagi. Quantifying memory
bandwidth limitations in future processorsPiroceedings
of ISCA-23Philadelphia, PA, May 1996.

B. Calder, C. Krintz, S. John, and T. Austin. Cache- [22]
conscious data placement. Rroceedings of ASPLOS
VIII, San Jose, CA, October 1998.

J. Carter et al. Impulse: Building a smarter memory
controller. In Proceedings of HPCA-5Qrlando, FL,

January 1999. IEEE Computer Society. [23]

T. Endo, K. Taura, and A. Yonezawa. A scalable mark-
sweep garbage collector on large-scale shared-memory
machines. IfProceedings of SC9Rlovember 1997.

M. Gongalves.Cache Performance of Programs with
Intensive Heap Allocation and Generational Garbage
Collection.Ph.D. thesis, Princeton University, May 1995.

(24]

M. Gongalves and A. Appel. Cache performance of fast- [25]
allocating programs. IRecord of FPCA'95June 1995.

R. Jones and R. Lin&arbage Collection: Algorithms for
Automatic Dynamic Memory Managemelthn Wiley &
Sons, 1996.

T. Kamada, S. Matsuoka, and A. Yonezawa. Efficient
parallel global garbage collection on massively parallel
computers. IProceedings of SC'94¢ages 79-88, 1994.

K. Keeton, D. Patterson, and J. Hellerstein. A case for
Intelligent Disks (IDISKs). InNSIGMOD Record27(3),
August 1998.

C. Kozyrakis and D. Patterson. A new direction for
computer architecture researchlEEE Computer,
31(11):24-32, November 1998.

C. Kozyrakis at al. Scalable processors in the billion-tran-
sistor era: IRAM. IEEE Computer, 30(9):75-78,
September 1997.

S. Nettles and J. O'Toole. Real-time replication garbage
collection. InProceedings of PLDI'93yolume 28(6) of
ACM SIGPLAN Notices, Albuquerque, NM, June 1993.

M. Oskin, F. Chong, and T. Sherwood. Active Pages: A
computation model for intelligent memory. Rroceed-
ings ISCA’98Barcelona, Spain, June 1998.

D. Patterson et al. A case for intelligent RAM: IRAM.
IEEE Micro, 17(2):34-44, March-April 1997.

D. Patterson et al. Intelligent RAM (IRAM): The indus-
trial setting, applications, and architecturesPhoceed-
ings of ICCD’97 TX, October 1997.

D. Patterson and J. HennesSpmputer Organization and
Design: The Hardware/Software InterfaceMorgan
Kaufman, 1994.

M. Reinhold. Cache performance of garbage-collected
programs. InProceedings of PLDI'93yolume 28(6) of
ACM SIGPLAN Notices, Albuquerque, NM, June 1993.

K. Taura and A. Yonezawa. An efficient garbage collec-
tion strategy for parallel programming languages on large
scale distributed-memory machines. Pnoceedings of
PPoPP-6,ACM SIGPLAN Notices, pp. 264-275, Las
Vegas, NE, June 1997.

M. Uysal, A. Acharya, and J. Saltz. An evaluation of archi-
tectural alternatives for rapidly growing datasets: Active
disks, clusters, and SMPs. Technical Report, TRCS98-27,
Department of Computer Science, University of Cali-
fornia, Santa Barbara, October 1998

E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S.
Amarasinghe, and A. Agarwal. Baring it all to software:
Raw MachineslEEE Computer30(9):86-93, September
1997.

W. Wulf and S. McKee. Hitting the memory wall: Impli-
cations of the obviousComputer Architecture News,
23(1), March 1995.

B. Zorn. The effect of garbage collection in cache perfor-
mance. Technical Report, CU-CS-528-91, Department of
Computer Science, Campus Box 430, University of Colo-
rado, Boulder, May, 1991.

Tolerating Latency by PrefetchingJava Objects

BrendonCahoon

KathrynS. McKinley

Departmenbf ComputerScienceUniversity of MassatusettsAmhest, MA 01003 ,{cahoon,mkinley} @cs.umass.edl

Abstract

In recentyears, processorspeechasbecomencreasingly
faster than memoryspeed. One technique for improving
memoryperformances data prefetdhing which is success-
ful in array-basedcodeshut only noware reseachers apply-
ing to pointerbasedcodes.In this paper we evaluatea data
prefetding technique called greedyprefetting, for tolerat-
ing latencyin Javaprograms.In greedyprefetding, whena
loop or recursive methodupdatesan objecto, we prefeth
objectsto which o refels. We describeinter- and intra-
procedual algorithmsfor computingobjectsto prefetd and
we presentpreliminary resultsshowingits effectivenes®on
a few, small Java programs. Prefething improves perfor-
mance but there s significantroomfor furtherimprovement.

1. Intr oduction

Modernprocessospeedsontinueto significantlyoutpace
adwancesn memoryspeed Eventhoughmodernprocessors
usedeepmemoryhierarchiesthe disparitybetweernproces-
sorandmemoryspeedsesultsin an underutilization of re-
sourceslueto memorybottlenecks.

Softwarecontrolleddataprefetchings atechniqudor im-
proving memory performanceby tolerating lateng in the
memory hierarchy Compilersstatically analyzeprograms
and insert prefetchinstructionsto load datainto the cache
prior to use. Previous researctshavs the benefitsof soft-
ware prefetchingtechniquesin array-basedscientific pro-
gramg4, 14, 2, 13]. Prefetchingn array-basedodess sim-
plerthanin pointerbasedcodes.Givenan array the size of
eachelementanda regular accesgattern,the compilercan
computeheaddres®f arny elemenin thearrayandschedule
prefetches$o elementsn aloopthatwill beaccesseih future
iterations. Array-basedcodesarealsoamenabldo analyses
whichallow compilersto restructurdoops,usingtechniques
suchasloop tiling, to improve spatialandtemporallocality.
Recenwork usegrefetchingor programswith dynamically
allocateddatastructureg11, 12, 16]. However, this work
only considersC programs.

Compilerscannotusethe sameapproachn pointerbased

*Thiswork is supportedy NSFgrantEIA-9726401,anNSFInfrastruc-
ture grant CDA-9502639,Darpagrant5-21425,and Compag. Kathryn S.
McKinley is supportecdby an NSF CAREER Award CCR-9624209.Any
opinions, findings, and conclusionsor recommendationsxpressedn this
materialarethoseof theauthor(s)anddo not necessarilyeflecttheviews of
thesponsors.

codeshecausseparatelynamicallyallocatedobjectsaredis-
joint andthe accesgatternsarelessregularandpredictable.
Givenanobjecto, weknow theaddressf objectshato refer
encesandcannotprefetcharbitraryobjectswithoutfollowing
pointerchains.

In this paper we evaluateone simple prefetchingtech-
nique, called greedy prefetching,on Java programs. Luk
andMowry introducedandevaluatedthe greedyprefetching
algorithmfor recursve datastructuresn C programs[12].
We investigatethe applicability and effectivenessof greedy
prefetchingfor Java programs.Our specificcontributionsin-
clude a new intra-procedurablataflow analysisfor finding
objectsto prefetchthe useof aninter-procedurabnalysisto
improve our analysisin the presencef recursionanda pre-
liminary evaluationon object-orientegorograms.

Object-orientedprogramspose analysis challengesbe-
causahey mostlyallocatedatadynamically containfrequent
methodinvocations,and often implementloops with recur
sion. We useVortex, a compiler containingadvancedanal-
ysesspecificallytailored for object-orientedanguaged9].
Our preliminary resultsindicate that greedy prefetchingis
effective on a few, small object-orientedprograms. Also,
classanalysisand methodinlining enableeffective greedy
prefetching. We plan to implement more sophisticated
prefetchingechniquesn thefuture.

2. RelatedWork

In thissectionwe giveabrief summaryof relatedwork for
improving memoryperformancef pointerbasedcodes Pre-
viouswork investigatingprefetchingon pointerbasedcodes
only usesC programs.

Lipasti et. al., presentone of the initial evaluationsof
prefetchingpointerbasedcodes[11]. Thetechniquecalled
SRAID, generategrefetchinstructionsfor function argu-
mentsprior to calls. Resultsshav cachemissrateimprove-
mentson severalprograms.

Luk and Mowry introduce and evaluate the greedy
prefetchingalgorithmusing C versionsof the Oldenbench-
marks[12]. The main contribution of our work is to use
dataflow algorithmsratherthana loop-basedapproachand
we extendthe analysisfor object-orientedeatures.Our pre-
liminary resultsshawv similar performanceesultsto Luk and
Mowry on Java programs. Luk and Mowry alsointroduce
history basedprefetchinganddatalinearization,andpresent
limited resultson handoptimizedexamples.Roth and Sohi

class SList { class DList {

int dat a; int dat a;

SLi st next; DLi st next, prev;

int sun() { int sun() {
prefetch(next); prefetch(next);
if (next !'= null) Il prefetch(prev)

return data + next.sun();
return data;

}}

if (next !'=null)

return data;

I

return data + next.sun();

class Tree {
int dat a;
Tree left,
int sun() {
prefetch(left);
; prefetch(right);
int s = data;
if (left '=null) s += left.sun();
if (right '=null) s += right.sum);
return s;

right;

}}

Figure 1. Prefetch examples for singly linked list, doubly linked list, and binary tree

evaluatea hardware/softvareprefetchingapproactor toler-
atingmemorylateng in pointerbasedcodeq16]. Thetech-
nigueusegump-pointerprefetchingwhichis anextensionof
Luk andMowry’s history-pointertechnique.Roth and Sohi
presentresultsusingthe C versionof the Oldenbenchmark
suite. We intendto extendthesetechniquedor Java in the
future.

Several researchersmprove the memory performance
of pointerbasedprogramsby rearrangingdataat run time
[3, 6,7, 8, 18]. Rubin, Bernstein,and Rodehcombinedata
reomganizationand a differenttype of greedyprefetchingto
improve performancen asmallC kernel[17].

3. GreedyPrefetching

We extend Luk and Mowry's algorithm for prefetching
object-orientedanguagesuchas Java. During the traver
salof a linked datastructure greedyprefetchingattemptso
prefetchobjectsthatwill beaccesseth thefuture. Its major
limitation is thatit canonly schedulgrefetchinstructionsfor
objectsdirectly connectedo thecurrentobject.

Figurel shavs simpleclassdefinitionsfor asingly linked
list, adoublylinkedlist, anda binarytree(we usethe exam-
plestoillustrategreedyprefetchingandnotasgoodexamples
of object-orientegorogramming) Eachclasscontainsasum
methodwhich addsthe elementsn the datastructure.In the
example weinsertaprefetchinstructionfor thenext objectin
thelinkedlist. We cannotprefetchobjectsfurtheraheadbe-
causave donotknow theaddres®f futureobjects.Prefetch-
ing two objectsaheadpr ef et ch(t hi s. next. next),
requiresgheaddres®f t hi s. next whichis unknovn until
theprogramdereferenceshi s.

Achieving the full benefitsof prefetchingrequiresthe
computationtime betweenthe prefetchand use of the ob-
jectto be greaterthanor equalto the memoryaccesgime to
completelyhide the latengy. However, evenif the computa-
tion time is lessthanthe memoryaccesgime, the prefetch
canpartially hidethelateng. In thelinkedlist example,we
only partially hidethereadlateng of next if thecostof the
additionandfunction call is lessthanthe costof a memory
accessSimilarly, we typically only partially hidethelateng
of theprefetchof | ef t in thebinarytreeexample.However,
sincewe alsoprefetchr i ght , we may completelyhide its
memorycost.

The greedyprefetchalgorithm consistsof two parts; a
phasewhich finds objectsto prefetchfollowed by a phase
which scheduleghe prefetchinstructions. The algorithmis
greedybecauseave do not performary analysisto determine
if anobjectis alreadyin the cacheandwe try to prefetchas
muchaspossible. Our algorithmusesbothintra-procedural
andinter-proceduradataflow analysisto find objecttraver
salsin loopsandrecursve calls.

3.1 DetectingRecurrent Object Updates

A recurrentobject updateis a statemenbf the form, o
= 0. next, occuringin aloop or recursve methodcall. In
Figurel,next . sum() andl eft. sum() areexamplesof
recurrenbbjectupdateoccurringin recursve calls.

Detectingrecurrentobject updatesis similar to finding
loop inductionvariables.Previous algorithmsfor finding in-
ductionvariablesareeitherloop based1] or usestaticsingle
assignmen{SSA) form [19]. We presenta traditional data
flow analysisapproacho finding recurrentobjectupdates.

The algorithmfor detectingrecurrentobjectupdatesre-
quiresboth intra- and inter-proceduralanalysis. The intra-
procedurahnalysisphasedetectsecurrentobjectupdatesn
loops. Theinter-procedurabhnalysisdetectsecurrentobject
updatesn recursve methodcalls. Luk and Mowry do not
performinter-proceduralanalysisand only identify self re-
cursivecalls.

Our intra-proceduratiataflow analysisis a forward, iter-
ative traversalthatusesa threestagelattice to capturerecur
rentobjectupdatesat eachpointin the program.We definea
functionto mapeachobjectto alatticevalueat eachpointin
theprogram.

Not recurrent. Thetopelemenindicatesanobjectis notre-
current.

Possiblyrecurrent. Thefirst time we processanobijectit is
potentiallyrecurrent.

Recurrent. Thebottomelemenindicatesanobjectis recur
rent.

At eachstoreexpressiorin theprogramwe defineatrans-
fer functionwhich assignbjectsto latticevalues.

o [If the storeexpressionis a field assignmenbf the form
0 = p. next,whennext is anobjectreferenceandp
is notrecurent, thenwe marko possiblyrecurent If p
is possiblyrecurrent theno is recurrent

Table 1. Olden Benchmark Suite

[Name | MainDataStructure(s)] LOC | Methods [Bytecodelen. | Inputs | Inst.Issued | TotalMemory |
mst arrayof lists 206 39 1452 512nodes 406M 10.4MB
perimeter | quadtree 219 44 1717 4K x 4K image 239M 4.3MB
treeadd binarytree 66 11 474 1M nodes 264M 24.3MB
tsp binarytree,linkedlist 273 15 1711 60,000cities 1106M 7.2MB
Voronoi binarytree 612 89 4138 20,000points 1043M 19.5MB

o If the storeexpressionis anobjectassignmentp = p,
thenassignthevalueof p to o.

o For all other storeexpressionsp = expr, we assign
thevaluenotrecurrentto o.

At termination,objectsat ead program point belongto one
of the 3 lattice values. The dataflow meimge function en-
suresthe orderingnot recurrent > possibly recurrent >
recurrent.

We use the possibly recurrent value to detectlooping
structures. The first time we analyzea loop, an object, o,
occurringon the LHS of a field referencebecomegossibly
recurrent(e.g., 0 b. next). On the seconditerationof
the analysisthe objectbecomesgecurrentif the baseobject
of thefield referencdi.e., b) is alsopossiblyrecurrent If b
is notrecurrent, theno’s valueremainsthe same.The algo-
rithm incorrectlymarksobjectsin loop invariantexpressions
asrecurrent(e.g.,t in o=p. next; t=o0.next). Moving
loop invariantexpressionut of loopseliminatesthis prob-
lem.

We alsotrack the fields usedin the recurrentobject up-
dates. In Figure 1 for example, we record that next is
the only field involvedin the recurrentobjectupdatefor the
traversalof thedoublylinkedlist.

3.2 SchedulingPrefetchinstructions

We greedilyschedulgrefetchinstructionsfor objectsour
algorithmfindsrecurrentduringtheanalysipphase Weinsert
prefetchinstructionsat the earliestpoint whenwe know the
baseobjectis not null. Theintra-proceduratlassanalysisin
Vortex indicateswhenobjectsarenot null. In Figurel, the
t hi s pointeris the baseobjectandwe know it is not null
uponenteringsum

The schedulingphaseusesthe field informationthe anal-
ysis phasecomputesto only scheduleprefetchedor fields
involvedin recurrentobjectupdates.For the doubly linked
listin Figurel, we only generate prefetchof thenext field
andnotthepr ev field. Luk andMowry’s algorithmgener
atesboth prefetchesincethey do nottrackthefieldsusedin
therecurrenupdates.

During schedulingwe performa simplealiasanalysisto
ensurethe scheduleronly generatesa single prefetchin-
structionfor groupsof aliasedrecurrentobjects. Tempo-
rary objectscausealiaseswhen usedin sequencesuchas
p=0. next; o=p;. In aloop, we markbotho andp as
recurrent, but we only generatea prefetchfor oneof the ob-
jects.

3.3 Inter-procedural Algorithm

We useaninter-procedurahblgorithmto find recurrenob-
ject updatesoccurringin recursve methodcalls. Using an
inter-proceduratlataflow analysids anextensionof Luk and
Mowry’s original algorithmwhich is only ableto detectself
recursve functioncalls.

The inter-proceduralalgorithm is a top-davn, context-
sensitve traversalof the call graph. A contet-sensitve al-
gorithm enablesthe analysisphaseto determinethe fields
usedin recurrentobject updates. A contet-insensitve al-
gorithm cannottrack the recurrentfields becausedistinct
methodcalls aretreatedsimilarly. For example,in Figurel,
a contet-sensitve analysisdeterminesthat t hi s. | eft
andt hi s. ri ght arebothrecurrentfieldsin therecursve
method,sum A contet-insensitve analysisonly analyzes
sumonceandwill notdeterminghatbothl ef t andri ght
arerecurrenfields.

The interproceduralanalysisusesour intra-procedural
analysiso computetherecurrentobjectswithin a procedure.
At eachcall site, we map the recurrentlattice valuesfrom
eachactualto eachformal. Then,we analyzethe methodus-
ing the intra-procedurahnalysis. Recursie calls causethe
analysisto iterate until the recurrentstatusof the formals
reachesfixedpoint.

3.4. Summary of Extensionsfor Java

Object-orientedanguagesontainfeatureswvhich are po-
tentially problematicfor the greedyprefetchalgorithm. We
believe inter-proceduralanalysisimprovesthe effectiveness
of greedyprefetchingpecausebject-orienteghrogramaften
userecursionto expresslooping constructs.In Figurel, the
summethodusesrecursionto sumthe objectsin the linked
list. In C, programmergypically usea while statemenfor
thesamefunction.

Toimprovetheeffectivenes®f greedyprefetchingn Java,
we run our algorithmafter performingclasshierarchyanaly-
sisandinlining. Oneuseof classhierarchyanalysisenables
virtual methodnvocationgo betransformednto directfunc-
tion calls which improvesour inter-proceduralanalysisand
alsoimprovesinlining [10]. We rely uponinlining to remove
unnecessarmnethodcalls that encapsulateeferencego po-
tential recurrenffields. The following is a typical Java code
sequencéor traversinga linkedlist.

Enuneration e = list.elenments();
whi | e (e. hasMoreEl enents()) {
List | = (List)e.nextEl enment();

100

store stall m—
load stall ===
inst stall ——

801 busy 1

60

401

Normalized Execution Time

20

"Is/’ls, pe/;oe,, ”e ’g@ [So fsp or O*o,?’o,,
e @r@ %, "
o

Figure 2. Performance of Greedy Prefetching

100
90
80
70
60
50

unnec. =
early ===
late —
useful

40
30
20
10

0

Percentage of Prefetches

55y Py, Tadleg & Yok,
Y r, 0 0 00,
S48 @1‘2791@ a‘)gﬁ f L '70/20/

Figure 3. Prefetch Effectiveness
/'l conputation involving |

}

If I'i st isalinkedlist with anext field, thentheexpression
e. next El ement hidestheaccesf | . next andtheex-
pressione. hasMor eEl enent s hidesthe testfor nul I .
Inlining eliminatesthe calls to hasMor eEl enent s and
next El enent .

In the absenceof inlining, we can extend the inter
proceduraldata flow analysisto track methodsreturning
fieldsandusetheinformationto checkfor recurrentobjects.
We plan on extendingour analysisin the future, but inlining
appearso provide mostof this benefit.

4. Experimental Results

We implementthe greedy prefetchingalgorithm in the
Vortex optimizing compiler[9]. We useVortex to compile
Java programs performobject-orientecandtraditional opti-
mizations,andgeneratéSparcassemblycode.

We presentpreliminary results using several programs
from the Oldenbenchmarlsuite[5]. Researchersave used
the Olden suite to evaluateoptimizationsfor pointerbased
programg?7, 12, 16]. Table1 lists the Oldenbenchmarksve
usein our experimentsalongwith characteristicabouteach
program.We translatedheprogramsgpriginally writtenin C,

to Java usingan object-orientedstyle. We compilethe pro-
gramsusing JDK 1.1.6. The lines of code (LOC) number
excludescommentsandblanklines. The bytecoddengthis
the size of the codesegmentsin bytesand not the number
of instructionsin the programs.We computethe total mem-
oryusingt ot al Menor y() andf reeMenor y() fromthe
Runt i ne class.We disablegarbageollectionduringall our
experiments.

We useRSIM to performa detailedcycle by cycle simu-
lation of our programg15]. RSIM modelsa modernout-of-
orderprocessobaseduponthe MIPS R10000. The default
processoruns at 300 MHz, issuesup to 4 instructionsper
cycle,andhasa 64 entryinstructionwindow. Thefunctional
unitsinclude2 ALU, 2 FR 1 branchand2 addressinits. The
instructionwindow has64 entries.We usethedefaultvalues
for mostof theparameterexceptfor thecachehierarchy The
following tablelists the memoryhierarchyRSIM parameters
we usein our experiments.The default cachesizesaresmall
for modernprocessordyut matchour datasizesanddecrease
simulationtimes.

L1 Cache 16 KB, directWT, split

L2 Cache 64 KB, 4-way, WB, unified
RequesPorts 2

Line Size 32B

L1/L2/Mem hit time 1/12/60cycles
CacheMissHandlers(MSHR) 8,8(L1, L2)

Figure2 shaws preliminaryperformanceesultsof greedy
prefetching.We normalizethe resultsto the executiontime,
in cycles,of the programswvhenwe do not performprefetch-
ing. We usethe RSIM corventionto accountfor busy and
stall cycles. We mark a cycle busyif the processoretires
4 instructions(the maximum). Otherwise the first instruc-
tion that cannotbe retired by the cycle accountdor a stall.
Figure2 showvs improvementsof 3% (mst), 6%, (perimeter),
12% (treeadd),and <1% (tsp, voronoi). Improvementsare
dueto fewerloadstallsin the programs Evenafterprefetch-
ing, the percentagef loadstallsremainsquite high.

Figure 3 provides insight into the effectiveness of
prefetchingoy dividing the prefetchednto variouscategories.
A usefulprefetcharrivesontime andis accessedl helateny
of a late prefetchis only partially hiddenbecausea cache
miss occurswhile the memorysystemretrievesthe datum.
The cachereplacesan early prefetchbeforethe useof the
datum. An unnecessarprefetchhits in the cacheor is co-
alescednto an MSHR. Figure 3 cateyorizesthe prefetches
for both L1 and L2 prefetches.We scalethe graphfor the
L2 prefetchedo the percentag®f requestgo the L2 cache.
Useful,late,andearly prefetchesequireaccesset the next
level in the memoryhierarchy For eachprogram prefetches
to the L1 cachecontaina small numberof usefuland late
prefetchesHowever, mary of the prefetchegreunnecessary
becausé¢hey hitin theL1 cache Mostprefetchesreearlyin
the L2 cachebecausehe cacheis small, unified, andwrite-
backsomuchof thedataarereplaced.

Table 2. Cache Statistics with and without Prefetching

Program Reads| L1 Hit L1 Miss (%) L2 Hit L2 Miss (%) Prefetches
(M) (%) conf. cap. coal. (%) conf. cap. coal || static dyn.L1(M) dyn.L2 (M)
mst 135 78.3 0.6 138 7.3 35.8 7.8 57.3 0
w/pf 14.2 81.5 0.6 8.9 9.0 43.8 10.5 45.7 0 8 2.235 743
. 30.4 95.9 0.9 0.9 2.3 53.4 4.5 42.0 0
perimeter ot || 304 | 968 | 06 07 19 | 530 | 66 403 0 8 32 071
treeadd 115 81.6 0.1 7.1 112 3.1 0.9 96.0 0
w/pf 11.3 85.2 0.1 1.4 13.3 14.0 5.9 80.1 0 2 2.26 .659
tsp 106.3 97.4 0.6 1.0 1.0 50.1 144 355 0
w/pf 126.4 96.5 1.0 0.7 1.8 77.2 3.2 19.6 0 31 25.8 1.08
VOronoi 113.8 93.6 15 2.2 2.7 59.0 126 264 20
w/pf 113.3 93.8 1.4 2.1 2.7 56.9 144 262 25 18 .816 .150
Table? listsseveralimportantcachestatisticfor eachpro- [6] T. M. Chilimbi, B. Davidson,andJ. R. Larus. Cache-conscioustruc-
gramwith andwithoutprefetching We divide themissstatis- TU“E‘)deﬁ”itiO”; '”I_F’foceemgg@fthe 13?9A|C'V' S'?':L/r;gfggfeence
P : : : : onProgrammingLanguae DesignandImplementatio , pages
ticsinto cqnfhct, capacnyandcoalescedn_lsses_(cold misses 13-24 Atlanta, GA, May 1999,
areinsignificant).A coalescedeferencemissesn thecache, [7] T.M. Chilimbi, M. D. Hill, andJ.R. Larus. Cache-conscioustructure
but hits in a MSHR. Thetablealsodisplaysstatisticson the layout. In Proceedingsof the 1999 ACM SIGPLANConfeenceon
numberof staticanddynamicprefetchesThe staticprefetch ProgrammingLanguage DesignandimplementatioPLDI), pagesl—
numbergdo notinclude23 prefetchinstructionshe compiler 12,Atlanta, GA, May 1999, . .
. . . . [8] T. M. Chilimbi andJ. R. Larus. Using generationabarbagecollec-
insertsinto the Java I|brary code.In generalprEfetChmgm' tion to implementcache-conscioudataplacement.In The 1998 In-
provesthehit ratesandreducesapacitymisses. ternationalSymposiunen MemoryManagement Vancouer, BC, Oct.
1998.
5. Conclusion [9] J.Dean,G.DeFouw, D. Grove, V. Litinov, andC. Chambers Vortex:
. An optimizingcompilerfor object-orientedanguagesln Proceedings
Traditional compileralgorithmsfor improving the cache of the 1996 ACM SIGPLANConfeenceon Object-OrientedProgram-
performanceare difficult to perform on languagesthat ming SystemslLanguayes & Applications(OOPSLA'96), pages83—
mostlyallocatememorydynamically Compilerinserteddata 100,SanJose CA, Oct. 1996. o o
prefetchingis an effective techniquefor toleratinglateng, 101 J:-DeanD. Grove, andC. ChambersOptimizationof object-oriented
. : . programsausingstaticclasshierarchyanalysis.In ECOOP’95 Confer
evenin pointerbasedprograms. In this paper we evaluate enceProceedingsAarhus Denmark Aug. 1995.
the usefulnes®f prefetchingin Java programs.We present [11] M. H. Lipasti,W. J.Schmidt,S.R.Kunkel, andR. R. RoedigerSRAID:
anintra-andinter-procedurablgorithmfor asimpleprefetch- SoftV\are_prefetchingin pointer and call-intensie ewironments. In
ing algorithm,calledgreedyprefetching.Our preliminaryre- E;O,\;iecerg;‘gfééi‘fezitgg”“a"EEE/'DCM International Symposium
sultsshav |mpr0vementsdueto prefetchlng. However, our [12] C.-K.Luk andT. C. Mowry. Compilerbasedorefetchingfor recursve
resultsindicatethatthereis roomto improve prefetchingef- datastructures.In ASPLOS-VII:SeventhinternationalConfeenceon
fectivenessn Java programsbecausenary prefetchinstruc- Architectual Supportor Programming-angugiesandOperating Sys-
tionshit in thecache We planto continueinvestigatingoetter tems page222-233CambridgeMA, Oct. 1996. .
. . [13] N. MclIntosh. CompilerSupportfor Softwae Prefetdiing. PhDthesis,
prefetchingalgorithmsfor Java. RiceUniversity May 1998.
References [14] T.C. Mowry, M S. Lam,andA. Gupta. Designan_devaluatioqof a
compileralgorithmfor prefetching.In ASPLOS-VFifth International
[1] A.V.Aho, R. Sethi,andJ. D. Ullman. Compiles, Principles, Tech- Confeenceon Architectuial Supportfor ProgrammingLanguagesand
niquesandTools Addison-Wsle, ReadingMA, 1986. 5] \C/)p;la;i;gF?y;tems)agre]s(ﬁ—géo\(/:t.Alggz. R SIM ref I
: :) . S. Pai, P. Ranganatharand S. V. Adve. referencemanual
(21 rliqigrs?g:e(ljr;i;g?;gﬁng(r)iﬂiinsgrgclw?g d;r;é(;rgi[r)]léesr)tfe fhhe (_/ersionl.O). Tech_nicalReportTechnicaI_Repqrt9705, Rice Univer
1995 International Confeenceon Parallel Architectues and Compi- sity, Dept.of Electr}calanqu'mputelE.ng|neer|ngAug. 19_97'
lation Techniques pagesl9—26 LimassosCyprus,Junel995. [16] A. RothandG.Sohl.Effectrvejump-pmnterprefetchl_ng‘or I|nkedd§ta
.] . structuresin Proceeding®fthe26thAnnualinternationalSymposium
[3] B. Calder C. Krintz, S. John,gnd T. Aust|n: Cache-conscioudata on ComputerArchitectue, Atlanta, GA, May 1999.
ple_lcement.ln ASPLOS'V”I:E'ght.h InternatlonaIConfeenc_eon Ar- [17] S.Rubin, D. Bernstein,and M. Rodeh. Virtual cacheline: A new
chitectual Supportfor ProgrammingLanguaes and Openting Sys- techniqueto improve cacheexploitation for recursie datastructures.
tems SanJoseCA, Oct. 1998. In CompilerConstructiongth InternationalConfeence CC’99, pages
[4] D.CallahanK. KennedyandA. Porterfield.Softwareprefetching.In 259-273Springer Mar. 1999.
ASPLOS-IVFourth International Confeenceon ArChiteCtUrUalSUp' [18] D. N. Truong, F. Bodin, and A. Seznec. |mprw|ng cachebehaior
port for ProgramminglLanguaes and Operating SystemspagesA0— of dynamicallyallocateddatastructures.In Proceedingsf the 1998
52, SantaClara,CA, Apr. 1991. International Confeenceon Parallel Architectues and Compilation
[5] M. C. CarlisleandA. Rogers.Software cachingandcomputatiormi- Tedhniques Paris,France Oct. 1998.
grationin olden. In Proceedingsf the 1995ACM SIGPLANSym- [19] M. Wolfe. Beyond inductionvariables. In Proceedingof the 1992

posiumon Principles and Practice of Parallel Programming pages
29-38,SantaBarbaraCA, July 1995.

ACM SIGPLANConfeenceon ProgrammingLanguaye Designand
ImplementatiofPLDI), SanFranciscoCA, Junel992.

An Introduction to DMM X (Dynamic M emory M anagement Extension)

J. Morris Chang, Witawas Srisa-an and Chia-Tien Dan Lo

Department of Computer Science
[llinois Institute of Technology
Chicago, IL, 60616-3793, USA

{chang | sriswit | lochiat} @charlie.iit.edu

Abstract

Automatic Dynamic Memory Management (ADMM) allows
programmers to be more productive and increases system
reliability and functionality. However, the true
characteristics of these ADMM algorithms are known to be
slow and non-deterministic. It is a well-known fact that
object-oriented applications tend to be dynamic memory
intensive. Therefore, it is imperative that the programmers
must decide whether or not the benefits of ADMM outweigh
the shortcomings. In many object-oriented real-time and
embedded systems, the programmers agree that the
shortcomings are too severe for ADMM to be used in their
applications. Therefore, these programmers while using
Java or C++ as the development language decide to
allocate memory statically instead of dynamically. In this
paper, we present the design of an application specific
instruction extension called Dynamic Memory Management
eXtension (DMMX) that would allow automatic dynamic
memory management to be done in the hardware. Our high-
performance scheme allows both allocation and garbage
collection to be done in a predictable fashion. The allocation
is done through the modified buddy system, which allows
constant time object creation. The garbage collection
algorithm is mark-sweep, where the sweeping phase can be
accomplished in constant time. This hardware scheme would
greatly improve the speed and predictability of ADMM.
Additionally, our proposed scheme is an add-on approach,
which allows easy integration into any CPU, hardware
implemented Java Virtual Machine (JVM), or Processor in
Memory (PIM).

index terms: automatic dynamic memory management,
real-time garbage collector, mark-sweep garbage collector,
instruction extension, object-oriented programming

1. Introduction

By early 2000s, many industrial observers predict that
the VLS| technology would alow fabricators to pack 1
billion transistors into a single chip that can run at Giga-
Hertz clock speed. Obviously, the challenge is no longer
how to make billion-transistor chips, but instead, what kind
of facilities should be incorporated into the design [5]. The
current trend in CPU design is to include application specific

instruction sets such as MM X and 3D-now as extensions to
basic functionalities. The rationales behind such approaches
are obvious. First, space and cost limitations are no longer
issues. High-density chips can be manufactured cheaply in
current semiconductor technology. Second, these application
specific instruction sets are included to alleviate
performance bottlenecks in the most commonly used
applications such as 3-D graphic rendering and multimedia.
These rationales closely follow the corollary of Amdahl’s
law: Make the common case fast. Amdahl’s Law reminds us
that the opportunity for improvement is affected by how
much time the event consumes. Thus, making the common
case fast will tend to enhance the performance better than
optimizing rare cases [7]. Since the biggest merit of
hardware is speed, the significant speedup can be gained
through hardware implementations of common cases.

As the popularity of object-oriented programming and
graphical user interface increases, applications become more
and more dynamic memory intensive. It is well-known
among experienced programmers that automatic dynamic
memory management functions (i.e. alocation and garbage
collection) are slow and non-deterministic. Since object-
oriented applications prolifically allocate memory in the
heap, it is aso no coincident that such applications can run
up to 20 times slower than the procedural counterparts. A
study has also shown that Java applications can spend 20%
of the execution time in dealing with dynamic memory
management [1]. Unlike stack or queue, heap is not a well-
defined data structure. Allocating memory in the heap often
requires some form of search routines. In software
approaches to heap management, searching is done in
sequential fashion (i.e. linked list search). As the number of
existing objects grows, the search time would grow linearly
longer as well. Studies have shown that applications written
in C++ can invoke up to ten times more dynamic memory
management calls than comparable C applications [10].
Apparently, dynamic memory management is a common
case in object-oriented programming. With Amdahl’'s
corollary in mind, the need of a high-performance dynamic
memory manager is obvious.

Deterministic turnaround timeis avery desirable trait for
real-time applications. Presently, software approaches to
automatic dynamic memory management often fail to yield

predictable turnaround time. The most often used software
approach in maintaining allocation status is sequential fit or
segregated fit. These two approaches utilize linked-list to
keep the occupied chunks or free chunks. With linked-list,
the turnaround time often relates to the length of the list. As
the linked-list becomes longer the sequential search time
would grow longer as well [9]. Similarly, the software
approaches to garbage collection also yield unpredictable
turnaround time. Basically two of the most common
approaches for garbage collection are mark-sweep and
copying collector. In both instances, the turnaround time is
not deterministic.

According to Nilsen and Schmidt, one of the ways to
achieve hard real-time performance for garbage collection is
through the hardware support [8]. In this paper, we introduce
an application specific instruction extension called Dynamic
Memory Management eXtension (DMMX) that includes
h_malloc, mark, and sweep instructions at the user-level. In
h_malloc, our high-performance allocation scheme alows
alocation to be completed in a few instruction cycles.
Unlike software approaches, our scheme is fast and
deterministic. To perform garbage collection, the mark
instruction is invoked repeatedly until all the live objects are
marked on a bit-map. Once the marking phase is completed,
the sweep instruction is called. Since we have a dedicated
hardware to perform the sweeping, this phase can be
completed in afew instruction cycles.

The remainder of this paper is organized as follow.
Section 2 provides a top-level architecture of our instruction
set. Section 3 describes the internal structure of the Dynamic
Memory Management Unit (DMMU). Section 4 addresses
the architectural support issues for the DMMU. Section 5
concludes this paper.

2. Overview of the DMM X

In our proposed Dynamic Memory Management
eXtenstion (DMMX), there are three user-level instructions,
h_malloc, mark, and sweep. These three instructions are
used as the communication channels between the CPU and
the Dynamic Memory Management Unit (DMMU). This
DMMU can either be packaged inside CPUs or outside. This
unit can also be included inside the hardware implemented
Java Virtual Machines (i.e. PicoJava Il from Sun
Microsystems). The main purpose of the DMMU is to take
responsibility for managing heap space for all processes in
the hardware domain. The proposed DMMU utilizes the
modified buddy system combined with the bit-map approach
to perform constant-time allocation [4]. Usually, each
process has a heap associated with it. In the proposed
scheme, each heap requires three bit-maps, one for allocation
status (A bit-map), one for object size (S bit-map), and one

for marking during the garbage collection (X bit-map). It is
necessary to place these three bit-maps together all the time,
since searching and modification to these three bit-maps are
required for each garbage collection cycle. Figure 1
demonstrates the top-level integration of the DMMU into a
computer system.

Figure 1. Thetop-level description of a DMMU

01234567...
[1 I
[1 I
[| T
| A bit—vct| Sbit—vct| X bit_VCt’—'JJ
h_maloc/ % 3 t
_mark/sweep y,
< p—— sork/brk
CPU | object size DMMU 1
object_pointer

Figure 1 illustrates the basic functionality of the DMMU.
First, the DMMU provides services to CPU by maintaining
the memory allocation status inside the heap region of the
running process. Thus, the DMMU must be able to accessthe
A bit-map, S bit-map, and X bit-map of the running process.
Similar to TLB, the DMMU is shared among all processes.
The parameters that the CPU can pass to the DMMU are the
h_malloc, mark, or sweep signal, the object_size (for the
allocation request), and the object_pointer. The operations of
the DMMU are very similar to the function calls (i.e.
malloc()) in C language. Thus, object pointer is either
returned from the DMMU in alocation or passed on to the
DMMU during the garbage collection process. Thegc_ack is
also returned at the completion of garbage collection cycle.
If the allocation should failed, the DMMU would make a
reguest to the operating system for additional memory using
system call sbrk() or brk().

Since the agorithms used in the DMMU are
implemented through pure combinational logic, the time to
perform a memory request or memory sweeping is constant.
On the other hand, the time for a software approach in
performing an allocation or a sweeping cycle is non-
deterministic. As stated earlier, Java applications spend
about 20% of the execution time in dealing with automatic
dynamic memory management. This extensive execution
time can be greatly reduced with the use of the DMMU.

3. Internal architecture of the DMM U

Inside the DMMU, three bit-vectors are used to keep all
of the object relevant information such as allocation status of
the heap, the size information of occupied blocks and free
blocks, and the live object pointers. The allocation status is
kept on the Allocation bit-vector (A bit-vector). When a
h_malloc is called, the size information is received by the

Complete Binary Tree (CBT). This dedicated hardware unit
is responsible for locating the first free memory chunk that
can satisfy the request using the modified buddy system.
Besides locating the memory chunk, the CBT also has to
send out the address of that newly allocated memory and
updates the status of that memory block from free to
allocated. It is worth noting that while the free block lookup
is done using size index of 2", the system only allocates the
requested size. For example, if 5 blocks of memory is
requested, the system will have to find the first free chunk of
size 8 (2%). After a chunk is located, the system only
allocates 5 blocks and relinquishes the remaining 3 blocks.
Each time an object is created or reclaimed, the Sze bit-
vector (S bit-vector) is instantly updated by a dedicated
hardware, S-Unit. The auXiliary bit-vector (X bit-vector) is
only used during the marking phase of the garbage collection
cycle. Once the marking phase is completed, the sweep
instruction isinvoked. A dedicated hardware, bit-sweeper, is
used to perform this task in constant time. The internal
architecture of the DMMU is given in Figure 2.

Figure 2. Internal architecture of the DMMU.

object_sizeinput (A1
objedt_pointerinput 61 - Complete Binary Tree (CBT)

h_malloc/ mark
Update allocation status (A3) TCurrent dlocation status (A2)
Object pointers
for marking (G2)) Allocation bit-vector

signal input (A1, GI)
(A bit-vector)
I

4,G8| SUnit_(Size encoder) |
IV YI LY Updas
sxaff(g‘)

object_pointer output (A2)
>

Size bit-vector

(Shbit-vector)
ERAER R
@F FFFFFFTT s

i i Aux bit-vector output (G3)
(A) Stepsrequired for allocation — (X bitvector)
(G) Stepsrequired for garbage collection

sweep signd input (G3)

Figure 2 depicts the sequence needed to complete the
allocation or garbage collection. For example, if an
allocation of size 5 is requested, Als indicate the first step
needed to complete the allocation. According the Figure 2,
the h_malloc and input signal would go to logic '1’' and the
requested size would be given to the CBT. Sincethe CBT isa
combinatorial hardware, the free memory chunk lookup, the
return address pointer, and the new allocation status signals
can be produced at the same time (A2s). Next, the new
allocation status is latched in the A bit-vector (A3). Since the
S-Unit is also a combinatorial hardware, as soon as the A bit-
vector is latched, the new size information is available to the
S bit-vector. Lastly, the new size information is latched in
the S bit-vector (A4) and the alocation is completed. The
seguence of garbage collection can also be traced in asimilar
fashion.

4. Architectural support for DMMU

This section summarizes the process of memory
allocation and deallocation in the DMMU. Since the bit-
maps of a given process may be too large to be handled in
the hardware domain, the bit-vector, a small segment of the
bit-map, is used in the proposed system. This idea is very
similar to the idea of using TLB (Trandation Look-aside
Buffer) in the virtual memory. Due to the close tie between
the Sbit-map, A bit-map, and X bit-map, the term bit-vector
used in this section represents one A bit-vector (of A bit-
map), one S bit-vector (of S bit-map), and one X bit-vector
(of X bit-map). Figure 3 presents the operation of the
proposed DMMU.

When a memory alocation request is received (step 1),
the requested size is compared against the
largest_available size of each bit-vector in a parale
fashion. This operation is similar to the tag comparison in a
fully associated cache. However, it is not an equality
comparison. There is a hit in the DMMU, if one of the
largest_available sizeis greater or equal to the request size.
If there were a hit, the corresponding bit-vector would be
read out (step 2) and sent to the CBT [4]. The CBT is a
hardware unit to perform allocation/deallocation on a bit-
vector. For the purpose of illustration, we assume that one
bit-vector represents one page of the heap.

After the CBT identified the free chuck memory from the
chosen page, the CBT will update the bit-vector (step 3) and
the largest_available _size field (step 3*). The object pointer
(in terms of page offset address) of the newly created object
is generated by the CBT (step 4). This page offset combines
the page number (from step 2*) into the resultant address.

Figure 3.The allocation and gar bage collection processes of the DMMU

starting address to be freed

age number [page offset
page number bit-vectors largest_available_size
[]
| |
| | @
il | - ©
[1
*,
e sfo v e 14
@* [®"
' %) cBT | B ¥
page number bit-sweeper

starting address of new object
ITocation steps:

Garbage collection steps:

@ Select bit-vectors
" starting page-offset address

@ free memory space request

bit-vector read out

@ * page # read out marked the bit-vector
bit-vector read out

@ bit-vector update

@ *update largest_available_size

bit-vector update
* update largest_available_size
offset address of newly created object

OLOPE®

For the garbage collection, when the DMMU receives a
mark request, the page number of the object pointer (i.e. a
virtual address) is used to select a hit-vector (step A). This

process is similar to the tag comparison in cache operation.
At the same time, the page offset is sent to the CBT as the
address to be marked (step A*). The processis repeated until
all the memory references to live objects are marked. When
the marking phase is completed, the sweeping phase (step C)
would begin by reading out the bit-vectors and send them to
the bit-sweeper. The bit-weeper would keep all of the objects
where the starting addresses were provided by step A* and
update the bit-vector (step D) and the largest available size
field (step D*). The page number, bit-vectors, and the
largest_available size are placed in a buffer, caled the
Allocation Look-aside Buffer (ALB).

Since the DMMU is shared among all processes, content
of the ALB will be swapped during the context-switching.
This issue also exists in TLB. To solve this problem, we can
add a process-id field in the ALB. Thiswill allow bit-vectors
of different processes to coexist in the ALB. We expect the
performance of the ALB to be very similar to the much-
studied TLB. However, further research in the ALB
organization, hit ratio and miss penalty is required.

5. Conclusion

Besides providing the speed and predictability in
automatic dynamic memory management, the DMMU can
also reduce the number of cache misses and page faults.
Since all the dynamic memory management information is
kept separately from the object, we do not need to bring the
object in for the marking and object size look up. The bit-
map approach also requires no splitting and coalescing.
Additionally, our scheme can also improve the performance
of multithreaded applications in a multiprocessor
environment. While multithreaded programming in
multiprocessor environment promotes parallel execution of
threads, the task of managing the heap is still done in a
sequential fashion. This means that other threads have to
wait if one thread is allocating inside the heap. Since the
software approach to allocation is slow and non-
deterministic, dynamic memory management can be a major
bottleneck in multiprocessor-multithreaded applications that
are memory intensive [3]. Our scheme allows allocation to
be done quickly, and thus, reduces wait time.

The adoption of object-oriented languages such as C++
and Java in embedded system development also increases
the need for a high-performance automatic dynamic memory
manager. Industry observers predict that by year 2010, there
will be 10 times more embedded system programmers than
general-purpose programmers [2]. This prediction is also
confirmed by the surge of interests in the web-appliances
where each device is a small object-oriented embedded
system. In this paper, we introduce hardware instruction

extensions that would allow ADMM to be fast, robust, and
can respond to the hard real-time requirement.

6. References

[1] E. Armstrong, “ Hotspot, A new breed of virtua ma
chine”, JavaWorld, March 1998.

[2] R.W. Atherton, “Moving Java to the factory”, |IEEE
Spectrum, December 1998, pp 18-23.

[3] D. Haggander and L. Lundberg, “Optimizing Dynamic
Memory Management in a Multithreaded Application
Executin on Multiporcessor”, Proc. 1998 Int'| Confer-
ence on Parallel Porcessing, pp. 262-269.

[4] M. Chang and E. F. Gehringer, “A High-Performance
Memory Allocator for Object-Oriented Systems,” |EEE
Transactions on Computers. March, 1996. pp. 357-366.

[5] K. Kavi, J.C. Browne, and A. Tripathi, “ Computer Sys-
tems Research: The pressure is on” Computer, January
1999, pp. 30-39.

[6] R. Jones, R. Lins, Garbage Collection: Algorithms for
automatic Dynamic Memory Management, John Wiley
and Sons, 1996, pp.20-28, 87-95, 296

[7] D. Patterson and J. Hennessy, “ Computer Architecture, A
Quantitative Approach”, Morgan Kaufmann Publishers,
Inc., Second Edition 1996.

[8] K. Nilsen and W. Schmidt, “A High-Performance Hard-
ware-Assisted Real-Time Garbage Collection System,
Journal of Programming Languages, January 1994, 1 -
40.

[9] Paul Wilson, M. Johnstone, M Neely and D. Boles, “ Dy-
namic Storage Allocation: A Survey and Critical Re-
view”, Proc. 1995 Int'| workshop on Memory
Management, Scotland, UK, Sept. 27-29, 1995.

[10] Benjamin Zorn, “Custo-Malloc: efficient synthesized
memory allocators,” Technical Report CU-CS-602-92,
Computer Science Department, University of Colorado,
July 1992.

Session 2

Architectural Issues in Dynamic Translation

How can hardware support Just-In-Time
compilation?

A. Murthy, N. Vijaykrishnan and A. Sivasubramaniam
Department of Computer Science and Engineering
Pennsylvania State University
University Park, Pennsylvania
{amurthy,vijay,anand}@cse.psu.edu

Abstract

Just-In-Time (JIT) compiler is an efficient
and preferred style of implementing the Java
Virtual Machine (JVM) on resource-rich ma-
chines. Using a JIT compiler, the bytecodes
are translated to native code at runtime. In
this paper, we investigate where the time is
spent in such dynamic compilers and how
well a smart JIT compiler can do. Next, we
propose architectural mechanisms that can be
used to support the dynamic code generation
and installation.

1 Introduction

The Java Virtual Machine (JVM) [1] is
the corner stone of Java technology epitomiz-
ing the “write-once run-anywhere” promise.
It is expected that this enabling technol-
ogy will make it a lot easier to develop
portable software and standardized interfaces
that span a spectrum of hardware platforms.
Java programs are translated into a machine-
independent JVM format (called bytecodes),
to insulate them from the underlying machine
architecture on which they would eventually
execute. These bytecodes can be executed by:
interpretation, Just-In-Time (JIT) compila-
tion [2] or by direct execution on Java pro-
cessors [3, 4]. Among these techniques, the
JIT compiler technology is a prefered style
of JVM implementation on resource-rich ma-
chines. This paper presents possible direc-
tions that one can take in providing architec-
tural support for dynamic compilation.

The rest of this paper is organized as fol-

lows. In the next section, we investigate
on where the time is spent in JIT compila-
tion. Architectural support mechanisms for
enhancing the performance of JIT compila-
tion are described briefly in the section 3.
Concluding remarks are provided in section
4.

2 When or Whether to Compile
JIT?

Dynamic compilation has been popularly
used [2, 5] to speed up Java executions. This
approach avoids the costly interpretation of
JVM bytecodes, while sidestepping the issue
of having to pre-compile all the routines that
could ever be referenced (from both the fea-
sibility and performance angles). Dynamic
compilation techniques, however, pay the
penalty of having the compilation/translation
to native code falling in the critical path of
program execution. Since this cost is ex-
pected to be high, it needs to be amor-
tized over multiple executions of the trans-
lated code. Otherwise, performance can be-
come worse than when the code is just inter-
preted. Knowing when to dynamically com-
pile a method, or whether to compile at all,
is extremely important for good performance.
Most of the currently available execution en-
vironments, such as kaffe [8] and JDK 1.1 [6]
employ limited heuristics to decide on when
(or whether) to compile JIT. For example,
Kaffe typically translates a method on its first
invocation, regardless of how long it takes to
interpret/translate/execute the method and
how many times the method is invoked. JDK
1.2 uses limited heuristics such as detecting
presence of loop structure s, while the sophis-

ticated optimizations done by the hot spot
compiler announced recently [7] are not yet
available. It is not clear how well one could
do with a smarter heuristic than what many
of these environments provide. We investi-
gate these issues in this section using five
specJVMO98 [9] benchmarks (together with a
simple HelloWorld program') on the Kaffe [8]
environment.

Figure 1 shows the results for the different
benchmarks. All execution times are normal-
ized with respect to the execution time taken
by the JIT compilation mode on Kaffe [8].
For each application, the first bar indicates
the time taken to run the program in this
mode. This bar is further broken down into
its two components, the total time taken to
translate/compile the invoked methods and
the time taken to execute these translated
(native code) methods. The considered work-
loads span the spectrum, from those in which
the translation times dominate such as hello
and db (because most of the methods are nei-
ther time consuming nor invoked numerous
times), to those in which the native code ex-
ecution dominates such as compress and jack
(where the cost of translation is amortized
over numerous invocations). On top of the
JIT compilation execution bar is given the
ratio of the time taken by this mode to the
time taken for interpreting the program using
Kaffe VM. As expected, we find that translat-
ing (compiling JIT) the invoked methods sig-
nificantly outperforms interpreting the JVM
bytecodes.

The JIT compilation mode in Kaffe com-
piles a method to native code on its first in-
vocation. We next investigate how well the
smartest heuristic can do, so that we com-
pile only those methods that are time con-
suming (the translation/compilation cost is
outweighed by the execution time) and inter-
pret the remaining methods. This can tell us
whether we should strive to develop a more
intelligent heuristic at all, and if so, what is
the performance benefit that we can expect.
Let us say that a method ¢ takes I; time to

1While we do not make any major conclusions
based on this simple program, it serves to observe
the behavior of the JVM implementation while load-
ing and resolving system classes during system ini-
tialization.

Normalized Execution Time

Execn. Time
Trans. Time

1201 Interpret. Time

1 2 3 4 5 6
db javac

jess jack compress hello

Figure 1: Dynamic Compilation: How well
can we do ?

interpret, T; time to translate, and F; time
to execute the translated code. Then, there
exists a crossover point N; = T;/(I; — E;),
where it would be better to translate the
method if the number of times a method is
invoked n; > N;, and interpret it otherwise.
We assume that an oracle supplies n; (the
number of times a method is invoked) and
N; (the ideal cut-off threshold for a method).
If n; < N;, we interpret all invocations of
the method, and otherwise translate it on the
very first invocation. The second bar for each
application shows the performance with this
oracle in Figure 1, which we shall call opt.
It can be observed that there is very little
difference between the naive heuristic used
by Kaffe and opt for compress and jack since
most of the time is spent in the execution
of the actual code anyway (very little time in
translation or interpretation). As the transla-
tion component gets larger (applications like
db, javac or hello), the opt model suggests
that some of the less time-consuming (or less
frequently invoked) methods be interpreted
to lower the execution time. This results in
a 10-15% savings in execution time for these
applications. It is to be noted that the exact
savings would definitely depend on the effi-
ciency of the translation routines, the trans-
lated code execution and interpretation.

The opt results give useful insights. Figure
1 shows that regardless of the heuristic that is
employed to decide on when/whether to com-
pile JIT, one can at best hope to trim 10-15%
in the execution time. On the other hand, we
find that a substantial amount of the execu-
tion time is spent in translation and/or ex-
ecuting the translated code, and there could
be better rewards from optimizing these com-
ponents. Such optimizations can use better
compilation techniques and/or hardware sup-
port for dynamic compilation. The next sec-
tion of this paper discusses architectural sup-
port for enhancing JIT compiler performance.

3 Architectural Support for Dy-
namic Translation

Architectural support for dynamic transla-
tion can target at optimizing either the trans-
lation part or at improving the performance
of the execution part of the translated code.
A list of possible directions in providing ar-
chitectural support for dynamic translation is
given below.

e Provide support for removing the dy-
namic translation of the code from the
program’s critical path. It may be
worthwhile to invest in hardware support
(either on the same CPU or using an-
other processor if it is a SMP) that can
do the translate in parallel with the in-
terpretation of bytecodes or other useful
work done by the actual processor.

e Provide architectural enhancements to
support dynamic code generation and in-
stallation. While current processors pro-
vide facilities to flush the data and in-
struction caches to support self modify-
ing code, it may be beneficial to provide
code generation buffers or a capability
to write into I-caches. Such buffers can
prevent the translation routines from af-
fecting the locality in the data caches.

e Provide architectural support for profil-
ing. For example, a counter could track
the number of hits associated with an en-
try in the branch target buffer. When
the counter saturates, it can trigger the
compiler to perform code inlining opti-
mization that can replace the indirect

branch instruction with the code of the
invoked method. Of course, we may
need some mechanism to monitor the
program behavior changes to undo any
optimizations that may become invalid
later. Also, it would be worthwhile in-
vestigating the positioning of the trans-
lated code towards improving the local-
ity during subsequent execution. Again
dynamic monitoring capabilities such as
maintaining path history of the method
executions can help.

e Provide the capability to extend the dy-
namic compilation capability to encom-
pass hardware configuration as shown in
Figure 1(b). The idea of dynamic config-
uration is to translate the bytecode se-
quences of a Java method into reconfig-
urable hardware on-the-fly. Subsequent
invocations of a method pass the data
to the reconfigurable hardware; compu-
tations are performed in the configured
hardware and results are sent back to the
calling method.

In the rest of this paper, we will discuss
the motivation and mechanism for support-
ing dynamic code installation and dynamic
configuration briefly.

Dynamic Code Generation and In-
stallation Support: In order to investigate
whether the translation routines affect the
cache locality, we isolated the cache behavior
during the translation part and the rest of the
JIT compiler execution. The study was per-
formed using the cachesimb cache simulator
from Shade [10] tool set on an UltraSPARC
machine running Sun OS 5.6. The cache be-
havior of the translate portion is illustrated in
Figure 3. The data cache misses in the trans-
late portion of the code contribute to 40-80%
of all data misses for many of the benchmarks.
Among these, the data write misses dominate
within the translate portion and contribute
to 60% of misses during translate (see the
third bar for each benchmark in Figure 3).
Most of these write misses were observed to
occur during the generation and installation
of the code. Since, the generated code for
the method is written to memory for the first
time, it results in compulsory misses in the D-
Cache. One may expect similar compulsory

misses when the bytecodes are read during
translation. However, they are relatively less
frequent than the write misses since 25 na-
tive (SPARC) instructions are generated per
bytecode on an average [11].

Installing the code will require writing to
the data cache, and these are counted as
misses since those locations have not been
accessed earlier (compulsory misses). These
misses introduce two kinds of overheads.
First, the data has to be fetched from memory
into the D-cache before they are written into.
This is a redundant operation since the mem-
ory is initialized for the first time. Second,
the newly written instructions will then be
moved (automatically on instruction fetch op-
erations) from the D-cache to the I-cache. It
would be useful to have a mechanism wherein
the code can be generated directly into the I-
cache. This would require support from the
I-cache to accommodate a write operation (if
it does not already support it), and prefer-
ably a write-back I-cache. It should also be
noted that for good performance, one should
be careful to locate the code for translation
itself such that it does not interfere/thrash
with the generated code in the I-cache.

E<K
E=K
Dynamic
Interpreter | | compilation
Compiled Configure
Code FPGA
Processor FPGA

E - Execution count for method K - Dynamic compilation threshold

L - Dynamic configuration threshold

Figure 2: A Dynamic Translator with Dy-
namic Configuration and Compilation Capa-
bility

Dynamic Configuration: Figure 1
shows that there are applications, like com-
press, and jack, in which a significant por-
tion of the time is spent in executing the
translated code. There is a common (and in-

teresting) trait in these applications, where
the execution time dominates and a signif-
icant portion of this time is spent in cer-
tain specific functions. For instance, com-
press employs a standard set of functions to
encode all the data. If one optimizes the ex-
ecution of such functions, then there is hope
for much better performance. Hardware con-
figuration of these methods using Field Pro-
grammable Gate Arrays (FPGA) on-the-fly
(similar to how JIT compiler dynamically
opts to compile-execute rather than inter-
pret) is an interesting option.

We are currently modifying the dynamic
compiler to integrate the dynamic configura-
tion mechanism as shown in Figure 2. We
plan to use hardware (objects) cores corre-
sponding to selected Java methods developed
by hardware designers with a specific inter-
face to the rest of the JVM as opposed to dy-
namically translating bytecodes into a FPGA
configuration file [12]. This alternative can
avoid the hardware compilation cost. It also
benefits from the better performance of a
customized hardware core over a synthesized
(hardware compiled) core. When a method
is executed for more times than a predefined
threshold, the existence of a hardware core
for the requested method is checked. If a core
is found, the dynamic translator initiates the
loading of the configuration file of the corre-
sponding hardware core into the FPGA. The
execution of the method proceeds in a paral-
lel thread either in interpreted or JIT com-
piler mode during the configuration. When a
subsequent call is made to the same method,
the completion of the configuration process
is checked. If the configuration is complete,
the input data to the method is passed to the
FPGA and the execution begins in the con-
figured hardware. When the method is ex-
ecuted on the FPGA, the JVM could either
be busy polling until the results are returned
or switch to the execution of another thread.
The output data generated by the customized
hardware is buffered and transferred to the
processor once the execution is complete. We
could also use the partial reconfiguration ca-
pability in the FPGAs to implement multiple
cores for supporting different methods simul-
taneously.

4 Conclusion

The key to an efficient Java virtual machine
implementation is the synergy between well-
designed software, an optimizing compiler,
supportive architecture and efficient runtime
libraries. This paper has looked at only a
small subset of issues with respect to support-
ive architectural features for Java, and there
are a lot of issues that are ripe for future re-
search.

References

[1] T. Lindholm and F. Yellin, The Java
Virtual Machine Specification. Addison
Wesley, 1997.

T. Cramer, R. Friedman, T. Miller,
D. Seberger, R. Wilson, and M. Wol-
czko, “ Compiling Java just in time ,”
IEEE Micro, vol. 17, pp. 3643, May-
June 1997.

[2]

[3] H. McGhan and M. O’Connor, “ Pico-
Java: A direct execution engine for Java
bytecode ,” IEEE Computer, pp. 22-30,
October 1998.

[4] N. Vijaykrishnan, Issues in the Design of
a Java Processor Architecture. PhD the-
sis, College of Engineering, University of
South Florida, Tampa, FL 33620, July
1998.

[5] U. Holzle, “Java on Steroids: Sun’s high-
performance Java implementation,” in
Proceedings of HotChips IX, August
1997.

“Overview of Java platform product
family .”

http://www javasoft.com /products
/OV_jdkProduct.html.

[6]

[7] D. Griswold, “The Java HotSpot Virtual
Machine Architecture ,” March 1998.

Sun Microsystems Whitepaper.

[8] Kaffe Virtual Machine.”
http:/ /www.transvirtual.com.
9] « SPEC JVM98 Benchmarks.”

http://www.spec.org/osg/jvm98/.

08

Normalized Number of Misses

[10] R. F. Cmelik and D. Keppel, “Shade: A
fast instruction-set simulator for execu-
tion profiling,” Tech. Rep. SMLI TR-93-
12, Sun Microsystems Inc, 1993.

R. Radhakrishnan, J. Rubio, and
L. John, “Characterization of Java ap-
plications at the bytecode level and at
UltraSPARC-II Machine Code Level,” in
Proceedings of International Conference
on Computer Design, October 1999. To
appear.

J. M. P. Cardoso H. C. Neto, “Macro-
based hardware compilation of Java
bytecodes into a dyna mic reconfig-
urable computing system”, in Proceed-
ings of the 7th IEEE Symposium on
Field Programmable Custom Comput-
ing Machines, April 1999.

T T
Il -Misses In Translate
M [D-Misses In Translate

[% Misses that are write in Translate

1

1 2 3 4 5 6
compress db javac jack mirt mpeg

Figure 3: Cache Misses within Translate Por-
tion. Cache configuration used : 4-way set as-
sociative, 64K DCache with a line size of 32
bytes and 2-way set associative, 64K ICache
with a line size of 32 bytes. The first bar
shows the I-Cache misses in translate relative
to all I-Cache misses, the second bar shows
the D-Cache misses in translate relative to
all D-Cache misses, the third bar shows the
D-cache write misses in translate relative to
overall D-cache misses in translate.

Exploiting Har dwar e Resour ces:
Register Assignment across Method Boundaries

lan Rogers, Alasdair Rawsthorne, Jason Souloglou
The University of Manchester, England
{lan.Rogers,Alasdair.Rawsthor ne,Jason.Soul oglou} @cs.man.ac.uk

Abstract

Current microprocessor families present dramatically
diffeorent numbers of programmer-visible register
resources. For example, the Intel 1A32 Instruction Set
provides 8 general-purpose visible registers, most of
which have special-purpose restrictions, while the 1A64
architecture provides 128 registers. It is a challenge for
existing code generators, particularly operating within
the congtraints of a just-in-time dynamic compiler, to
use these varying resources across a number of
architectures with uniform algorithms. This paper
describes an implementation of Java using Dynamite, an
existing Dynamic Binary Trandation tool. Snce one
design goal of Dynamite is to keep semantic knowledge
of its subject machine localized to a front-end module,
the Dynamite code generator ignores method boundaries
when allocating registers, allowing it to fully exploit all
hardware register resources across the hot spots of a
Java program, regardless of the control graphs
represented.

1. Introduction

Current microprocesor famili es present dramaticdly
different numbers of programmer-visible register
resources. For example, the Intel 1A32 Instruction Set
[1] provides 8 general-purpaose visible registers, most of
which have spedal-purpose restrictions, while the 1A64
architecture [2] provides 128 registers. In the former
case, register renaming and out-of-order issue is used in
the microarchitecture to exploit a richer resource set than
indicaed by the instruction set, but the paucity of the
visible instruction set remains a severe mnstraint on a
just-in-time mde-generator. In particular, it isdifficult to
pass method parameters efficiently in registers in x86
implementations, since register pressure ensures that the
lifetimes of valuesin registers are so short.

In the cae of RISC, and particularly EPIC [3]
architedures, the visible instruction set more dosely
models the register hardware resources provided in an
implementation. Register assgnment becmes viable
using a onventional approach, such as defining a
method cdling sequence, involving cdler-saved, cdlee
saved and parameter registers, and alocding locd

variable ad temporary registers within individual
methods.

In the distant future, it is possible that unconventional
CPU architedures may provide extremely high levels of
performance without any significant number of registers.

This disparity of hardware resources has been
addressed by designers of current Java Virtual Machines
by providing different register alocaion agorithms for
(e.g.) IA32 and RISC machines. In this paper, we
describe a single register alocaor appropriate to
register-rich and register-poa architedures, and we
explain how this allows usto set optimization boundaries
independently of method baindaries, giving performance
advantages.

Conventional static compilers, and existing JT
compilers, use method-inlining, more or less
aggressvely, to uncover a number of optimizaion
posshilities, with register assignment among them.
Inlining may have its limitations, however, and we have
found a number of cases where inlining (particularly
led-method inlining) does not completely address hot
regions of an applicdion.

In this paper, we present some techniques we use to
run Java byte-coded programs on Dynamite, our existing
dynamic binary trandation environment. As will be
described below, our tedniques rely on optimizing
regions of code without reference to the semantic
boundaries of methods. Broadly, we daim to gain the
performance benefits of inlining, without its limitations.

We describe the Dynamite binary trandation system,
itsinterfaces and its approach to ogtimization. In section
4, we show how Java programs are implemented using
the Dynamite fadlities, and sedion 5 dscuses our
preliminary results. Previous work in register
asdgnment for Java programsisintroduced in sedion 6.

2. Dynamite

Dynamite is a reoonfigurable Dynamic Binary
Trandation system, whose dms are to extend the “Write
Once, Run Anywhere” paradigm to existing binary
applicaions, written and compiled for any binary
platform. To enable the quick configuration of a
particular translator, Dynamite is constructed as a three-
module system, as sown in figure 1.

Target
CPU

Subject
Software

< Dynamiie >

Figure 1. Dynamite Structure

The function of the major components is aimost self-
explanatory: the Front End transforms a binary input
program into an intermediate representation (IR), which
is optimized by the Kernel, and the Bad End generates
and exeautes a binary version on the target processor.
The Front End interface suppats a number of
abstradions convenient for efficient Front End
implementation, such as the “abstrad register”, which
holds intermediate representations of the effects of
subjed ingtructions. This interfaceis configured by an
individual Front End module, since different subjed
architedures require different numbers of registers.

Two fedures of thisfront end interface ae relevant to
the aurrent discusdon: firstly, the interfaceresembles a
RISC-like Register Transfer Language, containing no
pealliarities (such as condition codes or side-effeds)
adapted for particular subjed architedures. Secondly,
procedure (method) cdling is achieved at a primitive
level, typicdly by having the front end creae IR to
compose alink value in subjed state space and then
branching or jumping to the cdlee Return from a
procedure is smilarly implemented by having the Front
End creae IR which causes a jump to be made to the
return address Parameter passing and stadk-frame
management is implemented by having the Front End
cregde the @propriate IR to model the subjed
architedure’' s requirements.

The Kernel contains about 80% of the cmmplexity of
the trandator system. It creaes and opimizes IR in
response to Front End cdls, and invokes the Bad End to
code generate and execute blocks of target code.
Register assignment for the target machine @de
generator currently takes placewithin the Kernel, again
using a Badk End interface that is parameterized for
spedfic target architedure. Optimization is performed
adaptively at a number of different levels, starting with
initial trandation as described below.

To achieve its performance goals, Dynamite operates
in an entirely lazy manner. An instruction is never
trandlated until that instruction must be exeauted, either
becaise it is a control (jump, branch, exception or cdl)

target, or because the immediately preceling branch has
falen through. Asinstructions are decoded by the Front
End, their IR is combined until a ontrol transfer is
encountered. During this process the kernel performs
optimizations such as value forwarding and dead code
elimination. When the block of IR is complete, it is code
generated, executed by the badk end, and caded for
subseguent reuse. After a block of target code is
exeauted, its succesor locaion may either be found
within the cate, or may nee trandation using the same
adions.

In efficiency terms, target code blocks generated
using this initial scheme leare something to be desired.
The benefit is that the initial trandation is quick, taking
only a few thousand instructions per subjed instruction.
Register usage is determined by an individual Badk End,
largely as a result of the method cdling sequence
mandated by the static compiler used to compile
Dynamite. Target registers are used to store temporary
results within the block, but existing Badk Ends preserve
al subjed register values in target memory at the
boundary of basic blocks.

More optimization and higher quality code generation
are triggered when an individual target block is executed
more frequently than a dynamic execution threshold.
This event causes the kernel to creae agroup containing
this and related bocks in a hot region, and to ogtimize
this Group Block as a single entity. Group Blocks may
span arbitrary boundaries in the subjed machine:
inded, in other applications, Dynamite optimizes aaoss
programs and their procedures, static and dynamically-
linked libraries, OS Kernels, and aaoss different virtual
madines.

Within a Group Block, the Dynamite kernel examines
the existing control flow of the region, identifying certain
blocks as entry and exit blocks, and performing value
propagation and dead-code dimination aadossthe eitire
group. The antrol flow is used to straighten the
conditional branches and eliminate jumps within the
group, so that frequent cases fal through, minimizing
taken branches and maximizing I-cache utili zetion.

Code generation for a Group Block occurs next. To
avoid the expense of an iterative dgorithm, avery simple
incremental register alocaion agorithm is used.
Starting with the target block, operands are dlocaed to
registers (if the target machine achitedure requires), and
operation results are dlocaed to registers if they are to
be reused. As the register set is exhausted, spill code is
generated to relinquish previously allocaed registers for
new operations. Register allocations are caried aaoss
basic block boundaries, and the a¢ of code generating
from the most- to the least-frequently executed blocks
within the group ensures that spill s are minimized.

We amphasize that during this code generation
process al abstrad registers and target registers are
treaged symmetricaly. We do not distinguish between

registers used to pass parameters, those used to cary
visible results, and those used to hold temporary values.
In this way, we @n code generate aregion containing
multiple procedure cdl and returns as efficiently as one
containing just a portion of alarge procedure.

The fina stage of code generation isto generate stubs
for the entry and exit blocks, which need to load abstrad
register values into target registers and compute and store
exit values from the group block.

This group-block credion phase @n be invoked and
re-invoked any number of times during program
exeadtion, creding larger and smaller groups of basic
blocks, always independent of method baundaries, as the
subjed program proceeals throughits execution.

3. Implementing Java

The aiticd design dedsions when implementing
Java using Dynamite ae the mapping of VM registers,
locd variables, and the stack to the relevant Dynamite
objeds, namely abstrad registers .

To adlow Dynamite to ogtimize acossdifferent Java
methods, we need to map multiple stack frames
simultaneously to dfferent abstrad registers. Two
schemes were nsidered for doing this.

3.1 Sliding frame

On entering a method the front-end would creage a
frame within the dstrad registers. The aguments to the
method (stored at VM locd variable 0 upwards) become
the base for the frame. After the locd variables the return
addressis held in the next avail able astrad register. The
JVM stack is held at the end of the frame. However,
studies [4] show that the stack is usually empty on basic
block boundaries. The purpose of the stack in the frame
is therefore to hold onto stack values that occasionally
gpan basic blocks and to pass arguments to cdled
methods. The aguments could become part of the next
frame by overlapping the stack part of the cdler’'s frame
and the locd variable part of the cdl eeframe.

Unfortunately, the problem with this <heme is that
the IR for an individual method needs to refer to spedfic
abstrad registers. This fixes its translation to a particular
stack depth. If the same method is cdled at a different
stadk depth, we ned to re-trandate it for this new depth.
Thisis particularly expensive for reaursive methods. We
could pesshly generate spedal case trandations for
reaursive methods and fall badk on a scheme that saves
the frame to memory on a method cdl. Otherwise, for
methods that are cdled from multiple stack locaions we
could avoid re-tranglation if the method' s frame is at a
greder abstrad register locaion than the current frame.
We would, however, still have to copy the aguments to
the method from the cdler’s frame to that of the cdlee

Our reseach has shown that around 90% of
exeaution time is ent in methods cdl ed from more than

16 cdl stes. These methods are typicdly utility
functions which are prime andidates for optimization.
Expensive optimizaions would be prohibitive for these
methods as the optimizaion would neel repeding many
times.

We onclude that using a dsiding frame is therefore
undesirable.

3.2 Fixed frame

The drawbadk with the “diding-frame” scheme is
that it is necessary to recompile methods cdled with
different frame base pointer values. If we fix the address
where a method's frame lives in abstrad registers we
remove this problem. To do this, we dlocae a new,
unique frame from a large pod of abstrad registers the
first time aparticular method isinvoked.

We do, however, still need to pass arguments to the
cdled method from the stadk of the cdling method. On
encountering a method cdl, the aguments to the method
are held in intermediate representation ready to be
written to registers. At this point, they can be written
diredly to the cdled method's locd variables avoiding
any copy operation.

The first penalty for this <heme is that we neal to
retrandate these &strad register assignments for
different methods cdled from the same cdl site. A study
using Harissa [5] shows that at least 40% of method cdls
can be acarately staticdly predicted for 100% of the
time, and dynamic statistics are esen better than this.

As in the “diding-frame” design, reaursion needs to
be handled dfferently, as two invocaions of a method
cannot share asingle frame. A simple scheme to handle
reaursion is to save aframe to memory before using it, if
it is adive, and to restore it on exit. Alternatively, we
may find some drcumstances in which it is advantageous
to generate spedal-cased versions of reaursive methods,
ead of which uses a different frame of abstrad registers.
This geda-casing will be triggered by a heuristic
monitored by code planted in the initial translation of a
(potentially reaursive) method.

Finaly, assigning unique dstrad registers to every
method presents a problem when the static pod is
exhausted. For programs gudied to date, fewer than 8000
abstrad registers would be sufficient. If greaer numbers
were required, the front-end could start re-using frames.
For example, al leaf methods can share the same frame,
and more generally, methods that occur only on digoint
subtrees of the cdl graph can share frames. In the
pathologicd case, frames of abstrad registers can be
reused by planting code that spill s a number of frames to
memory and refill s them when necessary.

4. Discussion

To evauate this heme before its implementation,
we caried out a number of experiments by instrumenting

Kaffe [6] to log information about the dynamic
behaviour of Java gplicaions. We keeg sufficient
information to creae the dynamic method cdl treeof the
application. We aede a c# tree in which methods
appea once for eah cdl sdte, to asess our
implementation alternatives. For ead method
occurrence, we keep the number of byte ades executed
in this invocaion, and its locd variable requirement,
including parameters.

To estimate the number of target registers needed in
optimization regions of different sizes, we identify hot
spots on this cdl tree(methods with high contributions to
overal i nstruction counts), and successively add them to
optimization regions, counting the total number of locd
variables required at ead step. This approximates to
code generating by hottest method first, then by
successvely cooler region. As each successive method
is added to the optimization region, we require more
locd variables. Thisgives usthe tharaderistics we show
below. For these experiments, we monitored “javac”, the
Java ompiler in Java, since it is the largest Java
applicaion we an find.

100%

80%

60%
40% /
20% ./‘v

1 10 100 1000

Local Variables

Instruction Count

0%

Figure 2. Instruction Count against
Local Variables

In figure 2, we show how a straightforward “ hottest first”
seledion algorithm can use varying numbers of target
registers to code generate “ spill-free” regions of different
sizes. Aswe intuitively exped, as we dlocate more and
more locd variables into target registers, we can
encompass larger and larger regions, contributing to ever
increasing fradions of total instruction count. For
example, with 5 target registers, we @n code generate a
region that contributes 22% to total exeaution count, and
with 26 registers, 46% of exeaution count.

In Figure 3, we use adightly different heuristic to
seled methods to include within our seledion region.
Here, we sded methods based on their runtime
contribution per locd variable. That is, comparing
methods with similar run-time c@ntributions, we

100%

®
o
2

60%

40%

Instruction Count

20% A

-

Figure 3. Instruction Count against

Local Variables
Local varianles

preferentially seled the method with the smaller
requirement for locd variables. This gives better results
when there ae fewer target registers available: for
example with 8 registers, we can cover 30% of total
instruction count, and with 25 registers, we can cover
54% of the instructions.

5. Previous Work

The success of Java has resulted in many JVM
implementations. Some implementations such as Harissa
[5], and J2C trandlate Javato C code. They then rely on a
C compiler to perform register alocation within and over
method cdl boundaries. Register mappings within C
programs are beyond the scope of this paper.

In this sdion we eamine how other JVM
implementations perform register mapping and all ocation
and compare these to Dynamite.

5.1 Register allocation

Caca [4] initidly maps the VM stack and locd
variables to pseudo-registers, which are then alocaed to
CPU registers. Each mapping and al ocaion begins at the
start of a basic block and builds on the mappings and
alocations of previous basic blocks. When CPU registers
are exhausted a register is illed to memory and fill ed
by a pseudo register.

On method cdl boundaries Caca pre-alocaes
registers. It uses CPU registers to passarguments and to
recave return values. On machines without register
windows pre-all ocation of argumentsis only possble for
led methods.

Pre-allocation can tie in with existing compiler
method cdl conventions: for example, in the DAISY
JVM [7] arguments and return values are passed and
receved using the Power PC's C compiler cdling
conventions, which uses gandard registers for passng
arguments.

5.2 Comparison with Dynamite

Method invocaion creaes a new frame on a cdl
stack. Cacap avoids unnecessary acesses to this frame
by preallocaion, utilizing register windows or
patentially by using the machine's gandard cdling
convention. However, these static mappings take no
acount of run-time information on register usage.
Therefore registers could be dlocaed and then
subsequently unused. Caca would also cdculate any
parameters even if they were unused. Caca would also
have to copy from one register to another if it repadaged
arguments to another method. Dynamite on the other
hand can avoid this by value forwarding and dead code
elimination within a group biock.

Also, when registers are spilled only the surrounding
and previous basic blocks are mnsidered. This means
that a pseudo register could be spill ed in one basic block
and then filled badk again in the next, and Caca
wouldn’'t know it could spill different registers which are
unused in subsequent basic blocks. Dynamite’s runtime
information about register usage can provide a better
register alocation in this case.

6. Conclusion

In this paper, we have introduced Dynamite, an
environment for creaing dynamic binary trandators. We
have shown how the run-time oncepts of the Java
Virtual Machine ae mapped onto the Dynamite front end
interface and its internal register alocaion agorithms.
This mapping necessxily discads the oncepts of
methods and their loca variables.

Preliminary investigations sow that “method-free”
register alocdion shows promise for efficient code
generation acossarchitedures providing wide ranges of
hardware register resources. We look forward to
presenting more definitive numericd results at the
workshop in October.

7. References

[1] Intel Corporation, “Intel Architedure Software Developer's
Manual, Volume 1: Basic Architedure,” Order Number
243190, 1999.

[2] Intel Corporation, “lA-64 Application Developer's
Architedure Guide,” Order Number 245188, 1999.

[3] Trimaran consortium, “Trimaran Projed¢ Homepage,”
http://ww. trimaran.org

[4] Andress Krall, “Efficient JavaVM Just-in-Time
Compilation,” International Conference on Parallel
Architecture and Compilation Techniques (PACT98), Paris,
France October 13-17, 1998.

[5] G. Muller, B. Moura, F. Bellard, C. Consdl, “Harissa A
Flexible and Efficient Java Environment Mixing Bytecode
and Compiled Code” Third USENIX Conference on
Object-Oriented Technologies (COOTS97), Portland,
Oregon, June 16-20 1997.

[6] Transvirtual Techndogies Inc.,
Architedure,”

http://ww transvirtual .conl products/architec
ture. htnl

[7] K. Ebcioglu, E.R. Altman, E. Hokenek, “A JAVA ILP
Machine Based on Fast Dynamic Compilation”, IEEE
MASCOTS International Workshop on Security and
Efficiency Aspects of Java, Eil at, Israd, January 9-10, 1997.

“Kaffe Product

A Decoupled Translate Execute (DTE) Architecture to Improve
Performance of Java Execution

Ramesh Radhakrishnan and Lizy Kurian John
Laboratory for Computer Architecture
Department of Electrical and Computer Engg.

The University of Texas at Austin, Austin, Texas 78712
{radhakri,ljohn}@ece.utexas.edu

Abstract

Java is increasing in popularity in the software indus-
try, and is being used to implement server and enter-
prise scale projects. Such applications require high per-
formance, and need to run efficiently. Techniques like
JIT compilers and PicoJava chips offer some speedup,
but in this paper we look at alternate techniques in
hardware which can be incorporated in future micro-
processors. We propose a Decoupled Translate Ezxecute
(DTE) Architecture, which takes advantage of run-time
characteristics of Java. The DTE architecture can be
implemented using a miz of hardware and software or
alternatively purely in hardware.

1 Introduction

Java technology has been adopted by the enterprise to
offer software solutions in various fields, due to its ad-
vantages of portability, security and modularity. A fac-
tor which affects the execution speed of Java is that it
is still predominantly a software emulated language. A
program written in Java is translated (by software emu-
lation) to an architecture-neutral instruction set called
bytecodes. These bytecodes are platform independent
and can be executed on any system which supports the
Java runtime environment. Typically the bytecodes are
interpreted or converted to native instruction set of the
machine by a Just-in-Time (JIT) compiler.
Translation consumes a major part of the cycles dur-
ing Java execution using a JIT compiler [1]. In many
of the SpecJVMO98 programs, approximately half the
time is spent in compile time operations and only half
of the time is spent in execute related operations [1].
The data cache miss rates during execution with a
JIT compiler were seen to be dominated by compul-
sory write misses, which were arising from installation
of the translated code. Another phenomenon is that
the translated code is deposited into the data cache

and later fetched from the instruction cache, results in
avoidable data transfer and double-caching. In this
paper, we present the Decoupled Translate Execute
(DTE) Architecture which forms a solution to both of
the above problems.

2 The DTE Architecture

Translation and Ezecution are two distinct operations
occurring during Java execution. While interrelated,
there is significant potential overlap that can be ex-
ploited between these two operations using a Decou-
pled Translate Execute (DTE) Architecture along the
lines of the traditional DAE architectures [2, 3, 4]. Fig-
ure 1 illustrates the structure of the proposed decou-
pled architecture, which consists of the execute and
translate processors and necessary buffers for inter-
processor communication. The bytecode executable
will enter the Execute Processor (EP) and the execute
processor will check whether this method is available
in the Translated Code Cache (TCC) in the translated
form. If it is not found in the TCC, it will deposit the
methods to be translated into the E-to-T queue. The
Translate Processor (TP) will translate the code and
put the translated methods into the TCC. The trans-
late operation progresses concurrently with execution,
once a few routines have been translated. The exe-
cution proceeds as long as the next required method
has been translated and deposited into the TCC. The
granularity for translation can be bytecode or method.
Although queue might simplify control, a cache-like
structure can help method reuse. Hence we are using a
cache-like structure for TP to EP communication and
a simple queue structure for EP to TP communication.

Unlike DAEs, splitting code into translate and ex-
ecute threads is easier and straightforward due to the
inherent threaded nature of Java code. The improve-
ment obtained using such a decoupling strategy will

Bytecodes
EtoTQ
- Trandate
Trandate Controller
Processor | Trandated |« ‘ Execute
CodeCache [| Processor
(TCC)

Figure 1: The Decoupled Translate Execute Architec-
ture (DTEA)

E-to-T Q is a FIFO buffer between the Execute processor (EP)
and the Translate processor (TP), used by the EP to communi-
cate methods/bytecodes to be translated to the TP. TCC is a
cache used by TP to communicate translated methods/bytecodes
back to the EP. It stores the translated methods/bytecodes and
facilitates method reuse.

depend on the overlap that can be attained between
translate and execute operations. In traditional DAE
terminology, this would be called slip. The distinctly
separate threads required during Java execution pro-
vides potential for significant overlap and parallelism.

The translate processor may use software translation
or hardware translation. Software translation consists
of exactly the same operations that happens in cur-
rent JITs during the translate phase. Hardware trans-
lation would involve template matching and genera-
tion of translated code as modern x86 processors gen-
erate ROPs(RISC ops) or UOPS(RISC like micro-
operations). A multithreaded processor utilizing dif-
ferent threads for translation and execution may be
considered as a software implementation of the DTEA.

3 The Hard DTE Architecture

In this section we describe a subset of the DTE Archi-
tecture, the “Hard DTE” Architecture. In the Hard
DTE architecture the translation of bytecodes to na-
tive code is done through a hardware translator, as
opposed to using a software emulator. This provides
advantages of speed in translation, but at the expense
of increasing design complexity and chip area.
Software emulation of bytecodes (interpretation,
JIT compilation) is slow. Our studies on Java work-

loads [5] show that interpreted execution requires on
the average 35 SPARC instructions to emulate each
bytecode. The average SPARC instructions required to
emulate a bytecode was approximately 20 when using
a JIT compiler [6]. Software emulation is easy to im-
plement for new platforms but cannot offer a solution
for fast execution of Java bytecodes. Using a hard-
ware solution, which implies executing the bytecodes
directly in hardware would eliminate the requirement
of a software layer to emulate the bytecodes.

There are several issues to be considered while em-
ploying hardware to perform translation. The current
hardware implementations of the Java Virtual Machine
(JVM) such as PicoJava are stack based. However, the
Instruction Level Parallelism (ILP) which can be ex-
ploited using a stack architecture is limited. Figure 2
shows the percentage reduction in execution cycles and
improvement in instructions per Cycle (IPC) for Java
applications executed using the interpreter and the JIT
compiler. The programs executed using the JIT com-
piler are seen to show slightly higher improvements in
both execution time and IPC when executed on 4-way
and 16-way processors. The individual data for each
benchmark can be found in [1], and we include Figure 2
in this document to serve as a motivation for hardware
translation into a non-stack ISA. Our simulator models
realistic branch prediction, however, assumes a perfect
Branch Target Buffer (BTB) and therefore the perfor-
mance of the interpreted programs will be still worse
on a real machine in which the BTB is modeled (since
the interpreter has more indirect branches than the JIT
mode of execution).

Based on results of preliminary performance esti-
mates, we favor a hardware implementation of the
DTEA concept. Both EP and TP can be built on the
same chip and the architecture can be very similar to
modern dynamically scheduled microprocessors except
for a few building blocks. This architecture will include
a hardware unit to convert the bytecodes into simple
RISC like instructions. These converted instructions
will be register based, thereby enabling use of standard
techniques to obtain high performance. The Translated
Code Cache (TCC) will store the converted bytecodes.
The TCC will be very similar to a Trace cache [7, 8], in
the sense that it captures the dynamic translated code
during program execution. A high-level block diagram
of a system with the proposed hardware units is shown
in Figure 3. Instead of fetching bytecodes from the
standard instruction cache, whenever possible, the con-
verted bytecodes from the decoded bytecode instruc-
tion cache will be directly fetched and executed by the
processor core. All blocks in Figure 1, except the high-
lighted blocks are part of any state of the art micro-

50

5 Dintr 8-way
Wintr 16-way
401 DT 8way
35| OJIT16away
B SPEC 8way

O SPEC 16-way

Improvement (%)
[
=

Reductionin Execution Cycles IPC

Figure 2: A comparison of scalability during inter-
preted and JIT compiled execution.

Percentage reduction in execution cycles and improvement in
IPC relative to a 4-way configuration is shown. The interpreted
code is increasingly stack-oriented, while the JIT code incorpo-
rates register optimizations. (This figure is provided as motiva-
tion for non-stack ISA in the core of Java processors.)

processor. Although not explicitly indicated, there are
queues between various blocks in Figure 3, especially
between the fetch unit and the Hardware Translator.
Storing the translated bytecodes/methods in the TCC
also provides opportunity for a variety of optimizations
as performed by the fill-unit in conjunction with a trace
cache [9].

3.1 Fill Unit approach to decoding
bytecodes

The block diagram of the front-end for the Hard DTE
is shown in Figure 4. The hardware translator/decoder
will convert bytecodes into smaller fixed length instruc-
tions, which will be packed into the Translated Code
Cache (TCC) by the fill unit. A line in the TCC can be
finalized or completed when one comes across a control
flow instruction. The branch unit will provide the next
instruction address, and it is fed back to the instruction
cache and the TCC. If the lookup in the TCC results
in a hit, then the decoded instructions are fed to the
dynamically scheduled micro-engine directly from the
TCC.

The fill unit and the TCC help in creating larger
atomic units of work, which can be fed to the dy-
namically scheduled micro-engine. Increasing the fetch
bandwidth, using the hardware translator and the TCC
will allow us to execute the bytecodes in a superscalar

- Decode

= Instruction Unit Integer unit

S |

8 Cache

g

=

Q

o Fetch Unit IHEVGLEE

= t " Trandator

> .

g e —— Load Store Unit

g Code fe—]

s Cache (TCC)

Data Cache

Figure 3: The Hard-DTEA implementation - mi-

croarchitecture of a decoupled processor that performs
translations in hardware

,,,,,,, -1 nextintruction address

-Cace |, hw v | |
et branch it
Regidter
T L &
F'”_ ol LR > Renaring
Unit T
unis| | |yt
C . ‘

Figure 4: Block diagram of the Hardware DTEA with
an instruction fill unit

fashion, unlike the PicoJava which did not execute in-
structions out of order as the instruction fetch band-
width was very limited. The PicoJava fetches only 1-2
bytecode instructions every cycle. The stack creates an
implicit dependency amongst the bytecodes and the
variable length of the bytecode instructions make it
harder to decode multiple instructions simultaneously.

3.2 Decoding bytecodes into micro-ops

A hardware decoder will convert the bytecodes to mul-
tiple micro-operations. A decoding structure similar
to the Intel P6 decoder can be used, which can decode
multiple simple and one complex instruction in one cy-
cle. Another approach is to decode only the commonly
used bytecodes and store them in the TCC, and to ex-
ecute the other bytecodes by trapping to micro-code or
software.

Consider the bytecode, dup2. This bytecode dupli-
cates the top two elements of the stack and pushes
them on the stack. This bytecode can be split into the
following five micro-operations:

TOSB <-- [SP-4] ; load TOS (top of stack)
TOSA <-- [SP-8] ; load TOS-1

SP <-- SP + 8 ; TOS = TOS + 2

[SP-4] <-- TOSA ; store new TOS

[SP-8] <-- TOSB ; store new T0S-1

In decoding this bytecode, we used 2 temporary reg-
isters TOSA and TOSB. We also modified the stack
pointer (SP). The bytecode required 2 stores, 2 loads
and 1 computation instruction and used 2 intermedi-
ate registers to store temporaries. Similarly, we can
calculate the load/store instructions and computation
instructions required to implement different bytecodes
to come up with a resource template which can be used
during decoding.

4 Concluding Remarks

In this paper we propose the DTE architecture and also
describe a Hard DTE, which is a subset of the DTE
architecture. The DTE architecture takes advantage
of the concurrency available at Java run time, during
the translate and execute stages.

Other researchers have proposed to take advantage
of the concurrency between translate and execute by
using a separate thread on a separate processor to do
the translation. The DTE architecture differs from
such a scheme in the fact that the communication be-
tween the TP and EP takes place through Queues and

the TCC, which reduces the cost. In the DTE each
processor can run ahead of each other when possible,
since we use buffers to store the result of each proces-
sor. Scheduling threads to run on different processors
can be expensive if there is a lot of switching, and un-
less there is a lot of method re-use we would see a lot of
translation taking place. By adding more functionality
to the translate processor, we can keep it busy in the
case of long running application with high method re-
use. The TP can predict or guess the methods which
are going to be called in the future and compile them,
so that the native code can be used the next time the
method is invoked.

The DTEA architecture and in particular, the Hard-
DTEA are being evaluated using the SpecJVMO98
benchmarks. A set of Java micro-benchmarks are also
used for validation purposes in the study. The ability
of the DTEA concept to exploit concurrency between
translation and execution, hide the cost of translation,
and enable Java to achieve the performance of off-line
compiled code without losing the advantages associated
with JIT compilation is being studied.

References

[1] R. Radhakrishnan, N. Vijaykrishnan, L. John and
A. Sivasubramanium, “Architectural Issues in Java
Runtime Systems,” Tech. Rep. TR-990719, Laboratory
of Computer Architecture. Electrical and Computer
Engineering Department, University of Texas at
Austin, 1999.

http://www.ece.utexas.edu/projects/ece/lca/ps/tr990719.pdf.

[2] J. E. Smith, “ Decoupled Access/Execute Computer Ar-
chitecture,” in ACM Transactions Computer Systems,
pp- 289-308, November 1984.

[3] L. John, P. T. Hulina, and L. Coraor, “Memory la-
tency effects in decoupled architectures with a single
data memory module,” in Proceedings of the 19th An-
nual International Symposium on Computer Architec-
ture, pp. 236245, May 1992.

[4] L. John, V. Reddy, P. T. Hulina, and L. Coraor, “Pro-
gram balance and its impact on high performance RISC
architectures,” in Proceedings of the International Sym-
posium on High Performance Computer Architecture,
pp. 370-379, Jan 1995.

[6] R. Radhakrishnan, J. Rubio, and L. John, “Characteri-
zation of Java applications at the bytecode level and at
UltraSPARC-II Machine Code Level,” in Proceedings of
International Conference on Computer Design, October
1999. To appear.

[6] R. Radhakrishnan, J. Rubio, L. John and N. Vi-
jaykrishnan, “Execution characteristics of just-in-time
compilers,” Tech. Rep. TR-990713, Laboratory of

Computer Architecture. Electrical and Computer En-
gineering Department, University of Texas at Austin,
1999.
http://www.ece.utexas.edu/projects/ece/lca/ps/tr990717.ps.

[7] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace
Cache: A Low Latency Approach to High Bandwidth
Instruction Fetching,” in Proceedings of the 29th Inter-
national Symposium on Microarchitecture, Dec 1996.

[8] S. J. Patel, M. Evers, and Y. N. Patt, “Improving trace
cache effectiveness with branch promotion and trace
packing,” in Proceedings of the 25th International Sym-
posium on Computer Architecture, June 1998.

[9] D. H. Friendly, S. J. Patel, and Y. N. Patt, “Putting
the Fill Unit to Work: Dynamic Optimizations for
Trace Cache Microprocessors,” in Proceedings of the
31st ACM/IEEE International Symposium on Microar-
chitecture, Dec 1998.

Session 3

Object-Oriented Architectural Support

Applying Predication to Reduce the Cost of Virtual Function Calls

Chris Sadler and Sandeep K. S Gupta

Department of Computer Science
Colorado State University
Fort Collins, CO 80523
{sadler,gupta} @cs.col ostate.edu

Abstract

The direct costs of virtual function calls in object-
oriented programs is a runtime overhead incurred by the
number of operations required to compute a target func-
tion address, and the time to perform these operations. e
present a techniquethat usesan HPL PlayDoh architectural
feature known as predication to reduce the direct costs of
virtual function calls. Thistechniqueis based on the possi-
bility that the same virtual function table will be shared be-
tween virtual function calls, and whereby exploits this pos-
sibility by interleaving the function calls for objects whose
type cannot be determined statically. Wth cost models we
show that predication will eliminate redundant loads of the
virtual function table from memory, and thereby reduce the
impacts of memory latency on the overall runtime perfor-
mance of virtual function calls.

1. Theoverhead of virtual function calls

The use of virtual function calls within object-oriented
(O0) languages has a direct cost of degrading the runtime
performance of programs. As opposed to static function
callsthat can be resolved during compilation, avirtual func-
tion call is resolved during runtimeif it cannot be statically
bound during compilation. Hence, it will incur a runtime
overhead to determinewhich functionentry point tojumpto.
A study performed by Driesen and Holzle showed that C++
programs spend a median of 5.2% of their execution time,
and 3.7% of their instructions in performing virtual func-
tion calls[1]. They go the additional step of saying that this
overhead is likely to increase moderately on future proces-
sors. We believe that this will not be the case if compilers
are enhanced to better utilize newer architectural featuresin
order to reduce the additional time and/or instruction over-
head. In this study, we present such acompiler optimization
that applies predication on interleaved virtual function calls

Rohit Bhatia
VLS Technology Center (VTC)
Hewlett-Packard Company
3404 East Harmony Road
Fort Collins, CO 80528-9599
rxb@fc.hp.com

to eliminate unnecessary loading of virtua function tables
(VFT) for objects whose type cannot be determined stati-
caly. By eliminating redundant loads , this technique will
minimize the time spent accessing the memory system, and
will reduce potential stallsin the instruction stream. We can
show that the cost of applying thistechniquewill be no more
than asinglecycleif the predicationisnot successful. How-
ever, webelievethiscostisworth the potential savingswhen
considering the nature of OO programs, and the savingsthat
can be obtained in light of the growing performance gap be-
tween processor and memory systems.

1.1. The mechanics of virtual function calls

In order to understand how the overhead of virtual func-
tion callscan bereduced, the mechanicsof such acall should
be understood. Given in Figure 1(a) is an example of a
class hierarchy using single inheritance, and its use. The
object and VFT layouts for this example are shown in Fig-
ure 1(b), which are based on a standard layout as described
by Ellis and Stroustrup [2]. According to Srinivasan and
Sweeney [3], there are four steps required to perform a vir-
tual function call when implementing a standard VFT lay-
out. These are:

1. Load the VFT which contains the entry for the called
function (i.e. accessthe VFT viathe vptr).

2. Accessfromthe VFT thefunction entry point to branch
to (i.e. load the address of A::foo or B::feg).

3. Adjust the reference to the object through which the
function is being called, to refer to the sub-object that
contains the definition of the function which will be
called (i.e. load A-offset and add to obj1, or load B-
offset and add to obj2). Thisis known as alate cast.

4. Branch to the entry point of the function.

Class Declarations Virtual Function Calls

classA{ A *0bj1 = new B;
public virtual foo(); A *0bj2 = new B:
public virtual fee(); .other code....
intx;}; obj1->foo();

classB : public A { obj2->feg();

public virtual fee();
inty;};
(a) Example class hierarchy and its use

objI— vptr - vptr <—obj2
int x int x
inty inty

ClassB'sVFT

A::foo() | A-offset
B::fee() | B-offset

(b) The object and VFT layouts

Figure 1. In C++ syntax, an example use of
a single inheritance class hierarchy, and the
resulting object and VFT layouts based on a
standard implementation.

In a single inheritance hierarchy, an object has a sin-
gle VFT in which al virtua function address are stored,
thereby simplifying step 1 by accessing the VFT via the
vptr. Whereas, in amultipleinheritance hierarchy, an object
may have multiple VFTs with different virtual function ad-
dresses. Consequently, an extrastep may be required known
asan early cast. In an early cast, the reference to the object
through which the functionisbeing called isadjusted at run-
time to refer to a sub-object whose VFT contains an entry
for the called function. For either single or multiple inher-
itance, the late cast (i.e. step 3) is required only when the
compiler stores offsetsin the VFT rather than ”thunk” code.
The difference being that the ”thunk” code handlesthe cast-
ing of the object to another abject, and an offset provides a
relative position of an object’s definition within the object
layout [3].

The overhead incurred by the above steps becomes ap-
parent when trandating the steps into the instructions that
will be execute in order to perform the virtual function call.
Given in Figure 2 is the low-level intermediate representa-
tion (LIR) and the data dependency graph for avirtual func-
tion call under the HPL PlayDoy (HPL-PD) architecture[4].
As can be seen from this Figure, the overhead of the virtual
function call can be attributed to the |oad operationsthat are
performed, and the dependencies between the load and the
ALU operations (nodes 1,4 and 5). In most architectures,
the memory loads will incur the largest overhead in com-
parison to the ALU operations, and will most likely stall the

instruction stream if other non-dependent operations cannot
be scheduled during the load.

r3=1dr2 ;load the virtual function table (VFT)
r4=r3+12 ;calc the address for the late cast offset
r5=r3+20 ;calc the address of the function entry point
r6=Idr4 ;load the late cast offset

r7=I1dr5 ;load the function entry point
intpl=r2+r6 ;perform the late cast

r8=npbrrr71 ;prepare to branch

ret_addr = brl r8 ;branch to the function entry point

(a) Low-Level Intermediate Representation

r3=Idr2

(2] (3]
r4=r3+12 r5=r3+20

Y
r6=1dr4 r7=1dr5

(7]
r8=phrrr7 1

intpl =r2+r6

- ret_addr = brl r8

(b) Data Dependency Graph

Figure 2. The HPL-PD instructions for avirtual
function call, and the data dependency graph.

In contrast to a static function call, as shown in Figure 3,
the number of instructionsto perform avirtual function call
is greater, and consequently the performanceislower. A re-
lationship can be established between the runtime perfor-

intpl =r2 ;set the this pointer
r3=pbrr _$fn_foo !DFv1 ;prepare to branch to the function
ret_addr = brl r3 :branch to the static function address

Figure 3. The HPL-PD instructions for a static
function call.

mance of these function calls by expressing the runtime of
the virtual function call (T'p) in terms of the runtime of the
static function call (T's). Ideally, T would be the same as
Ts, however dueto the extrainstructions and the dependen-
cies between these instructions, Tp will be larger by some
delta. With thisin mind, the relationship between T, and
T, can be express as.
Tp =Ts + A 0
The value of A, isafactor of the extra instructions that
arerequired for avirtual function call (1C 444), the number

of cyclesto issue an instruction (CPI), and the clock rate of
the machine. Hence, A; can be expressed as:

1
Ny =IC CPl% ———— 2
¢ Add * * Clock Rate @
and equation 1 can be rewritten as:
1
Tp =Ts +IC CPl% ———— 3
p s +1Cada * * Clock Rate &

Asfor the CPI, this value can be expressed as the sum of
theideal CPI and the number of pipeline stall cycles per in-
struction. Inthe case of thevirtual function call, the datade-
pendenciesbetween theload and AL U operationswill bethe
cause of the pipeline stalls, and can be categorized as Load
Sall Cycles and ALU Sall Cycles. For the purpose of this
study we do not consider the stalls associated to the branch
delay, and assumethat the branch operation for astatic func-
tion call will consume as many cyclesaswith avirtual func-
tion call. With thissimplification of the CPI, we can express
it as:

Load Stall Cycles + ALU Stall Cycles
ICAdd

Since the clock rate of a machine is constant, the only
way to reduce the runtime overhead of virtual function
cals (Tp) isto reduce the number of additional instruction
({C a4q) and/or reduce the cycles per instruction (CPl). We
propose a technique below that will do exactly this, by uti-
lizing an HPL -PD feature known as predication to eliminate
unnecessary loads of the VFT.

CPI = Ideal CPI+

4

1.2. Applying predication to virtual function calls

A common practice within OO programs is to partition
functionality into small, re-usable functions, also known
as methods. Consequently, the average number of calls to
methodsin OO programsis higher than the number of calls
to functions in procedural programs [5]. However, given
that these methods are called through afinite set of objects,
one would expect that a number of the methods are called
with like objects (i.e instances of the same class). If this
wasthe case, and the methods are virtual functions, then the
calls to these functions will use the same VFT, asis shown
in the example given in Figure 1(b). Therefore, if the com-
piler was ableto interleave these calls, it could eliminate the
redundant loads of the same VFT for each subsequent call
after the initial call. Thiswould reduce the number of load
stall cycles(i.e. reduce the CPl) and reduce the pressure on
theload/storeunits, which opensthe opportunity to schedule
other memory bound instructions. The compiler optimiza-
tion presented in this study does exactly this by interleaving
multiple virtual function calls for objects whose type can-
not be determined statically, and applies predication to con-
ditionally load the VFT when needed.

Predication supports conditional execution of individual
operations based on boolean guards, which areimplemented

as predicated register values [6]. By use of predication, the
compiler can transform a virtual function call so that cer-
tain operations(e.g. loadingthe VFT) arecontrolled by 1-bit
predicate registers. The 1-bit predicate registers are read by
the hardware during theinstruction decode/register fetch cy-
cle, and forwarded onto the execute cycle. Depending onthe
value of thequalifying predicate, the computed results of the
guarded instructions are either applied towards the proces-
sor state, or discarded. Asan example, Figures4 and 5 show
the predicated and non-predicated HPL-PD instructions, re-
spectively, for two interleaved virtual function calls. These
schedulesare based onthe examplegivenin Figure 1(a), and
on the assumptions given in Table 1. Note that the stalls
shown in cycles S1 and S are due to structural hazards re-
sulting from asingleload/storeunit with alatency that isde-
pendent on the average memory access (AMA) time. Hence,
the length of these stalls is variable, and in the case of the
R stdl, it may be eliminated if the memory latency is short
(e.g. amemory latency of 2 cycles).

Architecture 2-Way Issue VLIW

Integer ALU Units 2 unitswith alatency of 1 cycle

L oad/Store Units 1 unit with alatency based on AMA time

Table 1. Assumptions applied to the sched-
ules given in Figures 4 and 5

Cycle VLIW Instruction
1{r3=Idr2
S1| ** Structural hazard stall **
2+S1|r10=1Idr9 —load obj2's VFT
3+S1|rd=r3+12 r5=r3+20 [—*cac. addressforobjl's
s2| ** Structural |hazard stall ** offset & function entry pt.
4+S1+S2 | r6=1drd r—*load obj1’'s offset

5+S1+S2 [r11=r10+ 16 | r12 =r10 + 24—>calc. address of obj2's
offset & function entry pt.

—load obj1's VFT

6+S1+S2 | ** Remaining|instructions **

Figure 4. The schedule of non-predicated
HPL-PD instructions for the two virtual func-
tion calls shown in Figure 1(a).

Asshowninthe schedulewhere predicationisused, if the
objectsare of the sameclasstype, then theredundant | oading
of the VFT is eliminated at cycle 2+ S1. This would avoid
the stall cyclesat 2, and provide an opportunity to schedule
another memory bound instruction in its place (i.e. in the
< cycle). On the other hand, if the objects are of different
class types, then all loads are performed and the length of
the scheduleis the same as when predication is not used.

In order to quantify the benefits of predication, we should
first determine the cost of loading all VFTs, as would nor-
mally occur. In a schedule without the use of predication,
the number of VLIW instructionsrequired to load the VFTs

Cycle VLIW Instruction
1|r3=1dr2 p1,p2 = cmpr(r2,ro)
S1| ** Structural hazard stall **
2+S1| (p2)r10=1dr9 (p1) r10=r3
3+S1|r4=r3+12 r5=r3+20
S2|** Potentially Eliminated Stalls **
4+S1+S2 | r6=1d r4
5+S1+S2 [r11=r10+16 | r12=r10+24
6+S1+S2 | ** Remaining|instructions **

| 5. pl=1;p2=0iffr2=r9
pl=0; p2=1iffr2!1=r9

| if p2thenr10=1dr9
if plthenrl0=r3

Figure 5. The schedule of the predicated HPL-

PD instructions for the two virtual function

calls shown in Figure 1(a).
is W where V is the number of interleaved virtual
function caf Is, and N is the maximum number of load oper-
ations allowed per VLIW instruction. Each VLIW instruc-
tionwill completetheloading of the VFTsin thetime period
for which it takes to locate the VFTs within the memory hi-
erarchy (i.e. the average memory access cycles). Thisisa
factor of the hit cycles, miss rate and miss penalty at each
level in the memory hierarchy. For simplicity, we will refer
to this as the AMA cycles, which is a based on the average
memory access time as shown by Hennessy and Patterson
[7]. Hence, the average number of cycles required to load
the VFTs can be expressed as:

14

Avg. Load Cycles = ———
vg. Load Cycles min(N, V)

* AM A cycles (5)

andthe AMA cyclesfor a3-level memory hierarchy with an
L1 and L2 cache and main memory, is:

AM A cycles = Hit Cyclesp1 + Miss Rater1 x (Hit Cyclespz +
Miss Ratero * Hit Cyclesyrain Memory)

By use of predication, the number of operations to load
the VFTs is reduced by the cardinality of the set of virtual
function calls (S that use the same object type as the first
virtual function call. In other words, once the first VFT is
loaded, each subsequent function call using the same VFT
can eliminateitsload operation. Sincethefirst virtual func-
tioncall will loadthe VFT intothe L 1 cache, each eliminated
load from the subsequent virtual function calls will reduce
the overhead by the number of cyclesrequired to accessthe
L 1 cache, assuming a nonbl ocking cache using asimple hit-
under-one-miss scheme. We can express the number of cy-
clestoload the VFTswith use of predication asan extension
to Equation 5:

V-S|

Awvg. Load Cycleswith Predication = fm

T*AM Acycles
(6)

Givenin the schedule shownin Figure 5, where the num-
ber of interleaved virtual function callsis 2, and theassumed

latencies and miss rates for the different levelsin the mem-
ory hierarchy areasgivenin Table 2, theaverageload cycles
with predicationiis:

min(1,2)

(2 +0.2 % (7 + 0.12 % 35))

Avg. Load Cycles with Predication = |

Level Latency | MissRate
L1 Cache 2 20%
L2 Cache 7 12%
Main Memory 35

Table 2. Example latencies and miss rates

Inthe casewherethevirtua functionsare called with dif-
ferent types of objects, the set of virtual function calls(S) is
empty. Whereas, if called with like objects then Sis {obj2-
>fee}. The averageload cyclesrequired between these two
casesis 8.48 and 4.24 respectively. Since in some casesthe
load cycles can be masked by overlapping non-dependent
instructions with the loads, the reduction of load cycles by
use of predication cannot be translated into a speedup for
the virtual function call. However, when the load cycles
cannot be fully masked, then the enhanced speedup result-
ing from the use of predication is approximately the ratio
Aug. Load Cycles without Predication One would expect thet
as the the number of interleaved virtual function calls using
like objectsincreases, so will the enhanced speedup.

What is missing from the average load cycles with pred-
ication isthe cost of performing the predication (i.e. setting
the predicate registers and eval uating the predicated instruc-
tions). Given an architecture that would allow a maximum
of N loadsin asingle cycle, where N > 1, the use of predi-
cation would replace N - 1 loads with compare-to-predicate
operations (CMPR). Since the CMPR operation has a la-
tency of 1 cycle, which istraditionally less than the latency
of thereplaced | oad operations, theimpact of using predica-
tionthusfarisareductionin cycles. TheN - 1replacedloads
then become predicated |oads, which can be scheduledinthe
cycle following the initial load. If any of these predicated
loads are executed, then they would compl ete execution one
cycle after theinitial load, based on an average memory ac-
cess time. Thus, the cost of using predicated loads when
the object types do differ can be a single cycle. However,
as shown in the schedule from Figure 5, the cost is O cycles
when the load operation is not replaced but is merely pred-
icated (i.e. N = 1), and the predicated load and assignment
operations can be scheduled on the same cycle.

The other case to consider is when the objects are the
same type, and the assignment of the VFT must be per-
formed. This assignment cannot take place until the initial
load has completed. Inan architecturethat allowsN load op-
erationsinasingleVLIW instruction, one can safely assume
will aso support N assignment operationsin asingle VLIW

instruction. Consequently, if all N - 1 predicated assignment
operations were to be executed, they could be scheduled in
the same cycle and would complete in a single cycle (as-
suming a latency of 1 for ALU operations). Interestingly
enough, if there existsamix of virtual function callsthat do
and do not use the same object types, the predicated assign-
ment operati onscan be scheduled on thelast executioncycle
of the predicated |oad operations since these operations are
independent of each other. Hence, we can safely say that the
cost of using predication in virtual function calls will cost
one cycle in the worst case, thereby modifying Equation 6
to be:

V-S|

Awvg.LoadCycleswith Predication = fm

T*AM Acycles+1

™
Intermsof Equation 3, predication reducesthe number of

load cycleswhich can potentially reduce the number of load
stall cycles. The load stall cycles are used to compute the
CPl, asshownin Equation 4. On the other hand, the instruc-
tion count which isaso used to compute the CPI, increases
due to the additional compare-to-predicate and assignment
instructions. However, the predicated instructions (i.e. the
VFT load and assignment) may or may not be committed to
the processor state. This can impact the CPI. Thus, to ac-
curately reflect the CPI on architectures that support pred-
ication, araw CPI and a useful CPI should be considered.
The raw CPI reflects all instructions, regardless of if they
are predicated. Wheress, the useful CPI reflects only those
predicated instructionsthat are committed. Asfor thisstudy,
weconsider only the raw CPI whichisan upper bound to the
actual CPI. With thisin mind, we can expressT'p with pred-
ication as:
Tp with predication = Ts + [(IC a4q4 + 2) *
Eliminated Stall Cycles

)+ 1] =

CPI —
((IC444 +2)

1
Clock Rate

2 Other techniques

This application of predication towards virtual function
calsis not limited to single inheritance hierarchies, as our
example depicts. In fact, this concept can be further ex-
tended with multiple inheritance hierarchies to reduce the
cost of the early cast. For instance, if two virtual functions
are contained in the same VFT, and the objects with which
these functions are called are siblingsin the class hierarchy
(i.e. they inherit from the same base classes), then both the
early cast and the loading of the VFT can be eliminated for
one of the calls.

Another application of predication to reduce the over-
head of virtual function callsisto useit in conjunction with
runtime class tests, or also known as I-Call If Conversion
[8]. Thiswould convert the virtual function callsinto static
function calls, and reduce the branch mispredicts that are
generally seen with this type of conversion.

3 Summary

To minimize the runtime overhead associated to virtua
function calls, one must either reduce the number of opera-
tions required to perform a call, or reduce the CPI for the
call. With a basic understanding of the mechanics of vir-
tual function calls, one can seewhy they incur thisoverhead,
and how this overhead might be reduced in light of newer
architectural features. Predication is one such feature that
could be used to conditionally eliminate loading the same
VFT for multiple virtual function calls. By eliminating re-
dundant |oad operations, we can minimizethetime spent ac-
cessing the memory system and reduce potential stallsinthe
instruction stream. If the load operations cannot be reduced,
then the cost of using predication, intheworst case, isasin-
glecycle. We believethis cost isworth the potential savings
when considering the nature of OO programs, and the sav-
ingsthat can be obtained in light of the growing performance
gap between the processor and memory systems.

References

[1] K. Driesen and U. Holzle. The direct cost of virtual
function callsin C++. In Proceedings of the Conference
on Object-Oriented Programming Systems Languages
and Applications (OOPSLA ' 96), October 1996.

[2] M. A.Ellisand B. Stroustrup. The Annotated C++ Ref-
erence Manual. Addison-Wesley, 1990.

[3] H. Srinivasan and P. Sweeney. Evaluating virtual dis-
patch mechanismsfor C++. Technical report, IBM Re-
search Division, Jan 1996.

[4] V. Kathail, M. Schlansker, and B. Ramakrishna Rau.
HPL PlayDoh architecture specification: Version 1.0.
Technical report, Hewlett-Packard Computer Systems
Laboratory, HPL-93-80, Feb 1994.

[5] B. Calder, D. Grunwald, and B. Zorn. Quantifying be-
havioral differences between C and C++ programs. In
Journal of Programming Languages, 2:4, 1994.

[6] P Y.HsuandE. S. Davidson. Highly concurrent scalar
processing. In Proceedings of the 13th International
Symposium on Computer Architecture, pages 386395,
June 1986.

[7] J. L. Hennessy and D. A. Patterson. Computer Archi-
tecture: A Quantitative Approach. 2nd Edition, Morgan
Kaufmann, San Francisco, CA, 1996.

[8] B. Cader and D. Grunwald. Reducing indirect func-
tion call overhead in C++ programs. In ACM Princi-
ples and Practices of Programming Languages, Port-
land Oregon, 1994.

Hardwar e Support for Profiling Java Programs

Nathan M. Hanish and William Cohen
hani shn@t sc. uah. edu cohen@ce. uah. edu
Department of Electrical and Computer Engineering
University of Alabama in Huntsville
Huntsville, AL 35899

Abstract

Assuming the Java version of a program provides good
performance, many programmers are interested in using
Java as a replacement for many traditional programming
languages because of the portability of Java and the
extensive runtime libraries. However, in many cases the
performance of the Java code requires improvement
before it is acceptable. Profiling provides an effective
means of identifying the sections of code that consume the
most processing time and are the best candidates for
optimization.

A prototype low-overhead, time-based profiling system
has been developed for the Kaffe Java Virtual Machine's
(VM) Just-In-Time (JIT) i386 trandator using the
high-resolution timestamp register of the Intel Pentium
processor. Experience with this approach suggests that a
“virtual time’’ register would be a useful addition to the
processor to simplify measuring the performance of
multithreaded programs. Direct user control of the
performance monitoring hardware would reduce the cost
of measuring multiple performance metrics on a
per-method basis.

1. I ntroduction

As a modern programming language whose programs
can be executed on virtually any machine without
recompilation, Java holds the power to revolutionize the
manner in which applications are developed and delivered
for industrial and research purposes. Unfortunately, Java
is often considered a slow, inefficient language, but the
performance of Java programs has been steadily
improving and estimates have been made that Java can
provide performance that is about 70% of traditional
compiled languages [4]. However, there is still a need to
obtain the best performance possible out of particular
programs executing on the Java Virtual Machine (JVM).
This type of effort requires the use of runtime profiling
information. This profiling information can either be used
by the programmer to change sections of the code to
improve performance or it can be used by the runtime
system to efficiently apply optimizations to sections of the

code as proposed by Holzle [3] and implemented in
HotSpot [6]. This profiling information is essential for
quickly focusing the effort on sections of code that most
impact the overall performance of the program.

The most commonly used metric is time. If a section of
the program takes very little time to execute, further
optimization of that section will have little effect on the
overall performance of the program. Traditionally,
expensive function calls were used to obtain time data
from off-chip sources, causing the measurement to perturb
the data being collected. Many processors, including the
Intel Pentium [5], Compaq Alpha [10], and PowerPC [8],
include timestamp registers, which can be read with a
couple of simple instructions and provide time resolution
on the order of tens of nanoseconds. This processor
hardware reduces the cost of measuring the amount of
time required to execute a section of code. The abilities of
the Intel Pentium’s timestamp hardware were exploited on
a prototype profiling system incorporated into the Kaffe
Java Virtual Machine’s (JVM) [12] Just-In-Time (JIT)
translation system. The profiling minimized the cost of
obtaining timing information by inserting in-line machine
language instructions to read the processor’s timestamp
register.

Given the experiences of incorporating
hardware-assisted profiling into a JVM, some observations
were made to improve the hardware support for
monitoring the performance of the Java runtime system.
Java is multithreaded and an additional timestamp register
that contains the virtual time for the thread would be
useful. The wall-clock time does not indicate the amount
of time that the thread is actively using the processor,
software schemes that track the time that the thread spent
idle must be implemented [7]. In addition to a high
resolution timer, most processors provide performance
monitoring hardware that can measure other aspects of the
processor performance, such as the number of cache
misses, memory accesses, and instructions executed.
Although the performance monitoring hardware allows the
values to be directly read by application programs, setting
the configuration of performance monitoring hardware is
limited to the kernel. Direct control of the performance
monitoring hardware by application programs would avoid
expensive kernel calls to change the metrics being

collected, enabling finer grained data collection, e.g.
changing the metrics being collected on each method
invocation.

Section 2 describes the approach used to provide
profiling in the Kaffe JVM. The environment used for the
experiments and the results of the instrumentation are in
section 3. Finally, section 4 summarizes the work.

2. Instrumentation Architecture

The instrumentation was designed to provide an
automated collection of high-resolution time
measurements on each method in the executing program.
The use of a very high-resolution clock (period same as
processor clock) allows timing information to be gathered
on methods that run for very short amounts of time. The
high-resolution measurements also allow meaningful data
to be collected without resorting to repeated calls to the
same method to increase the amount of time spent in the
method. Having repeated calls to a method may perturb
the measurements because of garbage collection and other
interfering threads running concurrently. The
instrumentation process is automatic, occurring when the
bytecodes are translated into native machine language, so
the instrumentation collects data on each bytecode method
executed regardless of whether or not the user has Java
source code for it.

Several modifications were made to the Kaffe JVM to
provide time-based profiling. A option on the command
line, ‘‘-prof”’ activates the instrumentation. Fields added
to the structure that describes each method store the
profiling information. The revised JIT code generator
produces native code versions of the methods. Finally, the
exit code of the JVM was modified to print the number of
times each method was called, the amount of time spent in
each method, and the amount of time spent in the method
and its children.

The timestamp register on the Pentium processor
counts the number of cycles since the processor was reset.
The application code can read this register with a single
instruction, RDTSC, which stores the 64-bit value in two
32-bit registers, EAX and EDX. There are very few
registers in the IA-32 architecture. Thus, EAX and EDX
are used as general purpose registers by the JVM and in
most cases the values in EAX and EDX need to be saved
before the timestamp is read and restored after the time is
recorded.

The instrumentation stores the information on a
per-method basis. Each method loaded into the JVM has a
structure that describes it. Fields added to the structure
accumulate the number of times the method is called, the
total time spent in the method and its children, and the
time spent in its children. The fields are zeroed when the
method is translated from Java bytecode to native machine
language.

The JIT system generates in-line machine code to
profile each method. In the prologue of the method, the
invocation count for the method is incremented and the
current time stamp is subtracted from the method’s total
time. In the epilogue of the method, the current time
stamp is added to the method’s total time, yielding the net
time spent in the method and the children.

To determine the time spent in the children methods,
each method invocation in the generated code is preceded
and followed by time measurements. The time
measurement preceding the method invocation is
subtracted from the time spent in the children and the time
measurement following the method invocation is added to
the time spent in the children. These operations add the net
time spent in the child to the total spent in the children
methods.

This approach samples the time stamp register twice as
many times as theoretically required. The time is sampled
just before leaving a method and just after entering a
method. However, the JVM runtime system does not
guarantee that the leaving of one method is immediately
followed by the entry into the next because of the
trampolines used to start the JIT translation. Making the
assumption that the two times are the same would
incorrectly attribute time for JIT translation to one of the
methods. The cost of sampling the time stamp register is
relatively low. By keeping the profiling information
within the boundaries of the method, the addresses of the
structure storing the profiling information is known when
the JIT is performed. If the profiling data crosses method
boundaries, additional code is required to dynamically
determine the appropriate structure to update because the
same method invocation may invoke different code
depending on the object. Thus, the selected approach
samples the time more often than absolutely needed, but it
yields more accurate estimates of the time spent in each
method and still provides good performance.

3. Results

Several experiments were performed on a 100MHz
Pentium running Linux RedHat4.2 and the modified
version of Kaffe. The profiling modification performed
reasonably well and its reported times agreed with the
times reported by the currentTimeMillis used in the
Symantec benchmark suite for the various parts of the
benchmark. Table 1 summarizes these measurements and
shows the difference between the measurements for the
same run of the benchmark. Another aspect of the
instrumentation is the amount of time that is measured by
the profiling compared to the total time taken to execute
the program being measured. Subtracting the time spent in
the method’s children from the total time recorded for the
method provides the time spent in the method, the
selftime. The selftimes for all the methods were summed
to determine the amount of time actually observed by the

Table 1: Comparison Two Method of Measuring
Benchmark Runtime.

Table 2: Comparison of coverage of JVM runtime
by profiler.

instrumentation. Table 2 shows the usertime measured by
the Unix time command for the Symantec [11],
Linpack [2], jBYTEmark v0.9 [1] benchmarks. Additional
measurements were made with Pizza [9], a compiler that
provides a superset of Java, compiling the other
benchmarks. The ratio of usertime versus sum of the times
spent in each method as measured by the JIT
instrumentation is recorded in the last column of Table 2.
For the simple benchmarks no more than 60% of the time
was spent in the bytecode. Much of the time was spent in
either native methods or the JVM support code. Existing C
profiling tools can be used to determine the time spent in
the JVM code. The current version of the profiling also
instruments the Java Native Interface (JNI) wrapper
providing an estimate for the amount of time spent in C
functions called from Java.

The profiling added about 2% to the overall runtime.
This overhead is expect to increase when improvements
are made to the quality of the code generated by the JIT

Table 3: Top 20 times for HelloWorldApp.

current 1A-32 Percent User time | Total self self
Time Time Dift. Benchmark utime(s) time (s) utime
Millis Stamp Symantec 264.3 101.3 0.383
Benchmark (ms) (ms) Linpack 1.56 0.510 0.327
Sieve 3733 3737.957| 0.03317% jBYTEmark 75.4 44.0 0.583
Array 13745| 13775.978| 0.05628% pizza (Symantec) 12.9 0.619 0.048
Dhrystone 14328| 14355.194| 0.04740% pizza (Linpack) 11.6 0.435 0.038
Fibonacchi 16828| 16867.035| 0.05792% pizza (jBYTEmark) | 20.8 2.31 0.111
BidirectionalBubble 23103 23154.048| 0.05518% HelloWorldApp 0.92 0.0042 0.0046
SortAlgorithm
BubbleSortAlgorithm | 26876 26938.705| 0.05826% translator and improvements are made to reduce the
Hanoi 35885 35970.236| 0.05931% amount of time spend in the JVM runtime system.
Tree 87766| 87977.295| 0.06011% Table 3 shows the output of the profiler for a simple

HelloWorldApp class, which simply prints ‘‘Hello
World!”” The main method in the HelloWorldApp and
everything it calls requires relatively little time to execute,
66.0118ms, and 66.0071ms of that time is spent other
methods called from that method. Significantly more time
is spent in the class initializer java/lang/System.<clinit>(),
390.254ms.

Measurements for the Volano benchmark [13] shown in
Table 4 illustrate the weaknesses of the current
instrumentation in measuring programs that use
multithreading and exceptions. The measurements were
sorted based on the total times and the largest total times
are listed in Table 2. The Volano benchmark required 284
seconds on a uniprocessor machine. The instrumentation
makes no distinction between a thread doing useful work
and being idle. Thus, the total time spent in
COM/volano/cb.run()V and COM/volano/x.run()V are 200
times larger than the time actually spent by the processor
in these methods. Another oddity observed in Table 4 is
the negative time spent in the children for
COM/volano/x.run()V. This is due to Volano using an

total | children
count (ms) (ms) method-name
1|506.53 | 506.375 | java/lang/ThreadGroup.add(Ljava/lang/Thread;)V
1]390.254 | 281.022 | java/lang/System.<clinit>()V
3119499 | 19498 | java/lang/Class.forName(Ljava/lang/String;)Ljava/lang/Class;
31194546 |0 java/lang/Class.forName(O(Ljava/lang/String;)Ljava/lang/Class;
1129.966 | 129.878 | java/util/GregorianCalendar.<clinit>()V
1| 129.057 | 129.052 | java/util/GregorianCalendar.<init>(III)V
1]116.842 | 116.838 | java/util/Calendar.<init>()V
1| 101.821 | 101.818 | java/io/FileInputStream.<clinit>()V
3193.5362 | 93.5265 | java/lang/System.loadLibrary(Ljava/lang/String;)V
1]91.3835 | 90.0128 | java/util/Locale.<clinit>()V
22 | 89.1518 | 89.1078 | java/util/Locale.<init>(Ljava/lang/String;Ljava/lang/String;)V
22 | 86.9751 | 86.9022 | java/util/Locale.<init>(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V
221 79.5602 | 79.5254 | java/lang/String.toLowerCase()Ljava/lang/String;
22 1 76.6465 | 75.6919 | java/lang/String.toLowerCase(Ljava/util/Locale;)Ljava/lang/String;
1|69.804 | 69.6825 | java/lang/Runtime.<clinit>()V
44 | 67.4528 | 67.3652 | java/lang/Character.toLowerCase(C)C
74| 67.1331 | 15.2901 | java/lang/Character.getCharProp(C)Ljava/lang/Character$CharacterProperties;
1]66.0118 | 66.0071 | HelloWorld.main([Ljava/lang/String;)V
1] 65.2982 | 65.2925 | java/io/PrintStream.println(Ljava/lang/String;)V
1]59.0576 | 59.0528 | java/io/PrintStream.print(Ljava/lang/String;)V

Table 4: Volano measurements.

count total (ms) children (ms) method-name

400 | 1.18762e+08 | 1.18762e+08 | java/lang/Thread.run()V

200 | 5.94153e+07 | 5.94153e+07 | COM/volano/cb.run()V

200 | 5.93471e+07 | -4.15756e+11 | COM/volano/x.run()V
2799 | 5.87699¢+07 | 5.87697e+07 | java/lang/Object.wait()V
2799 | 5.87697e+07 | 5.87696e+07 | java/lang/Object.wait(J)V
2799 | 5.87695e+07 | 5.87689e+07 | java/lang/Thread.waitOn(Ljava/lang/Object;J)V
2799 | 5.87688e+07 | 0 java/lang/Object.waitO(J)V

exception to exit a child method. Thus, one of the times
for returning from a child is never added to the children
time, yielding a negative number.

Changes to the performance monitoring hardware could
simplify the data collection process and improve the
quality of the measurements. There are really two types of
time measurements of interest for profiling: wall-clock
time and virtual time. The processor only directly supports
the measurement of wall clock time via the timestamp
register. The problem becomes apparent when trying to
measure multithreaded programs such as the Volano [13].
The wall-clock time does not give an accurate
measurement of the time a method spends executing in a
multithreaded program because the method may be
suspended for significant amounts of time and during that
time it does not execute. An additional virtual timestamp
register implemented in hardware would be a useful. This
would be a user readable and writable register that would
increment at the same rate as the regular timestamp
register. When a context switch occurs, the value in the
virtual timestamp register would be reset to that thread’s
virtual timestamp value and continue counting where the
thread left off. This would provide an accurate measure of
the amount of processor time that various methods
consume. Software that virtualizes the IA-32 timestamp
register has been developed, but it requires 90 cycles per
measurement [7]. A trivial amount of hardware could
reduce the cost of this operation by an order of magnitude.

The TA-32 architecture has very few registers to store
values and the instruction that reads the time stamp store
the values in registers that are used for many other
purposes. This results in additional instructions being
required to save the values before the timestamp operation
and to restore the registers after the time stamp operation.

There is little reason to make the control of the
performance monitoring hardware privileged. Having a
performance monitoring hardware that is directly under
user control would eliminate the costly kernel calls
required to switch the instrumentation from user code.
With direct user control it would be possible to switch the
performance metrics being monitored within the JVM or
even from method to method without incurring too much
overhead. If the kernel really requires dedicated
performance monitoring, the cost of performance
monitoring hardware is relatively small and a duplicate
unit could be created that is only accessible from
kernel-mode.

4. Conclusion

For wide scale adoption of Java, tools that allow
programmers to identify areas of code that require
improve are essential. The JIT modifications to the Kaffe
JVM provided an adequate means of profiling traditional
sequential benchmarks, and was able to indicate which
methods consume the most time in the Java program. The
performance monitoring hardware provided by the
processor was crucial to the efficient implementation of
the profiling. The development of the profiling system
exposed some of the limitations of the current hardware
support for performance monitoring.

Relatively simple changes in the performance
monitoring hardware will improve the quality of the data
collected. Having a separate virtual timestamp register
will allow more efficient profiling of multithreaded
programs. Multithreaded programs will become much
more common due to the Java’s built in support of threads
and the interest in networked programs. Allowing direct
user access to the performance monitoring hardware will
enable the JVM to perform more sophisticated
performance monitoring without resorting to costly kernel
calls to change the metrics being monitored.

Acknowledgments

We thank Edouard G. Parmelan for refining our
prototype instrumentation and incorporating it into the
Kaffe JVM.

Bibliography

[1] “‘Benchmarking Java.”” Byte, May 1998.

[2] J. Dongarra and R. Wade. ‘‘Linpack,”” 1998.
http://www.netlib.org/benchmark/linpackjava/.
[3] Urs Holzle, Adaptive optimization for Self:

Reconciling High Performance with Exploratory
Programming, Ph.D. thesis, Computer Science
Department, Stanford University, August 1994.

[4] Cheng-Hsueh A. Hsieh, John C. Gyllenhaal, and
Wen-mei W. Hwu, ‘‘Java Bytecode to Native Code
Translation: The Caffeine Prototype and Preliminary
Results,”” Proceedings of the 29th International
Symposium on Microarchitecture, December 1996.

[5] Intel, Architecture Optimization Manual, Mt.
Prospect, Illinois, 1997, Intel,
http://www.intel.com/design/pentium/manuals/24281-
6.htm, order number 242816-003.

[6] Sun, THE JAVA HOTSPOTTM PERFORMANCE
ENGINE ARCHITECTURE,
http://www.javasoft.com/products/hotspot/whitepape-
r.html, April 1999.

[7] Charles E. Leiserson, personal communication,
August 1999.

[8] Motorola, PowerPC 604/604e User’s Manual,
MPC604EUM/AD, Motorola, March 1998.

[9] Martin Odersky and Philip Wadler, ‘‘Pizza into Java:
Translating theory into practice,”” Proc. 24th ACM
Symposium on Principles of Programming
Languages, Paris, France, January 1997.

[10]R. L. Sites and R. T. Witek. Alpha AXP Architecture
Reference Manual, Digital Press, Newton,
Massachusett, second edition, 1995.

[11] Symantec’s Benchmark Test Suite,
http://www.symantec.com/jit/jittests.zip 1999.

[12] Transvirtual, Kaffe,
http://www.transvirtual.com/kaffe.html, May 1999.

[13] ““Java Benchmarks: Volanomark,’’
http://www.volano.com/mark.html, July 1999.

Session 4

Microarchitectures for Java

VLSI Architecture Using Lightweight Threads (VAULT) -
Choosing the Instruction Set Architecture

| Watson, G Wright, A EI-Mahdy
University of Manchester, UK
watson@cs.man.ac.uk, gwright@cs.man.ac.uk, aelmahdy@cs.man.ac.uk

Abstract
» Execution by dynamic compilation of bytecode.

The VAULT project is concerned with the design of a * Object oriented code with heavy use of method call-
‘multi-processor on a chip’ aimed specifically at multi- ing, dynamic binding, object access (via indirec-
threaded Java implementation. It has wide ranging aims tions) and garbage collection.
that require research in a variety of hardware and software ¢ Dynamic linking and loading of objects.
areas. The project is still in its early stages and most of the ¢ Program level multi-threading.
work is still to do. This paper provides an overview of the ¢ Particular importance of multi-media applications.
project as envisaged currently and then examines some of
the initial work in detail. In order to perform a Comprehen_ It is believed that hardware structures can be tailored to
sive evaluation of the VAULT approach, itwas thought nec- these needs with a resulting performance increase. It is also
essary to perform detailed instruction level simulation. A important to note that many such systems will need to be
single CPU structure therefore needed to be defined to formportable and hence power dissipation is a significant issue.
the basic building block of the system and hence the simula- It is assumed that compatibility with previous hardware
tor. One of the first decisions needed was the basic Instruc-is not necessary (this is probably essential to permit the in-
tion Set Architecture of the CPU. The reasons behind the vestigation of novel ‘on-chip’ mechanisms). Dynamic bina-
choice are examined using results obtained by detailed in-1y translation can be used to run ‘legacy’ software if
strumentation of the Java Virtual Machine and the running necessary.
of a variety of Java benchmarks. This paper outlines the overall features of the VAULT

architecture, which are aimed at realizing high performance
for the Java environment. However, the projectis at an early
1.Introduction stage and much of the detail is still being explored. The ma-
jor detail of the work described here is concerned with the
selection of an Instruction Set Architecture (ISA). A selec-
tion of programs from the JavaSPEC [2] benchmarks has
been used to analyse the various ways in which bytecode
an be executed and the resulting overheads which occur.
his analysis suggests that a register windows based CPU
would provide optimum performance. Assuming that this
approach is followed, the final section describes a more de-
tailed analysis of the benchmark execution in order to ascer-
tain the numbers of registers and windows necessary to
sachieve that performance.

The VAULT project has two distinct but closely con-
nected aims: firstly to explore the potential of future VLSI
to produce a ‘multi-processor on a chip’ and secondly to
provide support for high performance Java based systems o
the future.

The combination of these two issues is neither accidental
nor arbitrary. The case for considering single chip multi-
threaded and/or multi-processor structures to utilize future
VLSI technology is well known. However, most proposals
in this area have either been extensions of current super-sc
lar designs or integrated versions of conventional multi- . o
processors [1]. Concentration on the Java environment al-2-Project Principles
lows us to consider new approaches which can optimize the
software performance, while at the same time benefit from The following are the principles and features which are
the natural multi-threaded structure, to produce high per-guiding our research. This is currently in an early stage so
formance, low power hardware. that the detail of some of these issues has not yet been ex-

The environment is significantly different from that re- plored.
quired to support serial or parallel C or FORTRAN based
code for which current processors are optimized. The mostl. Parallelism through multiple simple CPUs rather than
obvious differences are:- exploiting ILP etc.

Natural exploitation of threaded parallelism - poten-
tially higher performance than the alternative of time
sliced execution on super-scalar CPU as thread
count increases.

Complexity/performance ratio per CPU lower lead-
ing to more efficient silicon use.
Power/performance ratio per CPU lower - particu-
larly important for portable computing.

Simple processors imply significantly reduced
design effort.

2. Processor structure optimized for support of (dynami-
cally) compiled Java and multiple thread support.

Register windows structure for efficient support of
frequent subroutine (method) calls.

Multiple register set ‘heap’ with hardware assisted
allocation and spilling to allow frequent thread
switching within a CPU.

Caching structure tailored to object accessing and
dynamic binding.

3. Inter processor communication at register and cache
level via special bus structures.

On-chip communication will enable specialized
communication paths to be implemented at high
speed.

Support for very lightweight thread creation. Use of
dynamic thread creation. Use for ‘real’ parallelism
(loops etc.) within Java level threads for higher par-
allel performance (e.g. for multi-media computa-
tions).

Support for dynamic load balancing. Rapid
exchange of load information and rapid task creation
minimize ‘feedback system instability’.

Ability to query remote caches a significant aid to
task placement.

4. Processor support for multi-media applications.

Multi-dimensional cache structures.
Multi-media processor functions?

5. Dynamic compilation (for parallelism).

Dynamic compilation for optimal use of single proc-
essor structure (Hot Spot etc.)[3].

Decisions on size of parallel tasks best left until run-
time.

» Decisions about how to divide (e.g. data sets) best
left until run time.

» Data representations can be altered dynamically?
(e.g. tree structured arrays)

There have been a number of architectures proposed for
the efficient execution of object-oriented languages, most of
them aimed at Smalltalk. The SOAR [4] processor had a
register windows structure but these were not organized as a
freely allocated heap like VAULT. Most of the other SOAR
features such as tagged data are not applicable in a Java en-
vironment. The Mushroom [5] project examined novel
memory mechanisms for object accessing and caching
which may be relevant to VAULT.

We have (very) recently become aware of some of the de-
tails of the Sun MAJC architecture [6]. This appears to share
many of its higher level aims with VAULT. The major dif-
ferences appear to be at the individual processor level where
they propose the use of multiple function units and a VLIW
ISA.

3.Choosing the VAULT CPU ISA

Itis tempting to think that the correct way to approach the
design of hardware to execute Java efficiently is to produce
a stack based CPU. This might either implement the full
functionality of the Java Virtual Machine in hardware or at
least provide a simple stack based ISA into which the byte-
codes can readily be translated.

It was felt that the first of these options was against basic
RISC philosophy and was thus unlikely to lead to optimum
performance. The picoJava [7] project has already investi-
gated the second approach. It uses stack caching techniques
coupled with hardware supported instruction folding to
overcome some of the inherent disadvantages of a stack
based ISA concerned with the movement and duplication of
operands. Such a processor is particularly suited to embed-
ded applications where it requires minimal software sup-
port. A number of other projects have also studied similar
hardware techniques.[8][9]

We were not convinced that, if one assumed the use of
sophisticated JIT or dynamic compilation techniques, a
stack based structure would outperform a more conventional
register based ISA. However, due to the heavy use of meth-
od calling in many Java applications, we thought that the use
of register windows might be beneficial. Although it is, of
course, possible to study Java implementations on real proc-
essors which exhibit the various design alternatives we felt
that there was a need to perform an evaluation using a com-
mon methodology. We therefore studied a number of differ-
ent ISAs together with appropriate software support using a
variety of Java benchmarks.

In order to produce a useful comparison, it was necessarycode execution model. The high occurrence of const, local
to postulate some simple cases which represented distincand stack operations, contributing around 50% of the total
points in the design space. We chose to compare the follow-instruction count, is responsible for the stack overhead.
ing models of execution:-

» Bytecode- A direct execution of Java bytecode 602/"] _
assuming no optimization. g izof .
« Folding_2 - Java bytecode execution assuming the S a0m |
folding optimizations used in the picoJava-1 processor I,]
(up to two instructions are folded). 2 100 4§ Im -
» Folding_3- Extends the Folding_2 model to consider 3 5 o mll M 0 ofl o (0100 010 e el
instruction folding g N N S
« Folding_4- Java bytecode execution assuming the R & ¢ & °
folding optimizations used in the picoJava-2 processor m_201_compress W _202_jess 0_209_db
(up to four instructions are folded). O_213_javac B _222 mpegaudio @_228_jack
* Reg- A simple register based ISA together with a ‘state
of the art’ register allocation algorithm. We chose to Figure 1. Dynamic instruction mix.

base this on the techniques described for the Cacao
compiler [10] as these seemed to represent an efficient ~ Figure 2 shows the number of instructions executed in

but simple mechanism. each benchmark program for the six execution models.
» Regwin- A register windows based ISA again using the Folding_2 reduced the number of instructions by a maxi-
Cacao algorithm. mum of 17% (for _209_db) and a minimum of 6% (for

_202_jess); the average is 12%. Folding_3 and Folding_4
We have implemented these models and added them taontribute another 3% at most with average of 1%.
the Sun JDK JavaVM through which the JavaSPEC bench- Reg worked better than the folding models for four of the
mark programs are analyzed. (The _227 mitrt program wasprograms; reductions ranged from 26% to 44%. For the oth-
omitted as it is a multithreaded program and we are con-er two programs (_202_jess, _213_javac) there is a smaller

cerned here with simple single thread characteristics.) reduction of 14%. As can be seen from Figure 1, these pro-
The nature of the benchmarks is described briefly in Ta- grams have nearly double (2, and 1.7 respectively) the
ble 1. number of method calls of the other programs, increasing

the relative call overhead.
Table 1: Benchmark Programs

Program Description
_201_compress Lempel-Ziv compression %
_202_jess Java Expert Shell System 3
~ 209 db Database functions g
_213 javac JDK 1.02 Compiler :
_ 222 mpegaudio Decompress MPEG-3 audio
_228 jack Java version of yacc @ Bytecode MFolding_2 OFolding_3 CFolding_4 MReg MRegWin

. o] Figure 2. Relative instruction counts
The results are summarized in Figures 1 and 2. Figure 1

shows the dynamic bytecode execution frequencies for var- Regwin was able to outperform all other models. This
ious bytecode classes; constant loads (const), local variableg,55 expected observing, from Figure 1, that method calls
load/store (local), array load/store (array), stack operationsaccount between 1% and 5% of the executed instructions.
(stack), arithmetic/logic (ALU), conditional/unconditional Regwin reduced the number of instructions by at least 40%
pranghes (branch), field load/store (field), method invoca- o five programs. The remaining program (_228_jack)
tion (invoke) and other (ow). The results assume the Byte- showed only a 29% reduction. This is attributed to the rela-

tively frequent stack (at least 8%) and infrequent local and is necessary to study the method call depth. We extended
ALU operations. This suggests less sharing of local valuesour instrumentation to provide this information. Figure 4
and hence the benefit of using registers is decreased. shows the call depth distribution for the various benchmark

We have not considered the effects of ‘in-lining’ in our programs. The x-axis is the actual call depth, while the y-
study. This would undoubtedly narrow the gap between the axis is the percentage of total instructions which get execut-
Reg and Regwin results for some applications. However, ed at that depth. The absolute value of the call depth is of mi-
there are limits to which in-lining techniques can be used for nor importance, in fact the offset of 13 in Figure 4 is due to
deeply nested programs and it is inapplicable in the generala set of ‘wrapper’ methods around the benchmark suite
cases of both recursion and dynamic binding. It can be ar-which are executed initially. These will, of course, require
gued that most of the JavaSPEC benchmarks are not repreregister window allocation and register ‘spills’ if the win-
sentative of programs written using the full Object Oriented dow total is exceeded but this will only occur once. The im-
style where the above issues will be of increased relevanceportant characteristic is the width of the profile. Programs
We therefore believe that achieving optimum performance such as 209 _db with a very narrow profile indicate that ex-
on real method calls is important and hence our approach isecution takes place with very shallow nesting while a broad
justified. profile like _202_jess indicates deep nesting.

4.Register and Window Usage

100% -

The previous analysis assumed an unlimited supply of 80% (l\
registers and register windows. We re-instrumented the Sun 60% ‘\‘\
JDK JavaVM to count the number of local variables ac- 40% H

cessed. Figure 3 shows the accumulated percentage of local | 20% “ A
variable usage assuming that all local variables are mapped 0% ___Aﬁzzégﬁ ‘ ‘ |

into registers. 0 10 20 30 40 50 60
Calldepth
120 - ——_201_compress ——_202_jess _209_db
—— _213_javac —— _222_mpegaudio —_228_jack

100 —
S 80 /2l : P .
g / Figure 4. Call depth distribution
8 0
g 40 Flynn [11] suggests that a useful measure of the call
g 0L depth of programs is the relative call depth defined as the av-
: erage of absolute differences from the average call depth.
2 0

Table 2 shows the relative call depth for the benchmarks
used.This clearly distinguishes the different characteristics
which are apparent from the graphical profile. However, it

0 2 4 6 8 10

reg no (log base 2)

201 compress 202 jess T -209.db does not give an accurate figure for the actual number of
— _213_javac —— _222_mpegaudio — _228_jack WindOWS needed.
Figure 3. Cumulative percentage of register usage Table 2. Relative Call Depth

The x-axis shows the number of registers required on a Benchmark| 201 202 209 2183 222 228
base 2 logarithmic scale (i.e., number of bits required to en- -
code a local variable). The most register hungry application Rélative 016 | 588! 054 740 170 567
(_222 mpegaudio) has a ‘knee’ at 13 registers covering Call Depth
91% of variable accesses. The next significant ‘knee’ is at
30 registers where several applications achieve 95% usage. A more accurate estimate of the register window require-
This indicates that the decision is between 16 and 32 regis-ments is necessary before design decisions can be made.
ters although a more detailed study of dynamic register us-Our instrumentation was yet further extended to study the
age in the presence of dynamic register allocation way in which the provision of windows affected the execu-
algorithms is required before a final decision is reached. tion.

In order to determine the number of register windows, it ~ We simulated the benchmarks with varying numbers of

windows and measured the miss ratio, defined as the ratio ofregister windows structure is important for reducing method
the number of window accesses resulting in window over- call overheads.
flow or underflow to the total number of windows accesses. We have verified by detailed simulation that the number
A window access takes place twice per method call, once onof registers and register windows required to achieve good
entry and once on exit. The results are shown in Figure 5. performance is modest and therefore consistent with the lev-
As expected from the relative call depth figures, two of el of hardware complexity envisaged.
the benchmarks have a requirement for only a small number The work done so far has enabled us to narrow the design
of windows and, for them, two might suffice. However, to space to a level where we are able to embark on the con-
achieve a low miss ratio (less than 0.02) for all benchmarks, struction of an instruction level simulator for a VAULT
eight register windows appear to be necessary. To emphaCPU. This work, together with compilation routes from Java
size, at this level over 98% of all method calls would not re- bytecode (and C) is almost complete. Using this, we will be
quire register spilling. able to perform a very accurate verification of the design de-
From these experiments, it is believed that we have deter-cisions presented above and make any adjustments to the
mined that a configuration of eight register windows each CPU structure which are necessary. The next stage is to ex-
containing 16 or 32 visible registers would be sufficient to tend the simulation to the multi-processor structure in order

achieve good performance. that we can start to study the full potential of the VAULT ap-
proach.
05 1
oa " 6.References
2 03 = . . .
g [1] Doug Burger and James R. Goodman. Billion-transistor Archi-
g 02 \ tectureslEEE Computer30(9):46-49, September 1997.
01 \ [2] SPEC JVM98 Benchmarks, Standard Performance Evaluation
0 —— : ‘ Corporation. http://www.spec.org/osg/jvm98.
2 4 A 8 16 [3].David Griswold. The Java HotSpot Virtual Machine Architec-
Number of windows ture. White paper, Sun Microsystemdarch 1998. http://
“a—_201_compress 202 _jess 209 db java.sun.com/products/hotspot/whitepaper.html.
—*—_213_javac —e—_222 mpegaudio —— _228_jack [4] David M. Ungar. The Design and Evaluation of a High Per-
formance Smalltalk SystemACM Distinguished Dissertation.
Figure 5. Window miss ratios MIT Press, Cambridge, Massachusetts, 1987.

[5] I.W. Williams, M.I. Wolczko and T.P. Hopkins. Dynamic
It is thought that the this configuration is of acceptable Grouping in an Object Oriented Virtual Memory Hierarcigro-

complexity for the processor design being considered. ceedings ECOOP 198¥ages 87-96.
[6] Introduction to the MAJC Architectur&un Microsystem#u-
5.Conclusions gust 1999. http://www.sun.com/microelectronics/MAJC/docu-

mentation/majcintro.html

. : ; 7] Harlan McGhan and Mike O’Connor. PicoJava: A Direct Exe-
Thi r presents an overview of the VAULT project |
S Paper presents an overview of the ULT projec cution Engine for Java BytecoddEEE Computer 30(9):79-85,

followed by the detail of the choice of an ISA.
L . . . September 1997.
The design issues are outlined together with possible so-[g] N. Vitavkrish N R " d R. Gadekarla. Obiect
lutions currently being investigated. The most important - vVijaykrisanan, IN. Ranganathan, and R. adekaria. Object-
utions currently being estigated € mos porta Oriented Architectural Support for a Java Processor. In E. Jul, ed-

features of VAULT are thought to be:- itor, Proceedings of the 12th European Conference on Object-Ori-
ented Programmingaumber 1445 in Lecture Notes in Computer
Science, pages 330-354. Springer, July 1998.

[9] Patriot Scientific Corporation,PSC1000 Microprocessor.
http://www.ptsc.com/psc1000/index.html.
[10] Andreas Krall. Efficient JavaVM Just-In-Time Compilation.

In Proceedings of the 1998 International Conference on Parallel

o .) Architectures and Compilation Techniqusris, France, October
Initial results concerning the ISA design are presented 1ggg

\C,IVhICh havle d_emodnstrate_d th:t a.n ISA]: l:flng rekg|5terhWIn(; [11] Michael J. FlynnComputer Architecture: Pipelined and Par-
ows results in a ramatlc_re uction o _t e stac _over €ad, el Processor Designlones and Bartlett, Boston, 1995.
far better than can be achieved by folding techniques. The

« Simple CPU structure with optimized support for Java
like languages.

* On-chip multi-processor structure with fast thread
synchronization facilities.

» Support for multi-media processing.

A Two Step Approach in the Development of a Java Silicon Machine (JSM)
for Small Embedded Systems

H. Ploog - R. Kraudelt - N. Bannow - T. Rachui - F. Golatowski - D. Timmermann
Department of Electrical Engineering and Information Technology
University of Rostock, Germany
E-mail : hp@e-technik.uni-rostock.de

Abstract

In current solutions a Java Virtual Machine executes
Java byte code by interpretation or dynamic compilation.
To increase the execution performance we propose our
experiences in the development of a processor
architecture that can directly execute JavaCard 2.0
compliant byte code.

1. Introduction

JAVA has been developed for desktop and internet
based systems but there are several implementations in the
embedded area where specific Java advantages can be
reused, so the idea behind JAVA and its benefits is
successively transported into the embedded system-
industry. In this paper we focus on static embedded
systems in which is no need for dynamic class loading
during runtime (e.g. car radio, cola machine, smart card).
But the user of such systems also has the possibility to
choose from a set of different applications.

To execute Java byte code on a platform there are at
least 3 possibilities which are different in terms of
execution speed:

e Interpreted execution
The byte code is interpreted by software.

« Compiled execution
In an additional step the Java byte code is
compiled to a specific processor architecture so
that there is no runtime overhead for inter-
pretation. It is aso possible to compile the byte
code just in time (JIT), the so caled dynamic
compilation-technique.

» Direct execution (JSM)
Java byte code can directly be executed by a real
Java processor.

By real Java processor we consider a processor not
only optimized for executing JAV A-code but capable of
executing Java-code without a software implemented Java
Virtual Machine.

In the last few years the importance of SUN’s Java-
technology raised up and it becomes a topic on many
university and commercia research programs but only a
small number of projects dealing with the development of
aJava Silicon Machine (JSM) are known.

Many of the existing chips [7],[8] remap the Java byte
code to a new (reduced) instruction set to speed up the
performance. Glossner et a. described a system which is
based on the same idea but they aso used a
multithreading architecture [3]. Another theoretical
description of a Java processor architecture can be found
in [6]. At the University of Zurich an ongoing project is
caled JAMA [4]. It seems that this processor will be
designed for direct execution of JAV A byte code.

To our knowledge by now only three existing (rea)
Java processors are known: picoJAVA-I [12], microJava
(picoJAVA-II) and JEM-1[13] . The latter one is designed
by Rockwell Collins Inc. and the former one by SUN
itself. Since microJava is based on the intellectual
property module PicoJava-ll one anticipates an increasing
number of custom Java processors.

In this paper we describe our experiences in the
development of a JSM for small embedded systems like
smart cards.

The project is split into two parts. The first part is a
software-based Java Virtual Machine suitable for 8051-
processor like systems for architecture exploration, and
part two is the JSM itself. The second part is still under
development since thisis currently awork in progress.

2. Differences between Java and Java for
smart cards

A smart card is a single-chip computer based on an 8-
bit microcontroller. The two most commonly used chips

are Motorola’s 6805 and Intel's 8051. These systems

contain three different types of memory: RAM, EEPROM During preparation the applets are converted to an

and ROM. The RAM is only used to store intermediate applet images which can be directly executed on the smart
results during calculation. The EEPROM holds private card.

cardholder values such as a private encryption key or a In conventional JVMs the byte code is verified before
bank account number. The ROM is used to store the it is executed. In the smart card area the Byte-Code—
program that runs on the smart card. Smart cards are Verifier is part of the offline block due to its time and area
connected via five pins to the smart card reader. So these consumption. Therefore, a downloaded applet is not

systems are “on” only if they are inserted into a reader. verified during runtime. To avoid illegal operating applets
The size of the die is constrained to 25 iriftherefore each applet is signed with a digital signature (CAP-file) so

memory space is hard limited. In average, those systemghe card itself can determine whether the applet belongs to

contain 4 to 20 Kbytes of ROM, 0.1 to 1 Kbytes of RAM an environment it trusts or not.

and up to 10 Kbytes of EEPROM. But even a signature is no guarantee that an applet is
Clock frequency is typically about 3.57 to 5 MHz and always working correctly [10]. Unfortunately, there is no

an external clock has to be supplied. Smart cards can bavay to protect the card against transitive Trojan Horses

seen as special cases of embedded systems. but currently no such attacks are known. More details on
SUN proposed a specification for the usage of Java onJava Cards can be found in [16], [17] and [18].

smart cards [11]. Because of the limited memory on smart

cards, SUN had to remove some memory-consuming op-3. Simulation-model based on 8051
codes and features, like

* string manipulation, The first step in the development process was to build
» floating point arithmetic and a software version of a Java Virtual Machine according to
e threads. SUN's JavaCard Specification 2.0, which is suitable for

implementation on 8051-processor systems [5]. It is a
Neither the types char, float, double and long nor cleanroom implementation and was used to understand the
operations on those types are supported. Smart cards alsbasic behavior of the JVM.
do not support arrays with more than one dimension. Since the goal was a Java processor some techniques
Object usage is limited as there is no <clinit>-method. which are used for describing hardware systems were used
Besides these obvious modifications there are otherto implement the Java Virtual Machine. E.g., the
restrictions resulting from the behavior of a smart card. execution engine of the JVM has one big “switch-case”-
Java Card systems are not able to load classesconstruct. It is figured out that such a switch-case-
dynamically. All classes used are masked into the ROM construct is not very well suited for a small footprint
of the card during manufacturing. Installing through a implementation. The next step was to identify groups of
secure installation process after the card has beenopcodes so that function calls likeU(opcode, A, B) or
delivered to the smart card producer is possible too. stackOp(opcode, value) can be used. Thereby we were
Programs executing on the card may only refer to classesable to encapsulate those function-blocks.
which already exist on the card as there is no way to The advantage is due to the fact that the simulation
download classes during the normal execution of model now looks similar to a structural description of a
application code. For more details see [11]. JSM so that the HW-designer just has to make minor
Due to the lack of memory space on smart cards themaodifications only.
JVM has to be split into two parts, one for offline On the other hand the disadvantage is that function
preparation as loading, resolving, and linking all classfiles calls result in a small software overhead.
and the other one for online execution of the Java byte To avoid nondeterministic and time-consuming
code as shown in Figure 1. searches in classes, methods, or fields in the constant pool
it is recommended to have direct access to these
structures. This can only be achieved if the addresses of
i all accessible objects are known in advance. Since
! resolved applets contain each class they need, each

Java Virtual Machine

cossiee "V comerer) L cattemi relative location is fixed. But instead of storing an
md ml i absolute address an applet-relative address is stored. In
(cap i) this way applets can be moved inside the persistent

PC smart card

memory (relocatible applets) for the cost of an additional
adder.
Firmware or device specific software is located in the

Figure 1. Separation of the Java Virtual Machine into two application programming interface (API). On smart cards
parts

the API-functionality is located in ROM and the applets
are stored in EEPROM. To select an APl or applet- JAVA
method, the highest bit in the available address space is JVM j/ API
used as a selector (see Figure 2). This bit must be set by
the converter while linking the classfiles. The base | £ Lﬁ o
address of the current active applet is stored in an applet

base register. Native methods for direct hardware access C / Assembler 0s
are also located inside the API. These methods are iL

necessary since different applets must be able to reed @ |———————
data, e.g. a bank account number, or they have to
increment the number of tries made to activate the smart
card.

The implementation requires about 14 Kbytes of ROM]
on a 8051-system including the cost for the additional Figure 3. 10-access with JAVA
modularity of about 3 Kbytes. Since this is a simulation
model we have not optimized the source code for the
specified architecture. By using a Java processor there is no environment
which could be left. To overcome the 10-access problem
in Java the instruction set will be expanded. This is
base relative address to applet-image: possible since two opcodes ($FE, $FF) in the opcode
[efelss]o]s]ofofo]a]o]s]1]1]o]o] space are reserved for custom usage.

Due to a missing standard these solutions are
™y proprietary. On PicoJava-ll about 33% of the
"""""" implemented opcodes can not be found in the Java

' specification.

Obviously, these new (hidden) opcodes can not be
generated using an ordinary Java-compiler. Accessing
these opcodes becomes somewhat difficult because a
 te address processor specific compiler hgs to'be used.

Applet to applet-image API Moreover, applets compiled in such a way are no
longer interchangeable and one of the major benefits of
Java gets lost.

As soon as implementation details become public
knowledge, it should not be too hard to write malicious
code, i.e. Trojan horses. This can not be accepted in the
Figure 2. Access to applet-image or API smart card area (revealing PIN's and POS's).

It can be shown [9] that only two additional opcodes
are necessary: |10-Read and |O-Write.
In the proposed JSM the address of the opcode is
traced to avoid illegal 10-access. Since application-
4. Moving from softwareto hardware applets are stored in reprogrammable memory the
JavaCard—runtime-environment (JCRE) is located in
A Java Card—system is more then just a Java processorROM or in adifferent EEPROM. Therefore, it is possible
Moreover, the virtual machine is part of the Java Card to trace the address of the opcodes to-be-executed and a
runtime environment (JCRE). The API, the executive (for very small online-checker easily can allow or prohibit the
handling different applets), and the native methods alsoexecution of the opcode and may generate an exception in

Hardware standard processor & peripherals

base address base address

|:| selector Applet (=0) or API (=1)

belong to the JCRE. case of a fault [2].
Because of security reasons Java does not offer any Although 10-access is required in different native
byte code for direct hardware access. functions we only implemented I0-Read and |O-Write.

To access 10 using a Java Virtual Machine on standardTherefore we have no hardwired native functions and the
or dedicated processor architectures, an API-function isfunctionality is realized by software inside the JCRE.
called. Inside this function the Java-environment is left to
access 10 with the underlying processors 10-opcode, e.g.
mov port_adr, #val (see Figure 3).

5. Java Silicon Machine

In Figure 4 the basic concept for the JSM is shown.
Parts of it are aready implemented using VHDL. For
multi-applet cards one additional opcode has to be
implemented: set_applet. It is used for selecting one of
the applets and loads the applet base register with the
corresponding start address of the chosen applet.

We have to adopt parts of the JSM to the new
JavaCard specification 2.1, since the format of the
downloadable applet is now specified and it is of great
impact for some parts of the JSM.

The JSM is fully controlled by microcode. Therefore
many changes may result in some 'software-updates [1].
To get maximum independence between the submodules
the state machines are just loosely coupled. Once these
state machines are started, they run automatically until the
end of the requested operation and feed back the result.
The internal behavior of one state machine is completely
hidden to its connected state machines.

To speed up the proposed architecture it isimportant to
know about the dynamic probability of opcodesin a given
applet. In [6] some values are given but they are based on
benchmarks for complete WVM/JSM’s. In the smart card
area the situation is different So we are currently
analyzing different applets to get the percentage
distribution based on the dynamic instruction count. After
the linking process the constant pool just contains
constants of type integer. Those constants can only be
addressed using the Idc or ldc_w opcode. So the index
into the constant pool can easily be replaced with the
constant itself. Conseguently, we do not need a constant
pool which results in some speed-up and less memory

since execution speed depends on the compiler and
coding style of an applet. We benchmarked the Dallas
iButton by measuring the time to cal methods and
compared the results with first theoretical values of our
architecture.

We assume that the iButton is a software
implementation since implementation details are not
published. The underlying processor itself is driven by an
unstabilized ring oscillator operating over arange of 10 to
20 MHz [15]. Therefore the clock frequency of a iButton
is not constant. The comparison shows speed up of 100
against the iButton (clocking the JISM @ 3.5MHz).

Techniques like caching promise some speed up but
for the cost of additional hardware [6]. Since die size is
limited we do not benefit from the usage of these speed-
up techniques.

6. Conclusion and future work

We presented some of our experiences in the
development of a JSM for small embedded systems like
smart cards. We separate the development process into
two parts. The experiences resulting from implementing
the VM on a 8051-system directed us to the proposed
JSM-architecture. We described some problems and
presented solutions for a JSM in the smart card area. It is
planned to complete the architecture until the end of the

year "99. For functional verification an APTIX-system
explorer M3PC containing four XCV1000-4 will be used.

usage. Benchmarking different architectures is difficult,
ym\
MUX .
v i ------ ; ----- ?—-;ng v 32
1 Micro-
U'S,t ALU E Stack MMU sequencer
E Control Unit
32 32 :___I 32132 js
MMU ROM
(Stack)
/¢/ RAM
8
RAM EEPROM

CONSTANTS
MUX
(DATAPATH)

MUX
(CONSTANTS)

function MMU
state MMU

function 10-Unit
state 10 Unit Micro-

sequencer

function ALU function stack
state ALU| control Unit | State stack

10
Unit

-
function MMU (stack)

state MMU (stack)

MMU
(Stack)

Figure 4. Datapath and control-path of the JSM

[10] J. Posegga, and H. VogByte Code Verification for
7. References Java Smart cards based on Model Checking™
European Symposium on Research in Computer Security

[1] N. Bannow, Concept of a Java-Processor,” (ESORICS), Springer Verlag, 1998

Technical Report, University of Rostock, Jan. 1999 . .

® y [11] JavaCard 2.0 Language Subset and Virtual Machine
[2] F. Golatowski, H. Ploog, R. Kraudelt, O. Hagendorf, Specification, http://www.javasoft.com/products/javacard,
and D. Timmermann, “Java Virtual Machines fir SunMicrosystems, Inc., 1997

ressourcenkritische eingebettete Systeme und Smart-

Cards,” accepted for presentation at JIT'99, Frankfurt, [12] M. O'Connor' anpl M. Tremb!,ay, “picotJava-I: The
Germany, Sep. 99 Java virtual machine in hardware,” IEEE Micro, March-

April 1997, pp. 45-47
[3] C. J. Glossner, and S. Vassiliadis, “The Delft-Java
Engine: An Introduction,” Euro-Par 97, Conf. Proc.,
p.766-770, Aigust1997, Passau, Germany.

[13] Rockwell, http://www.techweb.com/wire/ned807
/ 09/922java.html

[4] http:/Awww.tik.ee.ethz.ch/~jama/ [14] Dallas Semiconductor, http://mwww.ibutton.com

[15] Stephen M. Curry, “An introduction to the Java
Ring,” http://www.javaworld.com/javaworld/jw-04-
1998/jw-04-javadev.html

[5] R. Kraudelt, ,Entwicklung und Implementierung einer
JAVA virtuellen Maschine (JVM) fur den Einsatz in
besonders ressourcenkritischen Systemen (Smartcards),

diploma thesis, University of Rostock, 1999 [16] Guthery G. B., Java card: Internet computing on a

small card, Jan-Feb 1997, IEEE Internet Computing, pp/

[6] Vijaykrishnan Narayanan,$sues in the design of a 5759

JAVA processor architecture,” PhD-thesis, University of

South Florida, 1998 [17] Michael Montgomery, “Get a jumpstart on the Java

; ‘ : Card”, http://mww.javaworld.com/javaworld/jw-02-
[7] Eric Nguyen, 3JAVA™-Based Devices from ; .
Mitsubishi”, Java One, 1096, dides a: 1998/w-02-javadev.html, 1998
http://java.sun.com/javaone/javaoned6/pres/Mitsu. pdf [18] Zhiqun Chen , “Understanding Java Card 2.0,"
[8] Patriot Scientific, Java Processor PSC1000 http://www.javaworld.com/javaworld/jw-02998/jw-03-

javadev.html, 1998

[9] H. Ploog, T. Rachui, and D. Timmermantesign
Issues in the development of a JAVA-processor for small
embedded applications,”ACM/SIGDA International
Symposium on Field Programmable Gate Arrays,
FPGA'99, Monterey, Feb 21-23

Quantitative Analysisfor Java Microprocessor Architectural Requirements:

I nstruction Set Design*

M. Watheq EL-Kharashi

Fayez EIGuibaly

KinF. Li

Department of Electrical and Computer Engineering, University of Victoria

P. O. Box 305, Victoria, BC, Canada, V8W 3P6
{watheq, fayez, kinli} @ engr.UVic.CA

Abstract

Java has emerged to dominate the network-programning
world. This imposes certain requirements on its virtual
machine instruction set architecture and on any
procesor design that intends to support Java. The
purpose of this gudy isto carry out a behavioral analysis
of the different aspects of Java ingtruction set
architecture. This will help in extracting the hardware
requirements for executing Java bytecodes.
Recommendations for architectural requirements for Java
procesors will be made throughaut this study.

1. Introduction

Java was introduced to ded with heterogeneous networks,
which require building software that is platform-
independent [1,2]. This means that a compiled software
shipped around the network neals to be able to run on
any CPU it lands on (which is formulated as “write once
exeaute anywhere.”) In addition, designed to be a modern
high-level language, Java includes all modern features
like modularity and olject-orientation. To achieve all
these goals, Java targets an intermediate virtual platform,
instead o dired exeaution on the host CPU [3,4,5,6]. All
we neal to exeate aossplatform programs on the
Internet is to port this virtual layer to the CPU/OS
combination we want to run Java on. But, this comes at a
high price The speda features supported by Java have a
tremendous impact on the overall system performance
and impose cetain requirements on the Java system [7].

A number of schemas have been proposed to improve
Java performance as a tod for programming on the web
and networking in general [8,9,10,11,12,13,14]. Some of
the promising diredions incorporate hardware solutions.
Buil ding microprocessors for Java or simply modifying
other general-purpose processors to bamst Java are anong
these hardware options[15,16,17,18,19,20,21,22,23,24].

Designing herdware for Java requires an extensive
working knowledge about its virtual machine

1. Thisresearch was supported through a grant from the National
Sciences and Engineering Research Council of Canada (NSERC) to the
second author.

organization and functionality. Java virtua machine
(VM) instruction set architedure (ISA) defines
categories of operations that manipulate several data
types, reached through a well-defined set of addressng
modes [25,26,27,28,29]. VM spedfication defines the
instruction encoding mechanism required to package this
information into the byteade stream. It aso includes
details about the different modules required for
processng these bytecodes. At runtime, the VM
implementation and the exeaution environment affed the
instruction exeaution performance This is manifested
diredly in the wall-clock time needed to perform a cetain
task and indiredly in the different overheads associated
with exeauting the job (e.g., memory management) [30].

The goal of this reseach is to conduct a @mprehensive
behavioral analysis of the Java virtual machine instruction
set architedure [31,32]. Observing the Javainstruction set
architeaure while it is exeauting Java benchmarks will
reveal a lot about the details of the Java environment.
This will be refleced in the form of suggestions for the
actual hardware improvements and additions to boost the
performance of Java. Revised encoding formats and
devised hardware organizations (including a cetain level
of paraleiam, pipelining, caching, functionality, ... etc.)
with insights about the internal detail s of Java will lead to
better performance Our rationale for conducting such a
study is based on the smple observation that modern
programs gend 80-90% of their time accessng anly 10-
20% of the indruction set architedure [33]. To be most
effedive, optimization efforts should focus on just the 10-
20% part that redly matters to the exeaution speed.

ISA study is of great importance for every attempt to
devise a certain arrangement to baost Java performance
Theresults colleded here affed the way of encoding Java
instructions into a binary representation for exeaution by
any CPU supporting Java. It also affeds the interna
processor datapath design for any architedure that targets
Java. It is worth noting that adthough VM ISA shares
many general aspeds with traditional microprocessors, it
has its distinguishing features. This stems from the fact
that it is an intermediate layer for a high-level 1anguage.

For example, the branch prediction modd of the
underlying hardware aff ects the overall Java performance
which is the ase of all modern microprocessors. On the
other hand, JVM-supporting hardware will be unique in
the way its gack model handles method invocations.

To wndertake these objectives, a Java interpreter was
instrumented to produce a Java trace Pendragon
Software's CaffeineMark 3.0 was sdeded as the
benchmark as it is computationally interesting and
exercises various WM aspeds [34]. It is a synthetic
benchmark that runs 9 tests to measure Java performance
The machine used in the evaluation is an UltraSPARC
[/140 running at 143 MHz with 64 Mbytes memory. The
OS is Solaris 2.6. Based on the data gathered, general
requirements for Java processors are drawn. In doing this
study, we followed the methodology used by Patterson
and Hennessy in studying the ingtruction set design [33].

This paper is organized as follows. Section 2 anadyzes
access patterns for data types. Addressng modes are
studied in Sedion 3. Sedion 4 is concened with the
different instruction encoding aspeds.

2. Access patternsfor datatypes

Here we study the accesspatterns for different data types.
Data types that are heavily used need more attention in
case of designing certain hardware achitedure to support
Java [30]. This information will prove useful when
dedsions are made about storage dl ocation.

2.1. Single-type operations

byte [11.93%
short [10.36%
char 01.31%

47.27%

int]

Data types

float |
long 7[| 0.42%
doube 7[| 2.5%0
duplex | 0.25%
reference | — 17.03%
returnAddress |
void [10.83%

]127.97%
0% 10% 20% 30% 40% 50%
Percentage of access

generic

Figure 1. Distribution of data accesses by type.

Figure 1 shows the distribution of data accesses by type.
(“Generic” refers to gperations that have no data type
asciated with them.) From this figure we see that
integer data types dominate the typed operations,
followed by the reference ones. Architedura support for
Java object-orientation therefore needs to gve privil eges
to integer and reference data types in hardware. Also from
this figure, we see that 32-bit data types are used the
most. Thiswill have an impact on the size of the register
file and CPU datapaths. Furthermore, a superscalar design
may want to provide multiple functiona units that
processinteger and reference data types. From the ALU
point of view all integer operations need efficient support.

2.2. Type conversion oper ations

JVM has a set of ingtructions that converts data of a
certain type to another. This is necessary for a strongly
typed language like Java. Figure 2 shows that the
conversion from integer dominates dl type conversion
operations (espedally to character.) This information
combined with the results from the previous sibsedion
implies that integer conversion operations are the most
used. For better Java performance, the ALU design needs
to perform this conversion in one dock cycle or less

} e
int \]
N\ it
o floa Mdouble
o
2 Nlong
5
o float
g O
long Hint
Bl char
Bl byte
double
T T T T 1
% 20% 4% 60% 80%
Percentage of the resultant type

Figure 2. Frequency of type conversion instructions.
3. Addressing modes

This Sedion is concerned with the use of the JVM
addressng modes. The traditional concept of addressng
modes, as used in general-purpose processors, is not
exactly applicable to VM, which uses a gack-based
intermediate languege. This, together with the object-
orientation approach, is refleded in the combination of
traditiona and non-traditional addressng modes[30].

The result of addressng mode usage patterns is shown in
Figure 3. Local variable access dominates al other
modes. Also, of importance ae the immediate accessand
the quick reference (The “Quick Reference’ item
summarizes the quick bytecode optimization.) Hardcoded
addressng modes (in which the operand vaue is encoded
in the ingruction itself) occupy more than one third of the
total addressng modes used. We mnclude here, that Java
processors neeal to support at least immediate, local
variable, quick referencing, and stack addressng modes.

Immediate 2220%
463%%
Locd Variable |
Sack 1050%
Constant Pool Indexed | 0.10%
w |
g Aray Indeed [7370
2 7
§ Object Reference |0.13%
5 1 W Non-Hardcoded
< Quick Reference _ 133™% O Hardcoded
(013 10% 20% 3% 40% 50%
Frequency of the aldressng mode usage

Figure 3: Usage of memory addressing modes.

4. Instruction encoding

JVM spedfications require Java bytecodes to be provided
as a drean of bytes grouped in variable-length
instructions. However, it hardly mentions a genera
instruction format for the adopted instruction [1]. This
irregular format might stand againgt the generality and
efficiency of hardware exeaution of Java bytecodes.

This sedion quantitatively analyzes the different fields
that congtitute VM ingructions. We aim at determining
the optimum number of hits required for encoding these
fields. The aalysis presented here should not be
considered contradicting the VM spedfication that tells
exactly the size of each ingruction field. Architecures
that provide support for Java might seled to have a native
instruction format that is different from the VM one in
the addressng modes, data types, etc. This approach wil |
help attaining generality and efficiency.

4.1. Immediates

As a dack machine, VM does not rely a lot on
immediates for ALU operations. Immediates in VM are
either pushed on the stack or used as an offset for a
control flow or table switching ingruction and could have

a length of up to 32 hits As dwown in Figure 4,
immediates used in CaffeineMark are up to 18 hits in
length with an average of 4 bits (sandard deviation of
2.07 hits) The peak ocaurs at 3 hits. Three bits are
enough to cover more than 50% of immediate usage and
5 hits cen cover more than 75%. Based on the datistics
shown in Figure 4 we suggest using 8 hits to encode
immediates values in VM instructions, which will cover
98% of the @ses. Situations that will require more bits
can be handled by the compiler using a spedd wide
format.

30.00%

2500% + - - -

2000% ¢ || -

15.00% -

10.00% - (- -\|- -

500% 4 - - - - - - - -

Percentage of Immediate Value Us

0.00% T T T T —0—0—219 0o 9o
0O 2 4 6 8 10 12 14 16 18

Number of bits needed for an immediate value

Figure 4: Distribution of number of bits in immediates.

4.2. Array indices

Percentage of array index usar

0 2 4 6 8 10 12 14
Number of bits needed for an array index

Figure 5: Number of bits representing an array index.

Java tedhnology carries array information down the
hierarchy to the VM. At runtime, the index required to
access an array is popped from the operand stack.
Although the index can be up to 32 hts, Figure 5 shows
that CaffeineMark does not require more than 13 hits to

accessarrays (with an average and standard deviation of 3
and 279, respedively.) For instruction encoding, we see
that 3-bit index size cvers more than 50% of the aray
accesses and 5 hbits cover more than 80%. The graph
shows an interesting pettern: the maximum occurs at 0
then foll ows a decaying behavior with a sudden drop after
6 indicating that about 90% of the aray accesses take
place in the first 64 dement. This could gve useful
guiddinesin data aching—the first few elements (up to
the 64" of an array should be @ched. This could aso
have an impact on Java processor’s cache organization,
such as block size, replacing strategies, etc.

4.3. Constant pool indices

JVM constant pod isa colledion of all the symbolic data
needed by a classto reference fields, classs, interfaces,
and methods. A constant pod index size is either up to 16
bits, or 32 htsif it isin awide format. From Figure 6, we
seethat 16 bits cover amost al constant pod accesses
(the average is 8 and the standard deviation is 2.9.)

30%

2% 1 - - -

= N

) Q

> >
| |

Percentage of class pool ind

Number of bits needed for a dass pool index

Figure 6: Number of bits for a constant pool index.

4.4. Local variableindices

As mentioned before, ingead of spedfying a set of
general-purpose regisers, VM adopted the @ncept of
referencing local variables. As Figure 7 shows, Java
methods typically require up to 16 local variables (with
an average of 2 and standard deviation of 1.31), though
the spedfications allow referencing up to 255 or 65535
in case of wide instructions. The graph also shows nealy
no preference in accesing these variables. In designing
hardware support for Java, this graph suggests al ocating
the local variables on-chip. In this case, genera-purpose
register file can be configured to work as a reservoir for
local variables, allowing Java programs to run faster.

30.00%

25.00% ~

2000% + -

15.00% +

10.00% ~

Percentage of class pool indt

BO0% + - - - - - c e

0.00% T T T

Number of bits needed for alocal variable index

Figure 7: Number of bits for alocal variable index.

4.5. Branching distances

Java bytecodes only deliver the offset in branches and
JVM converts it internaly to the crresponding absolute
address As Figure 8 (dots) shows, CaffeineMark requires
atarget offset width of lessthan 10 hits (with an average
of 4 and standard deviation of 1.49), though up to 16 bits
are dlowed. In the design of an instruction format, 8 hits
appea enough to cover more than 98% of the offset
distances. Furthermore, if a branch target buffer (BTB) is
used for branch speaulation, a size of 512 tytecodes (256
forward and backward) is sufficient. Figure 8 (triangles)
aso shows gatigics of absolute jump-to address
Although this information depends on the run time
environment, it doesindicate atypical behavior.

0%

= 6%
8
2 5%
(@2}
£
= 40%
Q
c
©
5 3w
k]
L 2%
©
£
g 10%
&

0%

—e— Target Offset

Number of bits needed for branching distance

—a— Jump-to Address

Figure 8: Number of bits for an address.

5.

Conclusions

In this work we conducted a behavioral analysis of Java
virtual machine instruction set architecure. In the light of
the results coll eded from each part, we drew conclusions
about the general architedura requirements for designing
microprocessors that support Java. Our study clearly
shows that the advanced features of Java are its weakest
points in terms of performance Hardware support is
reguired to increase the dficiency of Java.

Acknowledgement

The authors would like to acknowledge Sun for the Java
development kit license. In addition, we would like to
thank Kenneth Kent from the Department of Computer
Science University of Victoria, Canada for his support
while eompiling the Java devel opment kit.

(1

(2]

(3]
(4]
(3]

(6l
(7]
(8]
(9
(10

(11

(12

(13]

References
J. B. Gosling, B. Joy, and G. Stedle, The Java Language
specification, The Java Series, Addison-Wesley, Reading,
MA, 1996.
J. Gosling and H. McGilton, “The Java Language

Environment, A White Paper,” Sun Microsystems,
Mountain View, CA, October 1995.
J. Goding, “Java Intermediae Bytecodes,” ACM

S GPLAN Notices, January 1995 pp. 11-118.

M. Lentczner, “Javas Virtua World,” Microprocessor
Report, March 25, 1996, 8-11,17.

T. Lindholm and F. Yedlin, The Jva Virtua Machine
Srecification, The Java Series, Addison-Wesley, Reading,
MA, 1997.

J. Meyer and T. Downing, Java Virtual Machine, O'Reilly
and Associates, Inc, Sebastopal, CA, 1997.

P. Wayner, “How to Soup Up Java: Part II,” Byte, May
1998, pp. 76-80.

B. Case, “Implementing the Java Virtuad World,”
Microprocesor Report, March 25, 1996, pp. 12-17.

P. Halfhill, “How to Soup Up Java: Part |,” Byte, May
1998, pp. 60-74.

C.-H A Hsieh, W.-M. W. Hwu, and M. Conte “Compiler
and Architecture Support for Java” a Tutorial presented
in the ASPLOSVII Conference, Boston, October 1-5,
19%.

C.-H A. Hseh, M. T. Conte, T. L. Johnson, J. C.
Gyllenhall, and W.-M W. Hwu, “Optimizing NET
Compilers for Improved Java Performance” |EEE
Computer, June 1997, pp. 67-75.

C.-H A. Hseh, J C. Gyllenhdll, and W.-m. W. Hwu,
“Java Bytecode to Native Code Translation: The Caffeine
Prototype and Preliminary Results” Proc.of the 29"
Annwal International Symp. on Microarchitectures
(MICRO-29), IEEE Computer Society Press, Los
Alamitos, CS, December 2-4, 1996, pp. 90-97.

H. McGhan and. J. M. O Connor, “picoJava: A Direct
Execution Engine for Java Bytecode,” IEEE Computer,
October 1998, pp. 22-30.

(14

(19

(16]

(17

(18]

(19]

(2]

(21
(22
(23]
(24
(29

(26]

(27

(28]

(29]

(30]

(31]

(32

(33]

(34

J. M. O'Connor and M. Tremblay, “picoJava-1: The Java
Virtual Machine in Hardware,” |EEE Micro, March/April
1997, pp. 45-53

B. Case, “Java Virtua Machine Should Stay Virtual,”
Microprocesor Report, April 15, 1996, pp. 14-15.

B. Case, “Java Peformance Advancing Rapidly,”
Microprocesor Report, May 27, 1996, pp. 17-19.

M. Watheq El-Kharashi and F. ElGuibaly, “Java
Microprocessors: Computer Architecture Implications,”
Procedalings of the PACRIM'97, Victoria, BC, Canada,
August 20-22, 1997, pp. 277-280.

R. Grehan, “JavaSoft’s Embedded Specification Overdue,
but Many Tool Vendors aren’'t Waiting,” Computer
Design April 1998, pp. 14-18.

Patriot Scientific Corporation, PSC1000 Microprocessor
home page, http://www.ptsc.com/psc1000

M. Tremblay and J. M. OConnor, “picoJava: A
Hardware Implementation of the Java Virtual Machine,”
Hotchips Presentation, 1996.

T. Turley, “MicroJava Pushes Bytecode Performance,”
Microprocesor Report, October 28, 1997, pp. 28-31.

T. Turley, “Most Significant Bits” Microprocessor
Report, August 4, 1997, pp. 4-5, 9.

T. Turley, “Sun Reveds First Java Processor Core”
Microprocesor Report, November 17, 199, pp. 9-12.

P. Wayner, “Sun Gambles on Java Chips” Byte,
November 199, pp. 79-88.

Sun Microelectronics, “Sun Blazes Another Traill —
Introducing the microJava 701 microprocesor,” Press
Releases, October 1997.

Sun Microelectronics, “The Burgeoning Market for Java
Processrs. Inside The Networked Future: The
Unprecedented Opportunity for Java Systems” white
paper 96-043, October 1996.

Sun Microelectronics, “Sun Microelectronics' picoJava-|
Posts Outstanding Performance,” white paper 001501,
October, 1996.

Sun Microelectronics, “picoJava-l Microprocesor Core
Architecture,” white paper 0014-01, October, 1996.

A. Tanenbaum and J. Goodman, Structured Computer
Organization, Fourth Edition, Prentice Hall, Englewood
Cliffs, NJ, 1999.

B. Venners, Inside the Java Virtual Machine, McGraw-
Hill, NY, 1998.

M. Watheq El-Kharashi, F. ElGuibaly, and K. F. Li,
“Hardware Adaptations for Javas A Design Space
Approach,” Technical Report ECE-99-1, Department of
Electrical and Computer Engineering, University of
Victoria, January 25, 1999.

M. Watheq El-Kharashi, F. ElGuibaly, and K. F. Li,
“Architecturd Requirements for Java Processors. A
Quantitative Analysis” Technical Report ECE-98-5,
Department of Electricll and Computer Engineering,
University of Victoria, November 9, 1998.

D. A. Paterson and J L. Hennessy, Computer
Architedure A Quantitative Approach, second edition,
Morgan Kaufmann Publishers, Inc. San Francisco, CA,
USA, 19%.

Pendragon Software, CaffeineMark Benchmark Home
Page http://www.pendragon-software.com/pendragon/cm3

	sylvie.pdf
	A Case for Using Active Memory to Support Garbage ...
	Sylvia Dieckmann and Urs Hölzle
	University of California, Santa Barbara {sylvie,ur...
	Abstract
	Most modern programming languages require efficien...
	To date, Active Memory has been studied only with ...
	1. Motivation
	2. Active Memory
	2.1�� ARAM
	Figure�1.�� ARAM Architecture

	2.2�� Programming Model

	3. Why GC is Likely to Profit From Active Memory
	4. References
	[1] A. Acharya, M. Uysal, and J. Saltz. Active Dis...
	[2] R. Barua, W. Lee, S. Amarasinghe, and A. Agarw...
	[3] N. Bowman, N. Cardwell, C. Kozyrakis, C. Romer...
	[4] D. Burger, J. Goodman, and A. Kagi. Quantifyin...
	[5] B. Calder, C. Krintz, S. John, and T. Austin. ...
	[6] J. Carter et al. Impulse: Building a smarter m...
	[7] T. Endo, K. Taura, and A. Yonezawa. A scalable...
	[8] M. Gonçalves. Cache Performance of Programs wi...
	[9] M. Gonçalves and A. Appel. Cache performance o...
	[10] R. Jones and R. Lins. Garbage Collection: Alg...
	[11] T. Kamada, S. Matsuoka, and A. Yonezawa. Effi...
	[12] K. Keeton, D. Patterson, and J. Hellerstein. ...
	[13] C. Kozyrakis and D. Patterson. A new directio...
	[14] C. Kozyrakis at al. Scalable processors in th...
	[15] S. Nettles and J. O’Toole. Real-time replicat...
	[16] M. Oskin, F. Chong, and T. Sherwood. Active P...
	[17] D. Patterson et al. A case for intelligent RA...
	[18] D. Patterson et al. Intelligent RAM (IRAM): T...
	[19] D. Patterson and J. Hennessy. Computer Organi...
	[20] M. Reinhold. Cache performance of garbage-col...
	[21] K. Taura and A. Yonezawa. An efficient garbag...
	[22] M. Uysal, A. Acharya, and J. Saltz. An evalua...
	[23] E. Waingold, M. Taylor, D. Srikrishna, V. Sar...
	[24] W. Wulf and S. McKee. Hitting the memory wall...
	[25] B. Zorn. The effect of garbage collection in ...

	watson.pdf
	VLSI Architecture Using Lightweight Threads (VAULT) - Choosing the Instruction Set Architecture
	1. Introduction
	2. Project Principles
	1. Parallelism through multiple simple CPUs rather than exploiting ILP etc.
	2. Processor structure optimized for support of (dynamically) compiled Java and multiple thread s...
	3. Inter processor communication at register and cache level via special bus structures.
	4. Processor support for multi-media applications.
	5. Dynamic compilation (for parallelism).

	3. Choosing the VAULT CPU ISA
	Table 1: Benchmark Programs

	Figure 1. Dynamic instruction mix.
	Figure 2. Relative instruction counts
	4. Register and Window Usage

	Figure 3. Cumulative percentage of register usage
	Figure 4. Call depth distribution
	Table 2. Relative Call Depth
	Figure 5. Window miss ratios
	5. Conclusions
	6. References

