
Workshop on

 Hardware Support for Objects

 And

Microarchitectures for Java

In conjunction with ICCD'99

Austin, Texas
October 10, 1999

MESSAGE FROM WORKSHOP CO-CHAIRS

Most modern programming languages and techniques include object-oriented methods.
However, mainstream computer architectures have not acknowledged the presence of
objects. With the widespread use of object-oriented programming languages and
techniques, it is becoming important for computer architects to acknowledge the existence
of these methods and their impacts on execution (including high object allocation rates, the
impact of garbage collection, dynamic binding of calls to methods, and dynamic assembly
of programs at run time from components obtained from disparate sources).

Java is an exciting new object-oriented technology. Hardware for supporting objects and
other features of Java such as multithreading, dynamic linking and loading is the focus of
this workshop. The impact of Java's features on micro-architectural resources and issues in
the design of Java-specific architectures are interesting topics that require immediate
attention of the research community.

The purpose of this workshop is to draw together researchers and practitioners concerned
with hardware support for objects and Java implementations for a stimulating exchange of
views. To the organizers' best knowledge, this is the first event of its kind, and as such is an
attempt to begin the task of building a community in this field. We thank all the program
committee members, the authors and the invited panelists for helping us start this process.
Also, we would like to thank the ICCD organizers and Prof. Craig Chase, in particular, for
their support to this workshop. We hope you will enjoy this workshop as much as we did in
organizing this.

Mario Wolczko Vijaykrishnan Narayanan
 Sun Microsystems Pennsylvania State University

Organizers

Workshop Co-Chairs

Vijaykrishnan Narayanan, Pennsylvania State Univ.
Mario Wolczko, Sun Microsystems, Inc.

Program Committee

Timothy Heil, Univ. of Wisconsin, Madison
Lizy John, Univ. of Texas at Austin

Vijaykrishnan Narayanan, Pennsylvania State Univ.
Nagarajan Ranganathan, Univ. of South Florida

Mario Wolczko, Sun Microsystems, Inc.

TABLE OF CONTENTS

8:15-9:45a.m. Session 1. Innovations in Memory System Design

Chair: Timothy Heil, University of Wisconsin, Madison

• A Case for Using Active Memory to Support Garbage Collection
Sylvia Dieckmann and Urs Hoelzle

• Tolerating Latency by Prefetching Java Objects,
Brendon Cahoon and Kathryn McKinley

• DMMX: Dynamic Memory Management Extension,
J. Morris Chang, Witawas Srisa-an, and Chia-Tien Dan Lo

10:15-11:45a.m. Session 2. Architectural Issues in Dynamic Translation

Chair: Mario Wolczko, Sun Microsystems, Inc.

• How can hardware support Just-In-Time compilation?
A. Murthy, N. Vijaykrishnan, A. Sivasubramaniam

• Exploiting Hardware Resources: Register Assignment across Method Boundaries
Ian Rogers, Alasdair Rawsthorne, Jason Souloglou

• A Decoupled Translate Execute Architecture (DTEA) to Improve Performance of Java
Execution,
Ramesh Radhakrishnan and Lizy Jurian John

1:00-2:00p.m. Session 3. Object-Oriented Architectural Support

Chair: Lizy John, University of Texas, Austin

• Applying Predication to Reduce the Direct Cost of Virtual Function Calls in Object-
Oriented Programs,
Sandeep K. S. Gupta, Chris Sadler

• Hardware Support for Profiling Java Programs,
Nathan M. Hanish and William E. Cohen

2:15-3:45p.m. Session 4. Microarchitectures for Java

Chair: Vijaykrishnan Narayanan, Pennsylvania State University

• VLSI Architecture Using Lightweight Threads (VAULT),
Ian Watson, Greg Wright, Ahmed El-Mahdy

• A two step approach in the development of a Java Silicon Machine (JSM) for small
embedded systems,
Hagen Ploog, Ralf Kraudelt, Nicco Bannow, Tino Rachui, Frank Golatowski, Dirk
Timmermann

• Quantitative Analysis for Java Microprocessor Architectural Requirements: Instruction
Set Design,
M. Watheq EL-Kharashi, Fayez ElGuibaly, Kin F. Li

4:00-5:30p.m. Panel Session: Java Virtual Machines: What can hardware offer to support
them?

Panelists:
David Hardin, Ajile Systems, Inc.
Jim Smith, University of Wisconsin, Madison
Marc Tremblay, Sun Microsystems, Inc.
Moderator: Mario Wolczko, Sun Microsystems, Inc.

Session 1

Innovations in Memory System Design

he
use
ch-
ften
ter

nd
rn
u-
e.

ore
ing
 I/O
ave
sy
nce
es

ter
, it
put
ome

 is
or
re
ata

er-
uto-
or-

ry

f-
d-

n
er, if
egu-
ed
C,
ery
the
ca-
elf
ach
 the
A Case for Using Active Memory to Support Garbage Collection

Sylvia Dieckmann and Urs Hölzle
University of California, Santa Barbara

{sylvie,urs}@cs.ucsb.edu

Abstract

Most modern programming languages require efficient
automatic memory management (garbage collection, GC)
as part of the runtime system. Since GC is very memory
intensive it can potentially suffer significantly from poor
memory access times. Unfortunately, memory performance
improves at a slower pace than processor speed, making
memory accesses relatively more expensive in the future.
Active Memory architectures aim to overcome this problem
by placing additional computational power in memory, thus
allowing the application to execute small but memory-
intensive functions closer to the data and in parallel. The
goal is to improve latency and bandwidth for programs that
can otherwise suffer from slow memory accesses.

To date, Active Memory has been studied only with
databases, image processing, arithmetic computations, and
other very regular applications. In this paper, we propose to
analyze its impact on garbage collection. We are convinced
that garbage collection too will profit from this architecture
since GC is simple, repetitive, easy to partition into offload-
able functions, and its performance depends crucially on
fast memory access. We describe a possible incarnation of
an Active Memory architecture suitable for GC support and
argue why GC should benefit from such an architecture.

1. Motivation

Efficient and reliable garbage collection (GC) is an
essential part of most modern (especially object-oriented)
programming languages. GC relieves the programmer from
error prone explicit deallocation, thus preventing memory
leaks or early deallocation. But GC performance greatly
depends on fast memory access, which can pose a challenge
not only to the GC implementation but also to the design of
the underlying machine. For example, a simple
mark&sweep collector first identifies and marks all live
objects and than reclaims (sweeps) the unmarked space.
Both phases are very memory intensive since they require
touching the entire heap (or at least all live objects) and thus
can potentially suffer significantly from poor memory
performance. Traditional techniques designed to improve
memory performance do not always work for GC. For
example, GC can have a negative effect on the cache hit rate

because it evicts all application-related entries from t
cache. Even worse, GC itself has a poor hit rate beca
each collection dereferences all pointers at most once. Te
niques such as prefetching that exploit access patterns o
fail because memory access during GC follows poin
chains and can be very irregular. [10, pp. 284]

Alas, memory performance, namely access latency a
bandwidth, is an issue of great concern for mode
machines. Already, the cost of processor-memory comm
nication has a significant impact on overall performanc
Most researchers agree that it will become even m
important in the future, since (1) processor speed is grow
at a faster pace than memory performance, and (2) the
connections used to deliver this data to the processors h
limited bandwidth [15, 28, 53, 71]. For example, Hennes
and Patterson estimate that since 1985 CPU performa
has grown by 50% every year whereas DRAM access tim
have improved by only around 7% per year [19]. With fas
processors but similar memory latencies and bandwidths
becomes harder to feed the processing unit with useful in
data to run at peak speed and memory accesses bec
relatively more expensive. (In the literature this problem
typically referred to as the increasing Memory-Process
Performance Gap.) In addition, modern applications a
putting stronger demands on the memory system as d
sets grow larger [1, 36] and object-oriented and point
based programs with irregular access patterns and a
matic memory control are becoming more and more imp
tant

We can address the problem of increasing memo
access costs in two ways.Processor-centric optimizations
like prefetching, speculation, multilevel caches and out-o
order execution aim to better cope with the existing ban
width and latency, for example, by exploiting locality i
access patterns. They tend to make things worse, howev
the executed application does not express the expected r
larities, which is often the case with modern object-orient
and pointer-based programs. Especially during G
memory access follows pointer chains and can be v
irregular. The cache hit rate can actually deteriorate in
presence of GC because every iteration evicts all appli
tion related entries from the cache. Even worse, GC its
has a poor hit rate since most algorithms dereference e
pointer only once during each GC phase, thus defeating
advantage of caching data.

d
ta-
nly.
g

l as
r
 to

 in
ral
ffer
li-
al
e

per.
del
nd

n et
ite

ects
art
re
e-
a
tui-
a

on
s

lar
r
se
r for
be

ugh

el
ost
a-

 to
l)
ces
t

In contrast,memory-centricapproaches hand attempt
to move at least part of the computation closer to the data
it processes, thus actively improving latency and band-
width. This concept is represented by a new breed of hard-
ware,Active Memory [6, 16, 17, 23] (or the closely related
Active Disks[1, 22]) which aims to enhance the memory
unit with computational logic so that it can take over some
or all of the processor’s work. Often, Active Memory is
implemented by integrating additional logic into the
DRAM chip, thus allowing the main processor to offload
small functional units calledmemlets1 to be computed
directly in memory. For example, the Active Pages model
proposed by Oskin et al. [16] suggests assigning a small
embedded processor or an array of FPGAs to every 512
Kbytes of DRAM.

We believe that GC is very likely to benefit from Active
Memory. Most GC algorithms are composed of highly
repetitive and simple components which can easily be
offloaded to an in-memory processor. This is especially
true for non-incremental algorithm that stop the actual
application (mutator) during the duration of the collection.
By delegating GC to Active Memory, one could not only
reduce the amount of data passed between processor and
memory but also parallelize the inner loop of the collector.

We therefore suggest to study the suitability of Active
Memory to support automatic memory management (i.e.,
garbage collection or simply GC). The ultimate goal of
this study is to show that garbage collection—which we
believe is crucial for runtime performance and thus
deserves special effort—will benefit significantly from the
existence of an Active Memory approach in the spirit of
Active Pages.

We are currently working on a hardware simulator that
would allow us to empirically evaluate the impact of
ARAM (our Active Memory model) on the performance
of garbage collection in a high-performance Java Virtual
Machine. With the help of this simulator, we hope to
demonstrate that and how garbage collection can profit
from the presence of Active Memory. Moreover, we plan
to design a suite of GC algorithms partitioned for ARAM
and to analyze the impact of software decisions related to
partitioning, page size, allocation strategy, etc.

To the best of our knowledge, none of the groups
working on Active Memory has made an attempt yet to
utilize this architecture for garbage collection or even for
language support in general. The idea of Active Memory
is still relatively new and few proposals have actually been
implemented to date. Those that were evaluated—either

1 None of the current proposals actually uses the termmemlet.
However, Acharya et al. [1] refer todisklets as code that is offloaded and
executed on disk. Accordingly, we refer code that is executed in memory
as memlets.

by simulation or with a prototype—were usually teste
with relatively regular applications from the areas of da
bases, image processing and arithmetic computation o
Although these studies generally show promisin
speedups for the selected type of applications as wel
technical feasibility of Active Memory hardware, furthe
tests with more sophisticated programs are required
show general applicability.

2. Active Memory

Since the research community became interested
Active Memory architectures a few years ago, seve
models have been proposed. Most approaches di
significantly in terms of expected benefits, targeted app
cations, design complexity, software effort, and technic
feasibility. Unfortunately, a thorough discussion of som
of these proposals would exceed the scope of this pa
Instead, in this section we sketch an independent mo
that represents our understanding of Active Memory a
serves as a baseline for our project.

Although this model—which we name ARAM—is
derived from Active Pages, a model suggested by Oski
al. [16], it attempts to be more general than that. Desp
the ongoing work of several research teams, many asp
of active memory design are not fully understood yet. P
of our planned work is to investigate various hardwa
modifications and their impact onto GC behavior. Ther
fore, the ARAM model is meant to eventually cover
large design space. Nevertheless, to provide a first in
tive notion of ARAM and its capabilities we describe
rather concrete incarnation in this section.

2.1 ARAM

The ARAM model described in this section is based
two fundamental principles: (1) traditional application
that do not define memlets must execute—with simi
performance—on an ARAM machine (no harm fo
anybody) and (2) applications that were modified to u
memlets must experience a noticeable speedup (bette
some). Although the model leaves many issues to
resolved in later design phases, it aims to provide eno
detail so that any ARAM implementation will follow
these two guidelines.

As in most current computer architectures, our mod
consists of a main processor (sometimes also called h
processor), a set of ARAM chips that are physically sep
rated from the main processor, and a memory bus
connect both units. The model includes a (multileve
memory hierarchy with caches and virtual address spa
to allow fast access for applications with good locality. A

hip
t
an

nd
t of
nnot
M
1)
fer
uld
of

del
ss
t
ore

st
n
-

he
to

er
ency
al
s-
ich
tual
ain

 to
em.

rd
 to
 or
si-

e
nc-
he

 to
ica-
om
is

tails
ral

ans

ther
 a
n.
the first sight, an ARAM chip resembles conventional
DRAM; but unlike in DRAM, the available storage space
in ARAM is divided into one or more units (regions)1 of
equal size. Oskin et al. [16] found 512 Kbyte regions to be
most practical for the available hardware. A small
embedded RISC processor calledIn-Memory Processor
(IMP) is assigned to each unit. To obtain optimal latency
and bandwidth, the physical chip layout determines the
association between regions and their associated proces-
sors. Most likely, the user will be unable to dynamically
modify either region size or region-processor association.

We assume that the main processor can access an
ARAM cell almost as fast as a cell in a comparable
DRAM chip. (Synchronization between main processor
and IMP might add a small overhead, though.) As in
DRAM, the costs for accesses by the main processor can
vary within a certain range depending on the accessed
location. But for accesses initiated by memlet code on a
certain IMP, the situation is more complex as it most likely
depends much more on the accessed memory location
relative to the IMP: here we assume that an IMP can
access data residing in its own region (calledintra-region
access in the remainder of this document) with signifi-
cantly shorter latency and larger bandwidth than the main
processor. In fact, one of the motivations for transforming
memory intensive functions into memlets is to replace
main processor accesses with cheaper intra-region IMP
accesses. However, accesses to locations that currently
belong to the region of another IMP on the same chip
(inter-region, intra-chip accesses) are likely to be more
expensive, although probably still competitive with a
conventional main processor access. Any access issued by

1 We use the termregion rather than(active) page to describe the
memory unit directly associated with a single IMP to emphasize the
difference between a region/active page and an OS page (i.e. virtual
memory page). Active memory is not meant to replace the virtual
memory system; usually, regions cover several OS pages.

an IMP and directed to a location on another physical c
(inter-chip accesses) will be penalized most. We expec
this type of access to be significantly more expensive th
a direct access from the main processor.

Note that implementation details as well as actual a
relative access costs remain open at this point. Mos
these aspects depend on technical conditions and ca
yet be determined anyway. However, any actual ARA
implementation should be guided by two principles: (
applications that do not use memlets should not suf
from the new architecture and (2) those that do, sho
experience noticeable speedups due to off-loading
memlets. Therefore, no matter how the final cost mo
will look, the main processor must be able to acce
ARAM almost as efficiently as DRAM and IMPs mus
access at least data in their own domain significantly m
efficiently.

Finally, a modified operating system (OS) mu
provide the traditional OS functionality in combinatio
with ARAM support. For example, it will be in the respon
sibility of the OS to set up, invoke and manage t
memlets (section 2.2 sketches an example API),
synchronize IMPs and main processor, to deliv
messages between the processors, to maintain consist
between cache and ARAM, and to maintain a virtu
memory system on top of ARAM. The last point is nece
sary because unlike traditional memory systems, wh
use only physical addresses, memlet code contains vir
addresses. Consequently, somebody—either the m
processor or the IMPs themselves—must be able
resolve these virtual addresses within the memory syst

2.2 Programming Model

The user interface of ARAM provides the standa
virtual memory interface extended by a set of functions
allocate regions, define memlets, bind them to a region
a group of regions and activate them. It is in the respon
bility of the user to partition an application, i.e. writ
memlets and invoke them from the code. We use a fu
tional model for this proposal since it seems to be t
easiest to integrate into an existing system.

Note that the purpose of this programming model is
help understand the requirements of memlets and appl
tion code and to design GC algorithms independent fr
actual decisions about the underlying hardware. It
meant as an abstraction that hides away hardware de
such as region-IMP association and must be gene
enough to express all GC needs. However, by no me
does it determine an actual ARAM implementation.

The user defines memlets as special functions toge
with the actual application. A memlet operates on
domain given as function parameters during invocatio

Figure 1. ARAM Architecture

ARAM ARAM

CPU

Caches

IMP IMP IMPIMP IMP IMP

R
eg

io
n

R
eg

io
n

R
eg

io
n

R
eg

io
n

R
eg

io
n

R
eg

io
n

r-
gh
8%

e
rk
llel-
lly
rs
l
to
s
per
l-

lel
up
.
e
r-

uire
 is
 his
ns
ctor
by
 in

-
al

m,
er,
l of

C
nd

tor
o-

e.
to
e
d

data

.5
ark

es
unt
ling
ccess
e

we
VM.
For now, domains always correspond to one ARAM
region; rather than providing a domain parameter with
every memlet invocation, the user can bind it to a certain
IMP up front. A memlet is invoked by a special instruction
such as a store to a memory-mapped device. It can receive
as many arguments as it needs. For example, the stored
address could point to a memlet header with function
pointer, arguments, and IMP identifier. Whenever an IMP
detects a write to the magic location, it retrieves this array,
determines function and arguments and invokes the
memlet. On termination, the memlet sends a signal back to
the main processor.

When executing memlet code, the IMP hardware
resolves addresses and communicates with other IMPs on
the same chip using some protocol. The IMP also provides
instructions to indicate the physical location of an address
(to determine the access costs). Any memlet can access
the entire virtual address space, although accesses to
remote locations might be disproportionately expensive.
While intra-chip accesses may be resolved in hardware,
off-chip accesses might involve software protocols and
use the main CPU to relay data to another ARAM chip.
While slower than hardware, a software solution would
considerably reduce the complexity of ARAM-based
systems by eliminating the need for inter-ARAM bus
logic.

3. Why GC is Likely to Profit From Active
Memory

All garbage collectors perform the same basic task:
they determine the set of reachable (i.e., live) objects and
reclaim the storage used by all unreachable (dead) objects.
Most GC algorithms (with the exception of reference
counting) do this by periodically analyzing a snapshot of
the heap to detect and reclaim objects that are not longer
reachable. Consequently, the collector needs to access all
(live) objects, but on each object performs very little
computation before it starts visiting the children.1 This
makes GC inherently memory-intensive. In addition,
accessing objects by following a pointer chain leads to a
very irregular access pattern where each object is visited
only once in each phase. Therefore, caches often perform
poorly for GC.

Preliminary results from a small study of the effect of
garbage collection on cache performance of a Java VM
indicate that garbage collection related activity has a
significantly higher L1 miss rate than the actual applica-
tion code (8-16% for GC vs. 6-9% for the application).
They also show that the JDK1.1.5 spends up to 30% of its

1 In this respect GC resembles a pointer chase problem.

time in garbage collection, which makes good GC perfo
mance all the more important. Write misses, althou
generally not as critical as read misses, rise to about 2
for one application (javac).2

To benefit from Active Memory, an application must b
partitionable so that enough computational wo
involving memory accesses can be offloaded and para
ized. We are convinced that GC algorithms genera
fulfill this requirement since most memory activity occu
in a tight inner loop. In terms of computationa
complexity, this loop is simple enough to be offloaded
an IMP with limited power. Although several algorithm
require scratch space, one can usually define an up
bound. The inner loop is also likely to benefit from para
lelization; for example, Endo et al. [7] studied a paral
mark-sweep collector and reported a significant speed
for parallel marking with work stealing in a shared heap

Parallelization can become a problem for ARAM if th
application contains a high number of inter-region refe
ences. In the worst case, every single step could req
inter-region communication (e.g., if a chain of pointers
spread over several regions). However, we believe that
risk can be reduced by (1) dividing the heap over regio
in accordance to the access order imposed by the colle
scheme (e.g., generational GC, Train Algorithm) or (2)
instrumenting a copying collector to rearrange objects
order to reduce region-crossing references.

Finally—at least at this point—partitioning an applica
tion to use ARAM is awkward and requires some intern
knowledge. However, GC is part of the runtime syste
written by a language implementor. Unlike the end us
these system experts can justify spending a great dea
time with low-level optimizations as it will pay off
multiple times later during runtime.

To summarize our arguments, we believe that good G
performance is crucial for state-of-the-art OO systems a
that memory latency and bandwidth is a significant fac
in GC overhead. The overall structure of most GC alg
rithm is simple, highly repetitive, and memory intensiv
Therefore, most algorithms can naturally be divided in
memlets executed in ARAM, which would parallelize th
collection, improve latency and bandwidth for offloade
memory accesses, and greatly reduce the amount of

2 In most of these experiments we ran the optimized JDK1.1
executing memory intensive programs from the SPECjvm98 benchm
suite on a 147 MHz UltraSPARC-I with 16 Kbytes L1 and 512 Kbyt
L2 caches. The UltraSPARC family provides hardware registers to co
some basic events during execution at no additional costs. By pol
these counters before and after each GC one can observe cache a
and miss rates of a life application with virtually no impact on th
application’s performance.
Since polling hardware counters requires modifying source code,
have not yet repeated the same experiments for a more competitive J

ge

 A

.

-

ed

c-
ge

i-
e
27,
li-

,
S.
:

r-
 of
o-
transferred to the main processor. This is especially
important for GC performance since conventional
methods to improve memory performance such as caches
do not always suffice for this type of algorithms.

4. References

[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks:
Programming model, algorithms and evaluation. In
Proceedings of ASPLOS VIII,San Jose, CA, October
1998.

[2] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal.
Maps: A compiler-managed memory system for RAW
machines. InProceedings of ISCA-26, Atlanta, GA, June
1999.

[3] N. Bowman, N. Cardwell, C. Kozyrakis, C. Romer, and H.
Wang. Evaluation of existing architectures in IRAM
systems. InWorkshop on Mixing Logic and DRAM: Chips
that Compute and Remember, Denver, CO, June 1997.

[4] D. Burger, J. Goodman, and A. Kagi. Quantifying memory
bandwidth limitations in future processors. InProceedings
of ISCA-23, Philadelphia, PA, May 1996.

[5] B. Calder, C. Krintz, S. John, and T. Austin. Cache-
conscious data placement. InProceedings of ASPLOS
VIII, San Jose, CA, October 1998.

[6] J. Carter et al. Impulse: Building a smarter memory
controller. In Proceedings of HPCA-5, Orlando, FL,
January 1999. IEEE Computer Society.

[7] T. Endo, K. Taura, and A. Yonezawa. A scalable mark-
sweep garbage collector on large-scale shared-memory
machines. InProceedings of SC97,November 1997.

[8] M. Gonçalves.Cache Performance of Programs with
Intensive Heap Allocation and Generational Garbage
Collection. Ph.D. thesis, Princeton University, May 1995.

[9] M. Gonçalves and A. Appel. Cache performance of fast-
allocating programs. InRecord of FPCA’95, June 1995.

[10] R. Jones and R. Lins.Garbage Collection: Algorithms for
Automatic Dynamic Memory Management.John Wiley &
Sons, 1996.

[11] T. Kamada, S. Matsuoka, and A. Yonezawa. Efficient
parallel global garbage collection on massively parallel
computers. InProceedings of SC‘94,pages 79-88, 1994.

[12] K. Keeton, D. Patterson, and J. Hellerstein. A case for
Intelligent Disks (IDISKs). InSIGMOD Record,27(3),
August 1998.

[13] C. Kozyrakis and D. Patterson. A new direction for
computer architecture research.IEEE Computer,
31(11):24-32, November 1998.

[14] C. Kozyrakis at al. Scalable processors in the billion-tran-
sistor era: IRAM. IEEE Computer, 30(9):75-78,
September 1997.

[15] S. Nettles and J. O’Toole. Real-time replication garba
collection. InProceedings of PLDI’93,volume 28(6) of
ACM SIGPLAN Notices, Albuquerque, NM, June 1993.

[16] M. Oskin, F. Chong, and T. Sherwood. Active Pages:
computation model for intelligent memory. InProceed-
ings ISCA’98,Barcelona, Spain, June 1998.

[17] D. Patterson et al. A case for intelligent RAM: IRAM
IEEE Micro,17(2):34-44, March-April 1997.

[18] D. Patterson et al. Intelligent RAM (IRAM): The indus
trial setting, applications, and architectures. InProceed-
ings of ICCD’97, TX, October 1997.

[19] D. Patterson and J. Hennessy.Computer Organization and
Design: The Hardware/Software Interface. Morgan
Kaufman, 1994.

[20] M. Reinhold. Cache performance of garbage-collect
programs. InProceedings of PLDI’93,volume 28(6) of
ACM SIGPLAN Notices, Albuquerque, NM, June 1993.

[21] K. Taura and A. Yonezawa. An efficient garbage colle
tion strategy for parallel programming languages on lar
scale distributed-memory machines. InProceedings of
PPoPP-6, ACM SIGPLAN Notices, pp. 264-275, Las
Vegas, NE, June 1997.

[22] M. Uysal, A. Acharya, and J. Saltz. An evaluation of arch
tectural alternatives for rapidly growing datasets: Activ
disks, clusters, and SMPs. Technical Report, TRCS98-
Department of Computer Science, University of Ca
fornia, Santa Barbara, October 1998

[23] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee
V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb,
Amarasinghe, and A. Agarwal. Baring it all to software
Raw Machines.IEEE Computer,30(9):86-93, September
1997.

[24] W. Wulf and S. McKee. Hitting the memory wall: Impli-
cations of the obvious.Computer Architecture News,
23(1), March 1995.

[25] B. Zorn. The effect of garbage collection in cache perfo
mance. Technical Report, CU-CS-528-91, Department
Computer Science, Campus Box 430, University of Col
rado, Boulder, May, 1991.

Tolerating Latency by PrefetchingJava Objects

BrendonCahoon KathrynS.McKinley
Departmentof ComputerScience, University of Massachusetts,Amherst,MA 01003,

�
cahoon,mckinley� @cs.umass.edu�

Abstract
In recentyears,processorspeedhasbecomeincreasingly

faster than memoryspeed. One technique for improving
memoryperformanceis data prefetching which is success-
ful in array-basedcodesbut onlynoware researchersapply-
ing to pointer-basedcodes.In this paper, weevaluatea data
prefetching technique, calledgreedyprefetching, for tolerat-
ing latencyin Javaprograms.In greedyprefetching, whena
loop or recursive methodupdatesan object o, we prefetch
objects to which o refers. We describeinter- and intra-
procedural algorithmsfor computingobjectsto prefetch and
we presentpreliminary resultsshowingits effectivenesson
a few, small Java programs. Prefetching improvesperfor-
mance, but there is significantroomfor further improvement.

1. Intr oduction
Modernprocessorspeedscontinuetosignificantlyoutpace

advancesin memoryspeed.Eventhoughmodernprocessors
usedeepmemoryhierarchies,thedisparitybetweenproces-
sorandmemoryspeedsresultsin anunderutilization of re-
sourcesdueto memorybottlenecks.

Softwarecontrolleddataprefetchingis atechniquefor im-
proving memory performanceby tolerating latency in the
memoryhierarchy. Compilersstatically analyzeprograms
and insert prefetchinstructionsto load datainto the cache
prior to use. Previous researchshows the benefitsof soft-
ware prefetchingtechniquesin array-basedscientific pro-
grams[4, 14, 2, 13]. Prefetchingin array-basedcodesis sim-
pler thanin pointer-basedcodes.Givenanarray, thesizeof
eachelementanda regular accesspattern,the compilercan
computetheaddressof any elementin thearrayandschedule
prefetchestoelementsin aloopthatwill beaccessedin future
iterations.Array-basedcodesarealsoamenableto analyses
whichallow compilersto restructureloops,usingtechniques
suchasloop tiling, to improve spatialandtemporallocality.
Recentwork usesprefetchingfor programswith dynamically
allocateddatastructures[11, 12, 16]. However, this work
only considersC programs.

Compilerscannotusethesameapproachin pointer-based

�
Thiswork is supportedby NSFgrantEIA-9726401,anNSFInfrastruc-

ture grantCDA-9502639,Darpagrant5-21425,andCompaq. Kathryn S.
McKinley is supportedby an NSF CAREERAward CCR-9624209.Any
opinions,findings,and conclusionsor recommendationsexpressedin this
materialarethoseof theauthor(s)anddonotnecessarilyreflecttheviews of
thesponsors.

codesbecauseseparatedynamicallyallocatedobjectsaredis-
joint andtheaccesspatternsarelessregularandpredictable.
Givenanobjecto, weknow theaddressof objectsthato refer-
encesandcannotprefetcharbitraryobjectswithoutfollowing
pointerchains.

In this paper, we evaluateone simple prefetchingtech-
nique, called greedyprefetching,on Java programs. Luk
andMowry introducedandevaluatedthegreedyprefetching
algorithmfor recursive datastructuresin C programs[12].
We investigatethe applicability andeffectivenessof greedy
prefetchingfor Java programs.Ourspecificcontributionsin-
clude a new intra-proceduraldataflow analysisfor finding
objectsto prefetch,theuseof aninter-proceduralanalysisto
improveour analysisin thepresenceof recursion,anda pre-
liminary evaluationonobject-orientedprograms.

Object-orientedprogramspose analysischallengesbe-
causethey mostlyallocatedatadynamically, containfrequent
methodinvocations,andoften implementloopswith recur-
sion. We useVortex, a compilercontainingadvancedanal-
ysesspecificallytailored for object-orientedlanguages[9].
Our preliminary resultsindicate that greedyprefetchingis
effective on a few, small object-orientedprograms. Also,
classanalysisand methodinlining enableeffective greedy
prefetching. We plan to implement more sophisticated
prefetchingtechniquesin thefuture.

2. RelatedWork
In thissection,wegiveabriefsummaryof relatedwork for

improvingmemoryperformanceof pointer-basedcodes.Pre-
viouswork investigatingprefetchingon pointer-basedcodes
only usesC programs.

Lipasti et. al., presentone of the initial evaluationsof
prefetchingpointer-basedcodes[11]. The technique,called
SPAID, generatesprefetch instructionsfor function argu-
mentsprior to calls. Resultsshow cachemissrateimprove-
mentsonseveralprograms.

Luk and Mowry introduce and evaluate the greedy
prefetchingalgorithmusingC versionsof the Oldenbench-
marks [12]. The main contribution of our work is to use
dataflow algorithmsratherthana loop-basedapproachand
we extendtheanalysisfor object-orientedfeatures.Our pre-
liminary resultsshow similarperformanceresultsto Luk and
Mowry on Java programs. Luk and Mowry also introduce
historybasedprefetchinganddatalinearization,andpresent
limited resultson handoptimizedexamples.RothandSohi

class SList �
int data;
SList next;
int sum() �
prefetch(next);
if (next != null)
return data + next.sum();

return data;���

class DList �
int data;
DList next, prev;
int sum() �
prefetch(next);
// prefetch(prev);
if (next != null)

return data + next.sum();
return data;���

class Tree �
int data;
Tree left, right;
int sum() �
prefetch(left);
prefetch(right);
int s = data;
if (left != null) s += left.sum();
if (right != null) s += right.sum();
return s;���

Figure 1. Prefetch examples for singly linked list, doubly linked list, and binary tree
evaluatea hardware/softwareprefetchingapproachfor toler-
atingmemorylatency in pointer-basedcodes[16]. Thetech-
niqueusesjump-pointerprefetchingwhich is anextensionof
Luk andMowry’s history-pointertechnique.RothandSohi
presentresultsusingthe C versionof the Oldenbenchmark
suite. We intendto extendthesetechniquesfor Java in the
future.

Several researchersimprove the memory performance
of pointer-basedprogramsby rearrangingdataat run time
[3, 6, 7, 8, 18]. Rubin, Bernstein,andRodehcombinedata
reorganizationanda differenttype of greedyprefetchingto
improveperformanceonasmallC kernel[17].

3. GreedyPrefetching
We extend Luk and Mowry’s algorithm for prefetching

object-orientedlanguagessuchas Java. During the traver-
salof a linkeddatastructure,greedyprefetchingattemptsto
prefetchobjectsthatwill beaccessedin thefuture. Its major
limitation is thatit canonly scheduleprefetchinstructionsfor
objectsdirectlyconnectedto thecurrentobject.

Figure1 showssimpleclassdefinitionsfor asingly linked
list, a doublylinkedlist, anda binarytree(we usetheexam-
plesto illustrategreedyprefetchingandnotasgoodexamples
of object-orientedprogramming).Eachclasscontainsasum
methodwhich addstheelementsin thedatastructure.In the
example,weinsertaprefetchinstructionfor thenext objectin
the linkedlist. We cannotprefetchobjectsfurtheraheadbe-
causewedonotknow theaddressof futureobjects.Prefetch-
ing two objectsahead,prefetch(this.next.next),
requirestheaddressof this.next which is unknown until
theprogramdereferencesthis.

Achieving the full benefitsof prefetchingrequiresthe
computationtime betweenthe prefetchand useof the ob-
ject to begreaterthanor equalto thememoryaccesstime to
completelyhide the latency. However, even if thecomputa-
tion time is lessthanthe memoryaccesstime, the prefetch
canpartially hidethe latency. In the linkedlist example,we
only partiallyhidethereadlatency of next if thecostof the
additionandfunctioncall is lessthanthe costof a memory
access.Similarly, we typically only partiallyhidethelatency
of theprefetchof left in thebinarytreeexample.However,
sincewe alsoprefetchright, we may completelyhide its
memorycost.

The greedyprefetchalgorithm consistsof two parts; a
phasewhich finds objectsto prefetchfollowed by a phase
which schedulesthe prefetchinstructions.The algorithmis
greedybecausewedo not performany analysisto determine
if anobjectis alreadyin thecacheandwe try to prefetchas
muchaspossible.Our algorithmusesboth intra-procedural
andinter-proceduraldataflow analysisto find objecttraver-
salsin loopsandrecursivecalls.

3.1. DetectingRecurrent Object Updates
A recurrentobject updateis a statementof the form, o

= o.next, occuringin a loop or recursive methodcall. In
Figure1,next.sum() andleft.sum() areexamplesof
recurrentobjectupdatesoccurringin recursivecalls.

Detectingrecurrentobject updatesis similar to finding
loop inductionvariables.Previousalgorithmsfor finding in-
ductionvariablesareeitherloopbased[1] or usestaticsingle
assignment(SSA) form [19]. We presenta traditionaldata
flow analysisapproachto findingrecurrentobjectupdates.

The algorithmfor detectingrecurrentobject updatesre-
quiresboth intra- and inter-proceduralanalysis. The intra-
proceduralanalysisphasedetectsrecurrentobjectupdatesin
loops. Theinter-proceduralanalysisdetectsrecurrentobject
updatesin recursive methodcalls. Luk andMowry do not
perform inter-proceduralanalysisandonly identify self re-
cursivecalls.

Our intra-proceduraldataflow analysisis a forward,iter-
ative traversalthatusesa threestagelatticeto capturerecur-
rentobjectupdatesateachpoint in theprogram.We definea
functionto mapeachobjectto a latticevalueateachpoint in
theprogram.

Not recurrent. Thetopelementindicatesanobjectis notre-
current.

Possiblyrecurrent. Thefirst time we processanobjectit is
potentiallyrecurrent.

Recurrent. Thebottomelementindicatesanobjectis recur-
rent.

At eachstoreexpressionin theprogram,wedefineatrans-
fer functionwhichassignsobjectsto latticevalues.
� If the storeexpressionis a field assignmentof the form

o = p.next, whennext is an objectreferenceandp
is not recurrent, thenwemarko possiblyrecurrent. If p
is possiblyrecurrent, theno is recurrent.

Table 1. Olden Benchmark Suite
Name Main DataStructure(s) LOC Methods BytecodeLen. Inputs Inst. Issued TotalMemory

mst arrayof lists 206 39 1452 512nodes 406M 10.4MB
perimeter quadtree 219 44 1717 4K x 4K image 239M 4.3MB
treeadd binarytree 66 11 474 1M nodes 264M 24.3MB
tsp binarytree,linkedlist 273 15 1711 60,000cities 1106M 7.2MB
voronoi binarytree 612 89 4138 20,000points 1043M 19.5MB

� If the storeexpressionis an objectassignment,o = p,
thenassignthevalueof p to o.� For all other storeexpressions,o = expr, we assign
thevaluenot recurrent to o.

At termination,objectsat each programpoint belongto one
of the 3 lattice values. The dataflow merge function en-
surestheordering �
	���
�������
�
�����������	������! #"%$&
�������
�
��������

�������
�
������ .

We use the possibly recurrent value to detect looping
structures.The first time we analyzea loop, an object,o,
occurringon the LHS of a field referencebecomespossibly
recurrent (e.g., o = b.next). On the seconditerationof
theanalysis,theobjectbecomesrecurrent if thebaseobject
of thefield reference(i.e., b) is alsopossiblyrecurrent. If b
is not recurrent, theno’s valueremainsthesame.Thealgo-
rithm incorrectlymarksobjectsin loop invariantexpressions
asrecurrent (e.g., t in o=p.next; t=o.next). Moving
loop invariantexpressionsout of loopseliminatesthis prob-
lem.

We also track the fields usedin the recurrentobjectup-
dates. In Figure 1 for example, we record that next is
theonly field involvedin the recurrentobjectupdatefor the
traversalof thedoublylinkedlist.

3.2. SchedulingPrefetchInstructions

We greedilyscheduleprefetchinstructionsfor objectsour
algorithmfindsrecurrentduringtheanalysisphase.Weinsert
prefetchinstructionsat theearliestpoint whenwe know the
baseobjectis not null. Theintra-proceduralclassanalysisin
Vortex indicateswhenobjectsarenot null. In Figure1, the
this pointer is the baseobjectandwe know it is not null
uponenteringsum.

Theschedulingphaseusesthefield informationtheanal-
ysis phasecomputesto only scheduleprefetchesfor fields
involved in recurrentobjectupdates.For the doubly linked
list in Figure1, weonly generateaprefetchof thenext field
andnot theprev field. Luk andMowry’s algorithmgener-
atesbothprefetchessincethey donot trackthefieldsusedin
therecurrentupdates.

During schedulingwe performa simplealiasanalysisto
ensurethe scheduleronly generatesa single prefetch in-
struction for groupsof aliasedrecurrentobjects. Tempo-
rary objectscausealiaseswhen usedin sequencessuchas
p=o.next; o=p;. In a loop, we mark botho andp as
recurrent, but we only generatea prefetchfor oneof theob-
jects.

3.3. Inter -proceduralAlgorithm
We useaninter-proceduralalgorithmto find recurrentob-

ject updatesoccurringin recursive methodcalls. Using an
inter-proceduraldataflow analysisis anextensionof Luk and
Mowry’s original algorithmwhich is only ableto detectself
recursivefunctioncalls.

The inter-proceduralalgorithm is a top-down, context-
sensitive traversalof the call graph. A context-sensitive al-
gorithm enablesthe analysisphaseto determinethe fields
usedin recurrentobject updates. A context-insensitive al-
gorithm cannot track the recurrentfields becausedistinct
methodcallsaretreatedsimilarly. For example,in Figure1,
a context-sensitive analysisdeterminesthat this.left
andthis.right areboth recurrentfields in the recursive
method,sum. A context-insensitive analysisonly analyzes
sum onceandwill notdeterminethatbothleft andright
arerecurrentfields.

The inter-proceduralanalysisusesour intra-procedural
analysisto computetherecurrentobjectswithin a procedure.
At eachcall site, we map the recurrentlattice valuesfrom
eachactualto eachformal. Then,weanalyzethemethodus-
ing the intra-proceduralanalysis. Recursive calls causethe
analysisto iterateuntil the recurrentstatusof the formals
reachesa fixedpoint.

3.4. Summary of Extensionsfor Java
Object-orientedlanguagescontainfeatureswhich arepo-

tentially problematicfor the greedyprefetchalgorithm. We
believe inter-proceduralanalysisimprovesthe effectiveness
of greedyprefetchingbecauseobject-orientedprogramsoften
userecursionto expressloopingconstructs.In Figure1, the
sum methodusesrecursionto sumtheobjectsin the linked
list. In C, programmerstypically usea while statementfor
thesamefunction.

To improvetheeffectivenessof greedyprefetchingin Java,
we runouralgorithmafterperformingclasshierarchyanaly-
sisandinlining. Oneuseof classhierarchyanalysisenables
virtual methodinvocationsto betransformedinto directfunc-
tion calls which improvesour inter-proceduralanalysisand
alsoimprovesinlining [10]. We rely uponinlining to remove
unnecessarymethodcalls that encapsulatereferencesto po-
tential recurrentfields. The following is a typical Java code
sequencefor traversinga linkedlist.

Enumeration e = list.elements();
while (e.hasMoreElements()) �
List l = (List)e.nextElement();

0

20

40

60

80

100

mst
' mst-pf

' perimeter

(perimeter-pf

(treeadd

) treeadd-pf

) tsp
) tsp-pf

) voronoi

* voronoi-pf

*

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

+

store stall
load stall
inst stall

busy

Figure 2. Performance of Greedy Prefetching

0

10

20

30

40

50

60

70

80

90

100

mst L1

' mst L2

' perimeter L1

(perimeter L2

(treeadd L1

) treeadd L2

) tsp L1

) tsp L2

) voronoi L1

* voronoi L2

*

P
er

ce
nt

ag
e

of
 P

re
fe

tc
he

s

,

unnec.
early
late

useful

Figure 3. Prefetch Effectiveness
// computation involving l�

If list is a linkedlist with anext field, thentheexpression
e.nextElement hidestheaccessof l.next andtheex-
pressione.hasMoreElements hidesthe test for null.
Inlining eliminatesthe calls to hasMoreElements and
nextElement.

In the absenceof inlining, we can extend the inter-
proceduraldata flow analysis to track methodsreturning
fieldsandusetheinformationto checkfor recurrentobjects.
We planon extendingour analysisin thefuture,but inlining
appearsto providemostof thisbenefit.

4. Experimental Results
We implementthe greedyprefetchingalgorithm in the

Vortex optimizing compiler [9]. We useVortex to compile
Java programs,performobject-orientedandtraditionalopti-
mizations,andgenerateSparcassemblycode.

We presentpreliminary resultsusing several programs
from theOldenbenchmarksuite[5]. Researchershave used
the Olden suite to evaluateoptimizationsfor pointer-based
programs[7, 12, 16]. Table1 lists theOldenbenchmarkswe
usein our experimentsalongwith characteristicsabouteach
program.Wetranslatedtheprograms,originally writtenin C,

to Java usingan object-orientedstyle. We compilethe pro-
gramsusing JDK 1.1.6. The lines of code(LOC) number
excludescommentsandblank lines. Thebytecodelengthis
the size of the codesegmentsin bytesand not the number
of instructionsin theprograms.We computethetotal mem-
oryusingtotalMemory() andfreeMemory() fromthe
Runtime class.Wedisablegarbagecollectionduringall our
experiments.

We useRSIM to performa detailedcycle by cycle simu-
lation of our programs[15]. RSIM modelsa modernout-of-
orderprocessorbaseduponthe MIPS R10000. The default
processorrunsat 300 MHz, issuesup to 4 instructionsper
cycle,andhasa 64 entryinstructionwindow. Thefunctional
unitsinclude2 ALU, 2 FP, 1 branch,and2 addressunits.The
instructionwindow has64entries.We usethedefault values
for mostof theparametersexceptfor thecachehierarchy. The
following tablelists thememoryhierarchyRSIM parameters
weusein our experiments.Thedefault cachesizesaresmall
for modernprocessors,but matchourdatasizesanddecrease
simulationtimes.

L1 Cache 16KB, directWT, split
L2 Cache 64KB, 4-way, WB, unified
RequestPorts 2
Line Size 32B
L1/L2/Memhit time 1/12/60cycles
CacheMissHandlers(MSHR) 8,8(L1, L2)

Figure2 showspreliminaryperformanceresultsof greedy
prefetching.We normalizetheresultsto theexecutiontime,
in cycles,of theprogramswhenwedonotperformprefetch-
ing. We usethe RSIM conventionto accountfor busy and
stall cycles. We mark a cycle busy if the processorretires
4 instructions(the maximum). Otherwise,the first instruc-
tion that cannotbe retiredby the cycle accountsfor a stall.
Figure2 shows improvementsof 3% (mst),6%, (perimeter),
12% (treeadd),and - 1% (tsp, voronoi). Improvementsare
dueto fewer loadstallsin theprograms.Evenafterprefetch-
ing, thepercentageof loadstallsremainsquitehigh.

Figure 3 provides insight into the effectiveness of
prefetchingby dividing theprefetchesinto variouscategories.
A usefulprefetcharrivesontimeandis accessed.Thelatency
of a late prefetchis only partially hiddenbecausea cache
miss occurswhile the memorysystemretrieves the datum.
The cachereplacesan early prefetchbeforethe useof the
datum. An unnecessaryprefetchhits in the cacheor is co-
alescedinto an MSHR. Figure3 categorizesthe prefetches
for both L1 andL2 prefetches.We scalethe graphfor the
L2 prefetchesto thepercentageof requeststo theL2 cache.
Useful,late,andearlyprefetchesrequireaccessesto thenext
level in thememoryhierarchy. For eachprogram,prefetches
to the L1 cachecontaina small numberof useful and late
prefetches.However, many of theprefetchesareunnecessary
becausethey hit in theL1 cache.Mostprefetchesareearlyin
theL2 cachebecausethecacheis small,unified,andwrite-
backsomuchof thedataarereplaced.

Table 2. Cache Statistics with and without Prefetching
Reads L1 Hit L1 Miss (%) L2 Hit L2 Miss(%) PrefetchesProgram
(M) (%) conf. cap. coal. (%) conf. cap. coal. static dyn. L1 (M) dyn. L2 (M)
13.5 78.3 0.6 13.8 7.3 35.8 7.8 57.3 0mst

w/pf 14.2 81.5 0.6 8.9 9.0 43.8 10.5 45.7 0 8 2.235 .743
30.4 95.9 0.9 0.9 2.3 53.4 4.5 42.0 0perimeter

w/pf 30.4 96.8 0.6 0.7 1.9 53.0 6.6 40.3 0 8 .32 .071
11.5 81.6 0.1 7.1 11.2 3.1 0.9 96.0 0treeadd

w/pf 11.3 85.2 0.1 1.4 13.3 14.0 5.9 80.1 0 2 2.26 .659
106.3 97.4 0.6 1.0 1.0 50.1 14.4 35.5 0tsp

w/pf 126.4 96.5 1.0 0.7 1.8 77.2 3.2 19.6 0 31 25.8 1.08
113.8 93.6 1.5 2.2 2.7 59.0 12.6 26.4 2.0voronoi

w/pf 113.3 93.8 1.4 2.1 2.7 56.9 14.4 26.2 2.5 18 .816 .150

Table2 listsseveralimportantcachestatisticsfor eachpro-
gramwith andwithoutprefetching.Wedividethemissstatis-
tics into conflict,capacity, andcoalescedmisses(coldmisses
areinsignificant).A coalescedreferencemissesin thecache,
but hits in a MSHR. Thetablealsodisplaysstatisticson the
numberof staticanddynamicprefetches.Thestaticprefetch
numbersdonot include23prefetchinstructionsthecompiler
insertsinto theJava library code.In general,prefetchingim-
provesthehit ratesandreducescapacitymisses.

5. Conclusion
Traditionalcompileralgorithmsfor improving the cache

performanceare difficult to perform on languagesthat
mostlyallocatememorydynamically. Compilerinserteddata
prefetchingis an effective techniquefor tolerating latency,
even in pointer-basedprograms. In this paper, we evaluate
the usefulnessof prefetchingin Java programs.We present
anintra-andinter-proceduralalgorithmfor asimpleprefetch-
ing algorithm,calledgreedyprefetching.Ourpreliminaryre-
sultsshow improvementsdueto prefetching.However, our
resultsindicatethat thereis roomto improve prefetchingef-
fectivenessin Java programsbecausemany prefetchinstruc-
tionshit in thecache.Weplanto continueinvestigatingbetter
prefetchingalgorithmsfor Java.

References
[1] A. V. Aho, R. Sethi,andJ. D. Ullman. Compilers, Principles,Tech-

niques,andTools. Addison-Wesley, Reading,MA, 1986.

[2] D. Bernstein,D. Cohen,A. Freund,andD. E. Maydan.Compilertech-
niquesfor dataprefetchingon the PowerPC. In Proceedingsof the
1995InternationalConferenceon Parallel Architecturesand Compi-
lation Techniques, pages19–26,Limassos,Cyprus,June1995.

[3] B. Calder, C. Krintz, S. John,andT. Austin. Cache-consciousdata
placement.In ASPLOS-VIII:Eighth InternationalConferenceon Ar-
chitectural Supportfor ProgrammingLanguagesand Operating Sys-
tems, SanJose,CA, Oct.1998.

[4] D. Callahan,K. Kennedy, andA. Porterfield.Softwareprefetching.In
ASPLOS-IV: Fourth InternationalConferenceon ArchitecturualSup-
port for ProgrammingLanguagesand Operating Systems, pages40–
52,SantaClara,CA, Apr. 1991.

[5] M. C. CarlisleandA. Rogers.Softwarecachingandcomputationmi-
gration in olden. In Proceedingsof the 1995 ACM SIGPLANSym-
posiumon Principles and Practice of Parallel Programming, pages
29–38,SantaBarbara,CA, July1995.

[6] T. M. Chilimbi, B. Davidson,andJ.R. Larus. Cache-consciousstruc-
turedefinition.In Proceedingsof the1999ACM SIGPLANConference
onProgrammingLanguage DesignandImplementation(PLDI), pages
13–24,Atlanta,GA, May 1999.

[7] T. M. Chilimbi, M. D. Hill, andJ.R. Larus.Cache-consciousstructure
layout. In Proceedingsof the 1999 ACM SIGPLANConferenceon
ProgrammingLanguageDesignandImplementation(PLDI), pages1–
12,Atlanta,GA, May 1999.

[8] T. M. Chilimbi andJ. R. Larus. Using generationalgarbagecollec-
tion to implementcache-consciousdataplacement. In The1998In-
ternationalSymposiumonMemoryManagement, Vancouver, BC,Oct.
1998.

[9] J.Dean,G. DeFouw, D. Grove, V. Litinov, andC. Chambers.Vortex:
An optimizingcompilerfor object-orientedlanguages.In Proceedings
of the1996ACM SIGPLANConferenceon Object-OrientedProgram-
ming Systems,Languages & Applications(OOPSLA’96), pages83–
100,SanJose,CA, Oct.1996.

[10] J.Dean,D. Grove, andC. Chambers.Optimizationof object-oriented
programsusingstaticclasshierarchyanalysis.In ECOOP’95 Confer-
enceProceedings, Aarhus,Denmark,Aug. 1995.

[11] M. H. Lipasti,W. J.Schmidt,S.R.Kunkel,andR.R.Roediger. SPAID:
Softwareprefetchingin pointer- andcall-intensive environments. In
Proceedingsof the 28thAnnualIEEE/ACM InternationalSymposium
onMicroachitecture, 1995.

[12] C.-K. Luk andT. C. Mowry. Compiler-basedprefetchingfor recursive
datastructures.In ASPLOS-VII:SeventhInternationalConferenceon
Architectural Supportfor ProgrammingLanguagesandOperatingSys-
tems, pages222–233,Cambridge,MA, Oct.1996.

[13] N. McIntosh.CompilerSupportfor Software Prefetching. PhDthesis,
RiceUniversity, May 1998.

[14] T. C. Mowry, M. S. Lam, andA. Gupta. Designandevaluationof a
compileralgorithmfor prefetching.In ASPLOS-V: Fifth International
ConferenceonArchitectural Supportfor ProgrammingLanguagesand
OperatingSystems, pages63–72,Oct.1992.

[15] V. S. Pai, P. Ranganathan,andS. V. Adve. RSIM referencemanual
(version1.0). TechnicalReportTechnicalReport9705,RiceUniver-
sity, Dept.of ElectricalandComputerEngineering,Aug. 1997.

[16] A. RothandG.Sohi.Effective jump-pointerprefetchingfor linkeddata
structures.In Proceedingsof the26thAnnualInternationalSymposium
onComputerArchitecture, Atlanta,GA, May 1999.

[17] S. Rubin, D. Bernstein,and M. Rodeh. Virtual cacheline: A new
techniqueto improve cacheexploitation for recursive datastructures.
In CompilerConstruction,8thInternationalConference, CC’99, pages
259–273.Springer, Mar. 1999.

[18] D. N. Truong,F. Bodin, and A. Seznec. Improving cachebehavior
of dynamicallyallocateddatastructures.In Proceedingsof the 1998
InternationalConferenceon Parallel Architectures and Compilation
Techniques, Paris,France,Oct.1998.

[19] M. Wolfe. Beyond inductionvariables. In Proceedingsof the 1992
ACM SIGPLANConferenceon ProgrammingLanguage Designand
Implementation(PLDI), SanFrancisco,CA, June1992.

1

An Introduction to DMMX (Dynamic Memory Management Extension)
J. Morris Chang, Witawas Srisa-an and Chia-Tien Dan Lo

Department of Computer Science
Illinois Institute of Technology
Chicago, IL, 60616-3793, USA

{chang | sriswit | lochiat} @charlie.iit.edu

Abstract

Automatic Dynamic Memory Management (ADMM) allows
programmers to be more productive and increases system
reliability and functionality. However, the true
characteristics of these ADMM algorithms are known to be
slow and non-deterministic. It is a well-known fact that
object-oriented applications tend to be dynamic memory
intensive. Therefore, it is imperative that the programmers
must decide whether or not the benefits of ADMM outweigh
the shortcomings. In many object-oriented real-time and
embedded systems, the programmers agree that the
shortcomings are too severe for ADMM to be used in their
applications. Therefore, these programmers while using
Java or C++ as the development language decide to
allocate memory statically instead of dynamically. In this
paper, we present the design of an application specific
instruction extension called Dynamic Memory Management
eXtension (DMMX) that would allow automatic dynamic
memory management to be done in the hardware. Our high-
performance scheme allows both allocation and garbage
collection to be done in a predictable fashion. The allocation
is done through the modified buddy system, which allows
constant time object creation. The garbage collection
algorithm is mark-sweep, where the sweeping phase can be
accomplished in constant time. This hardware scheme would
greatly improve the speed and predictability of ADMM.
Additionally, our proposed scheme is an add-on approach,
which allows easy integration into any CPU, hardware
implemented Java Virtual Machine (JVM), or Processor in
Memory (PIM).

index terms: automatic dynamic memory management,
real-time garbage collector, mark-sweep garbage collector,
instruction extension, object-oriented programming

1. Introduction

By early 2000s, many industrial observers predict that
the VLSI technology would allow fabricators to pack 1
billion transistors into a single chip that can run at Giga-
Hertz clock speed. Obviously, the challenge is no longer
how to make billion-transistor chips, but instead, what kind
of facilities should be incorporated into the design [5]. The
current trend in CPU design is to include application specific

instruction sets such as MMX and 3D-now as extensions to
basic functionalities. The rationales behind such approaches
are obvious. First, space and cost limitations are no longer
issues. High-density chips can be manufactured cheaply in
current semiconductor technology. Second, these application
specific instruction sets are included to alleviate
performance bottlenecks in the most commonly used
applications such as 3-D graphic rendering and multimedia.
These rationales closely follow the corollary of Amdahl’s
law: Make the common case fast. Amdahl’s Law reminds us
that the opportunity for improvement is affected by how
much time the event consumes. Thus, making the common
case fast will tend to enhance the performance better than
optimizing rare cases [7]. Since the biggest merit of
hardware is speed, the significant speedup can be gained
through hardware implementations of common cases.

As the popularity of object-oriented programming and
graphical user interface increases, applications become more
and more dynamic memory intensive. It is well-known
among experienced programmers that automatic dynamic
memory management functions (i.e. allocation and garbage
collection) are slow and non-deterministic. Since object-
oriented applications prolifically allocate memory in the
heap, it is also no coincident that such applications can run
up to 20 times slower than the procedural counterparts. A
study has also shown that Java applications can spend 20%
of the execution time in dealing with dynamic memory
management [1]. Unlike stack or queue, heap is not a well-
defined data structure. Allocating memory in the heap often
requires some form of search routines. In software
approaches to heap management, searching is done in
sequential fashion (i.e. linked list search). As the number of
existing objects grows, the search time would grow linearly
longer as well. Studies have shown that applications written
in C++ can invoke up to ten times more dynamic memory
management calls than comparable C applications [10].
Apparently, dynamic memory management is a common
case in object-oriented programming. With Amdahl’s
corollary in mind, the need of a high-performance dynamic
memory manager is obvious.

Deterministic turnaround time is a very desirable trait for
real-time applications. Presently, software approaches to
automatic dynamic memory management often fail to yield

2

predictable turnaround time. The most often used software
approach in maintaining allocation status is sequential fit or
segregated fit. These two approaches utilize linked-list to
keep the occupied chunks or free chunks. With linked-list,
the turnaround time often relates to the length of the list. As
the linked-list becomes longer the sequential search time
would grow longer as well [9]. Similarly, the software
approaches to garbage collection also yield unpredictable
turnaround time. Basically two of the most common
approaches for garbage collection are mark-sweep and
copying collector. In both instances, the turnaround time is
not deterministic.

According to Nilsen and Schmidt, one of the ways to
achieve hard real-time performance for garbage collection is
through the hardware support [8]. In this paper, we introduce
an application specific instruction extension called Dynamic
Memory Management eXtension (DMMX) that includes
h_malloc, mark, and sweep instructions at the user-level. In
h_malloc, our high-performance allocation scheme allows
allocation to be completed in a few instruction cycles.
Unlike software approaches, our scheme is fast and
deterministic. To perform garbage collection, the mark
instruction is invoked repeatedly until all the live objects are
marked on a bit-map. Once the marking phase is completed,
the sweep instruction is called. Since we have a dedicated
hardware to perform the sweeping, this phase can be
completed in a few instruction cycles.

The remainder of this paper is organized as follow.
Section 2 provides a top-level architecture of our instruction
set. Section 3 describes the internal structure of the Dynamic
Memory Management Unit (DMMU). Section 4 addresses
the architectural support issues for the DMMU. Section 5
concludes this paper.

2. Overview of the DMMX

In our proposed Dynamic Memory Management
eXtenstion (DMMX), there are three user-level instructions,
h_malloc, mark, and sweep. These three instructions are
used as the communication channels between the CPU and
the Dynamic Memory Management Unit (DMMU). This
DMMU can either be packaged inside CPUs or outside. This
unit can also be included inside the hardware implemented
Java Virtual Machines (i.e. PicoJava II from Sun
Microsystems). The main purpose of the DMMU is to take
responsibility for managing heap space for all processes in
the hardware domain. The proposed DMMU utilizes the
modified buddy system combined with the bit-map approach
to perform constant-time allocation [4]. Usually, each
process has a heap associated with it. In the proposed
scheme, each heap requires three bit-maps, one for allocation
status (A bit-map), one for object size (S bit-map), and one

for marking during the garbage collection (X bit-map). It is
necessary to place these three bit-maps together all the time,
since searching and modification to these three bit-maps are
required for each garbage collection cycle. Figure 1
demonstrates the top-level integration of the DMMU into a
computer system.

Figure 1. The top-level description of a DMMU

Figure 1 illustrates the basic functionality of the DMMU.
First, the DMMU provides services to CPU by maintaining
the memory allocation status inside the heap region of the
running process. Thus, the DMMU must be able to access the
A bit-map, S bit-map, and X bit-map of the running process.
Similar to TLB, the DMMU is shared among all processes.
The parameters that the CPU can pass to the DMMU are the
h_malloc, mark, or sweep signal, the object_size (for the
allocation request), and the object_pointer. The operations of
the DMMU are very similar to the function calls (i.e.
malloc()) in C language. Thus, object_pointer is either
returned from the DMMU in allocation or passed on to the
DMMU during the garbage collection process. The gc_ack is
also returned at the completion of garbage collection cycle.
If the allocation should failed, the DMMU would make a
request to the operating system for additional memory using
system call sbrk() or brk().

 Since the algorithms used in the DMMU are
implemented through pure combinational logic, the time to
perform a memory request or memory sweeping is constant.
On the other hand, the time for a software approach in
performing an allocation or a sweeping cycle is non-
deterministic. As stated earlier, Java applications spend
about 20% of the execution time in dealing with automatic
dynamic memory management. This extensive execution
time can be greatly reduced with the use of the DMMU.

3. Internal architecture of the DMMU

Inside the DMMU, three bit-vectors are used to keep all
of the object relevant information such as allocation status of
the heap, the size information of occupied blocks and free
blocks, and the live object pointers. The allocation status is
kept on the Allocation bit-vector (A bit-vector). When a
h_malloc is called, the size information is received by the

object_size

object_pointer

0 1 2 3 4 5 6 7....

O.S.
Kernel

CPU DMMU sbrk/brk

h_malloc /
mark / sweep

A bit-vct S bit-vct X bit-vct

gc_ack

3

Complete Binary Tree (CBT). This dedicated hardware unit
is responsible for locating the first free memory chunk that
can satisfy the request using the modified buddy system.
Besides locating the memory chunk, the CBT also has to
send out the address of that newly allocated memory and
updates the status of that memory block from free to
allocated. It is worth noting that while the free block lookup
is done using size index of 2n, the system only allocates the
requested size. For example, if 5 blocks of memory is
requested, the system will have to find the first free chunk of
size 8 (23). After a chunk is located, the system only
allocates 5 blocks and relinquishes the remaining 3 blocks.
Each time an object is created or reclaimed, the Size bit-
vector (S bit-vector) is instantly updated by a dedicated
hardware, S-Unit. The auXiliary bit-vector (X bit-vector) is
only used during the marking phase of the garbage collection
cycle. Once the marking phase is completed, the sweep
instruction is invoked. A dedicated hardware, bit-sweeper, is
used to perform this task in constant time. The internal
architecture of the DMMU is given in Figure 2.

Figure 2. Internal architecture of the DMMU.

Figure 2 depicts the sequence needed to complete the
allocation or garbage collection. For example, if an
allocation of size 5 is requested, A1s indicate the first step
needed to complete the allocation. According the Figure 2,
the h_malloc and input signal would go to logic ’1’ and the
requested size would be given to the CBT. Since the CBT is a
combinatorial hardware, the free memory chunk lookup, the
return address pointer, and the new allocation status signals
can be produced at the same time (A2s). Next, the new
allocation status is latched in the A bit-vector (A3). Since the
S-Unit is also a combinatorial hardware, as soon as the A bit-
vector is latched, the new size information is available to the
S bit-vector. Lastly, the new size information is latched in
the S bit-vector (A4) and the allocation is completed. The
sequence of garbage collection can also be traced in a similar
fashion.

4. Architectural support for DMMU

This section summarizes the process of memory
allocation and deallocation in the DMMU. Since the bit-
maps of a given process may be too large to be handled in
the hardware domain, the bit-vector, a small segment of the
bit-map, is used in the proposed system. This idea is very
similar to the idea of using TLB (Translation Look-aside
Buffer) in the virtual memory. Due to the close tie between
the S bit-map, A bit-map, and X bit-map, the term bit-vector
used in this section represents one A bit-vector (of A bit-
map), one S bit-vector (of S bit-map), and one X bit-vector
(of X bit-map). Figure 3 presents the operation of the
proposed DMMU.

When a memory allocation request is received (step 1),
the requested size is compared against the
largest_available_size of each bit-vector in a parallel
fashion. This operation is similar to the tag comparison in a
fully associated cache. However, it is not an equality
comparison. There is a hit in the DMMU, if one of the
largest_available_size is greater or equal to the request size.
If there were a hit, the corresponding bit-vector would be
read out (step 2) and sent to the CBT [4]. The CBT is a
hardware unit to perform allocation/deallocation on a bit-
vector. For the purpose of illustration, we assume that one
bit-vector represents one page of the heap.

After the CBT identified the free chuck memory from the
chosen page, the CBT will update the bit-vector (step 3) and
the largest_available_size field (step 3*). The object pointer
(in terms of page offset address) of the newly created object
is generated by the CBT (step 4). This page offset combines
the page number (from step 2*) into the resultant address.

Figure 3.The allocation and garbage collection processes of the DMMU

For the garbage collection, when the DMMU receives a
mark request, the page number of the object pointer (i.e. a
virtual address) is used to select a bit-vector (step A). This

Complete Binary Tree (CBT)

S-Unit (Size encoder)

Allocation bit-vector
(A bit-vector)

Size bit-vector
(S bit-vector)

Aux bit-vector
(X bit-vector)

Bit-Sweeper

object_pointer output (A2)

Update allocation status (A3)

object_size input (A1)

object_pointer input (G1)

sweep signal input (G3)

A4,G5

(G3)

Update
Allocation
Status (G4)

(A) Steps required for allocation

(G) Steps required for garbage collection

Object pointers
for marking (G2)

h_malloc / mark
signal input (A1, G1) Current allocation status (A2)

gc_acknowledge
output (G3)

page number bit-vectors largest_available_size

1

2

2

 CBT

1 free memory space request

3

3
3 *

3 *

bit-vector read out

bit-vector update

update largest_available_size

page offsetpage number

4

4
offset address of newly created object

page number page offset

A

A *

Allocation steps:

B

A Select bit-vectors

C

D *

marked the bit-vector

bit-vector read out

update largest_available_size

A

Garbage collection steps:

* starting page-offset address

B

D *

starting address to be freed

2 *

2 * page # read out

starting address of new object
bit-sweeper

C

D

D bit-vector update

4

process is similar to the tag comparison in cache operation.
At the same time, the page offset is sent to the CBT as the
address to be marked (step A*). The process is repeated until
all the memory references to live objects are marked. When
the marking phase is completed, the sweeping phase (step C)
would begin by reading out the bit-vectors and send them to
the bit-sweeper. The bit-weeper would keep all of the objects
where the starting addresses were provided by step A* and
update the bit-vector (step D) and the largest available size
field (step D*). The page number, bit-vectors, and the
largest_available_size are placed in a buffer, called the
Allocation Look-aside Buffer (ALB).

 Since the DMMU is shared among all processes, content
of the ALB will be swapped during the context-switching.
This issue also exists in TLB. To solve this problem, we can
add a process-id field in the ALB. This will allow bit-vectors
of different processes to coexist in the ALB. We expect the
performance of the ALB to be very similar to the much-
studied TLB. However, further research in the ALB
organization, hit ratio and miss penalty is required.

5. Conclusion

Besides providing the speed and predictability in
automatic dynamic memory management, the DMMU can
also reduce the number of cache misses and page faults.
Since all the dynamic memory management information is
kept separately from the object, we do not need to bring the
object in for the marking and object size look up. The bit-
map approach also requires no splitting and coalescing.
Additionally, our scheme can also improve the performance
of multithreaded applications in a multiprocessor
environment. While multithreaded programming in
multiprocessor environment promotes parallel execution of
threads, the task of managing the heap is still done in a
sequential fashion. This means that other threads have to
wait if one thread is allocating inside the heap. Since the
software approach to allocation is slow and non-
deterministic, dynamic memory management can be a major
bottleneck in multiprocessor-multithreaded applications that
are memory intensive [3]. Our scheme allows allocation to
be done quickly, and thus, reduces wait time.

The adoption of object-oriented languages such as C++
and Java in embedded system development also increases
the need for a high-performance automatic dynamic memory
manager. Industry observers predict that by year 2010, there
will be 10 times more embedded system programmers than
general-purpose programmers [2]. This prediction is also
confirmed by the surge of interests in the web-appliances
where each device is a small object-oriented embedded
system. In this paper, we introduce hardware instruction

extensions that would allow ADMM to be fast, robust, and
can respond to the hard real-time requirement.

6. References

[1] E. Armstrong, “Hotspot, A new breed of virtual ma-
chine”, JavaWorld, March 1998.

[2] R.W. Atherton, “Moving Java to the factory”, IEEE
Spectrum, December 1998, pp 18-23.

[3] D. Haggander and L. Lundberg, “Optimizing Dynamic
Memory Management in a Multithreaded Application
Executin on Multiporcessor”, Proc. 1998 Int’l Confer-
ence on Parallel Porcessing, pp. 262-269.

[4] M. Chang and E. F. Gehringer, “A High-Performance
Memory Allocator for Object-Oriented Systems,” IEEE
Transactions on Computers. March, 1996. pp. 357-366.

[5] K. Kavi, J.C. Browne, and A. Tripathi, “Computer Sys-
tems Research: The pressure is on” Computer, January
1999, pp. 30-39.

[6] R. Jones, R. Lins, Garbage Collection: Algorithms for
automatic Dynamic Memory Management, John Wiley
and Sons, 1996, pp.20-28, 87-95, 296

[7] D. Patterson and J. Hennessy, “Computer Architecture, A
Quantitative Approach”, Morgan Kaufmann Publishers,
Inc., Second Edition 1996.

[8] K. Nilsen and W. Schmidt, “A High-Performance Hard-
ware-Assisted Real-Time Garbage Collection System,
Journal of Programming Languages, January 1994, 1 -
40.

[9] Paul Wilson, M. Johnstone, M Neely and D. Boles, “Dy-
namic Storage Allocation: A Survey and Critical Re-
view”, Proc. 1995 Int’l workshop on Memory
Management, Scotland, UK, Sept. 27-29, 1995.

[10] Benjamin Zorn, “Custo-Malloc: efficient synthesized
memory allocators,” Technical Report CU-CS-602-92,
Computer Science Department, University of Colorado,
July 1992.

Session 2

Architectural Issues in Dynamic Translation

����� ���	�
��	��
�������� ���������������������! #"$�% '&)(+* �
����* ��(+,-�.��(-���0/

1	243%57698;:=<?>A@.2CBEDGFIHJ<LKM6IDONI:CPCH?PQH?PCRQ1	24STDVU?HWNI5CXC6IH?YZH?PCD[HWY
\]_^7`?acbedf]cghbjilk�mniodp^4qTb_]caErtscuv]cg'sw]x`?g4y{zngL|?u}g']w]ca~u}gL|

��]cghg7�c�W���o`?ghue`�r#b�`?b_]%�$ghu}�?]caw�cu}be�
�!ghu}�?]ca;�cu}be�{�j`?a;�J����]cghg7�c�W���o`?ghue`

�W�W�L�T�=�=�7���_�4�W�L�����9�W�h�W�T�h�o�C�L�?�� ¢¡4�£�j ¤���=�

¥	¦A§w¨ª©ª«M¬£¨

­-®+¯_°²±V³_´o±9µL¶�·¹¸�º}­w³ªµ£»�¼�½~·$¾�¶�¿À¸lÁÂ¶Ã¯$Äw´E¸VÅ�¼¤¶V¸l´W°
Äw´�Æ�¾�Á¢¸OÇl¸lÁ_Á¢¸�ÆÈ¯_°²Éw¿À¸j½ÊÇn¶�·$¾�¿À¸l·¹¸¤´o°²¶�´-Ëp°ÍÌ£¸Î­JÄwÏwÄ
ÐL¶�Á_°²®oÄw¿+Ñ.Äc¼�Ì+¶�´�¸nº[­7ÐLÑÎ»�½w´�Á¢¸_¯¤½~®JÁ¢¼�¸l±}Á_¶V¼�Ìj·¹Äw±
¼vÌJ¶�´?¸l¯¤ÒÔÓT¯_¶�´-Ë.Ä.­w³ªµ�¼�½w·!¾?¶�¿À¸¤Á�ÕÖ°ÍÌ£¸È×lÉw°}¸�¼�½9Æª¸_¯
ÄwÁ¢¸È°²Á¢Äw´o¯_¿ÀÄw°}¸�ÆØ°}½Ø´?Ä~°O¶�Ïw¸E¼�½9Æª¸pÄ~°�Á_®J´W°O¶�·¹¸IÒp³l´
°�ÌJ¶Ã¯�¾oÄv¾o¸¤Á�ÕÎÙ4¸�¶�´oÏw¸_¯_°²¶ÚËªÄ~°[¸�ÙTÌ£¸¤Á¢¸�°ÍÌ£¸�°O¶�·¹¸Ø¶Ã¯
¯²¾£¸¤´o°x¶�´Û¯_®o¼vÌÜÆwÉw´?Ä~·n¶V¼�¼�½w·!¾?¶�¿À¸¤Á�¯%Äw´�Æ%Ìo½wÙ
Ù4¸l¿�¿4ÄÈ¯_·¹ÄwÁ_°!­w³-µÔ¼�½w·!¾?¶�¿À¸¤Á�¼�Äw´�Æc½ªÒjÝ�¸vÞc°OÕtÙ4¸
¾?Á¢½�¾£½w¯¤¸nÄ~Á¢¼vÌJ¶�°[¸�¼¤°O®JÁvÄw¿M·¹¸�¼vÌoÄw´o¶Ã¯_·n¯�°�ÌoÄw°'¼�Ä~´x×�¸
®+¯¤¸vÆp°}½È¯_®I¾c¾o½wÁ_°$°ÍÌ£¸�ÆwÉw´?Ä~·n¶V¼È¼�½9Æª¸�Ëª¸¤´?¸¤Á¢Ä~°O¶V½~´
Äw´�Æ¹¶�´£¯_°}Äw¿�¿ÀÄ~°O¶V½~´?Ò

ß à-áAâ+ãoätå�æ!ç?â£èÊäAá

étêoë�ì-í;îwíQï�ðÀñ¢ò¢óWí~ô�õ�íªö�ê£ðø÷£ë�ùOìcïÖõ.ú�ûÀülý�ðÃþ
ò¢ê£ë�ölÿcñv÷£ë9ñ#þÊòvÿc÷£ëÂÿ��=ì-í;îwí�ò¢ë9ö�êo÷£ÿcôøÿ�����ë��£ðÀò¢ÿ��jð	��

ðÀ÷��.òvê£ë
���ÂñvðÚòvë�
[ÿc÷oö¤ë�ñ¢óo÷�
[íc÷����Âêoë¤ñvë����£ñvÿ��jðÃþeë��
�[ò ðøþ�ë����?ë9ölò¢ë�� òvêoíwò�ò¢êoðøþ�ë9÷oí��£ôøðø÷���ò¢ë9ö�êo÷£ÿcô	

ÿ������ÂðøôÀô �¹í�!ªë ðÚò�íÛôøÿ~ò%ëIícþ¢ðÀë9ñ ò¢ÿ"�Jë¤îªë¤ôøÿ��
�Wÿªñeò�í��£ôøëÂþeÿ���ò#�'ícñ¢ë'í~÷��Îþeòví~÷$�£í~ñ%�Jð&�¤ë���ðÀ÷-òvë¤ñ'�VícölëIþ
ò¢êoí~ò$þ��oíc÷píjþ'�WëIö_òvñ¢ó��Üÿ��TêWí~ñ%���'ícñ¢ë(�£ôÃíwò��Íÿªñ'�¹þ��
ìªí;îwí)�£ñvÿ��ªñví��¹þ7ícñ¢ëtòvñvíc÷oþ¢ôøí~ò¢ë��Îðø÷-ò¢ÿ�í*�¹ícö�êoðÀ÷£ë�

ðÀ÷$�Jë��?ë¤÷��£ë¤÷-ò�ìªï�õ+�Íÿcñ,�¹íwò�ùVö9í~ôøôÀë��-���-ò¢ëIölÿ��JëIþvú�.
ò¢ÿ�ðÀ÷oþ¢ó£ôÃíwòvë#ò¢êoë��/�Íñ¢ÿ���ò¢ê£ëAó£÷��Jë9ñ¢ô&�+ðÀ÷��(�¹ícö�ê£ðø÷£ë
í~ñ�ö�ê£ðÀò¢ë9ölò¢ó£ñvë�ÿª÷0�Âê£ðÃö�ê�òvê£ë��0�'ÿcóoô&�Øë9îcë9÷ªòvóoí~ôøô&�
ë��Jë9ö¤óJò¢ë��Tétê£ëIþeë1���-òvë9ölÿ��JëIþLö9í~÷*�?ë4ë��JëIölóJòvë��)���32
ðÀ÷-òvë¤ñ,�£ñ¢ë¤òví~ò¢ðøÿc÷4.$ìªóoþeò�
5�}÷�
[étð&�jë�ùVì��Êé$ú�ö¤ÿ��6�£ðøôøí�

ò¢ðøÿc÷�û 7IýÂÿªñ8���9�Jðøñ¢ëIö_ònë��Jë9öló£ò¢ðøÿc÷�ÿª÷�ì-í;î;í0�£ñ¢ÿ�

ölëIþ¢þ¢ÿcñ�þ�û :�.<;wý5�>=?�jÿc÷���ò¢êoë9þ¢ë�òvë9ö�ê£÷£ðA@-ó£ë9þ�.hòvê£ë
ì��Êé ö¤ÿ��6�£ðøôÀë9ñ�òvë9ö�ê£÷£ÿªôÀÿ����fðøþÈí>�£ñvë��Íë9ñ¢ë��Ôþeò#�-ôøë
ÿ��Tìªï�õ ð	�6�£ôøë��jë¤÷-ò�íwò¢ðøÿc÷Èÿc÷�ñvë9þ¢ÿcóoñvö¤ë�
[ñ¢ðÃö�ê6�jí�

ö�ê£ðø÷£ë9þ�� étê£ðÃþ-�oí��?ë¤ñB�£ñvë9þ¢ë¤÷-òvþC�Wÿ-þ¢þ¢ð	�oôÀë �JðÀñvë9ö�

ò¢ðøÿc÷oþ4ò¢êWíwòAÿª÷£ë�ö9í~÷jò�í�!cë�ðÀ÷C�£ñ¢ÿwî+ðA�Jðø÷���í~ñ�ö�ê£ðÀò¢ë9ö�

ò¢ó£ñ�í~ôMþ¢ó����?ÿcñ¢òD�Íÿcñ?���-÷Wí��jðøö�ö¤ÿ��6�£ðøôøí~ò¢ðøÿc÷4�
étêoë¹ñ¢ëIþÊò�ÿ��Aòvê£ðøþE�oí��?ë¤ñ�ðÃþ�ÿªñ'�-í~÷£ð&�¤ë��xíªþF�Íÿcô	

ôøÿG�$þ��H�}÷ òvê£ëÔ÷£ë��+ò�þeëIö_ò¢ðøÿc÷I.J�Aë ðø÷+îcëIþÊòvð	�-íwò¢ë
ÿª÷K�Âê£ë9ñ¢ë�ò¢ê£ëpò¢ð&�jëÈðÃþjþ��?ë¤÷-ò¹ðø÷Zì��Êé ölÿ��L�oðÀôÃíG

òvðÀÿª÷4�>=$ñ�ö�ê£ðÀò¢ë9ölò¢ó£ñ�í~ôtþ¢ó����?ÿcñ¢ò8�jë9ö�êoíc÷£ðÃþ��¹þ8�Íÿcñ
ë9÷£êoí~÷Wölðø÷���ò¢ê£ë��?ë¤ñ'�Íÿcñ,�¹í~÷oö¤ëEÿ���ì��Êé ölÿ��L�oðÀôÃíG

òvðÀÿª÷ í~ñvëM�£ë9þvölñvð	�?ë��N�£ñvðøë�O��%ðÀ÷�òvê£ë�þ¢ë9ö_òvðÀÿª÷P:��
Q ÿª÷oölôøó��Jðø÷��	ñ¢ë��jícñ'!JþÎí~ñvë-�oñ¢ÿwî+ðA�Jë���ðÀ÷fþeëIö_ò¢ðøÿc÷
;$�

R SUT?VTá0ä#ã0SUTWV=â�T?VMãxâJäYX	ä1Z\[�è�]�V
^ à�_9`

aW�+÷oí��jðøöxölÿ��6�£ðøôÃíwò¢ðøÿc÷QêoícþC�Wë9ë¤÷b�?ÿ��oó£ôøícñ¢ô&�
óoþ¢ë��xû 7�.�c;ý=ò¢ÿjþ'�Wë9ë���ó��pì-í;îwí�ë��JëIölóJòvðÀÿª÷oþ��hétê£ðÃþ
í����£ñvÿªícö�ê{í;îªÿcðA�£þ�òvê£ëEölÿªþeò¢ô&��ðÀ÷-òvë¤ñ,�£ñ¢ë¤òví~ò¢ðøÿc÷{ÿ��
ìªï�õd���-ò¢ëIölÿ��JëIþ�.e�Âê£ðøôÀëÎþeðA�Jë9þeò¢ë����£ðø÷��¹òvê£ë�ðÃþ¢þ¢ó£ë
ÿ��Lêoí;î+ðÀ÷���ò¢ÿL�£ñvë�
}ölÿ��6�£ðøôøë!í~ôøô?ò¢ê£ëÖñ¢ÿªóJò¢ðø÷£ëIþ#òvêoíwò
ö¤ÿcó£ôA��ë9îcë¤ñF�?ënñvë��Íë9ñ¢ë9÷oölë��{ùf�Íñvÿ��g�?ÿ~òvê�ò¢êoë8�ÍëIíG

þ¢ð	�oðÀôøðÚò#�Ôíc÷��h�?ë¤ñ'�Íÿcñ,�¹í~÷oö¤ëxí~÷��côøë9þ�úi�jaW�+÷oí��jðøö
ö¤ÿ��6�£ðøôøí~ò¢ðøÿc÷ òvë9ö�ê£÷oð&@-ó£ëIþ�.Zê£ÿG�Aë9îcë9ñ�.>�Wík� ò¢ê£ë
�?ë¤÷oícôÚò#�Öÿ��Jêoí;î+ðø÷��tò¢êoë4ölÿ��L�oðÀôÃíwòvðÀÿª÷elIòvñvíc÷oþeôÃíwòvðÀÿª÷
òvÿ.÷oí~ò¢ðøîcë�ö¤ÿ��£ëm�Ví~ôøôÀðø÷���ðø÷�òvê£ëÈö¤ñ¢ðÀò¢ðÃö¤ícô1�oí~ò¢ê{ÿ��
�£ñvÿ��ªñví�� ë��Jë9öló£ò¢ðøÿc÷4�onJðÀ÷oö¤ë�òvê£ðÃþ�ölÿªþeòxðÃþ�ë���

�?ë9ölò¢ë�� òvÿ\�?ë�ê£ð&�cê4..ðÚòÔ÷£ë9ë��£þfòvÿp�Wë í��Îÿªñ�

òvð	�9ë���ÿwîcë9ñm��ó£ôÀò¢ð&�£ôøë�ë��JëIölóJòvðÀÿª÷oþ¹ÿ���òvê£ëØò¢ñ�í~÷Wþ#

ôÃíwòvë���ölÿ��Jë��Bq!ò¢ê£ë9ñ'�ÂðÃþ¢ë�.4�?ë¤ñ'�Íÿcñ,�¹í~÷oö¤ëjö9í~÷M�?ë�

ö¤ÿ��jë)�Aÿªñvþ¢ë$òvêoí~÷r�Âê£ë9÷�òvê£ë�ölÿ��Jë�ðÃþtsÊóoþÊò$ðø÷-ò¢ë9ñ�

�£ñvëlòvë��u�Lv�÷£ÿG�Âðø÷��C�Âê£ë9÷.òvÿ����+÷oí��jðÃö¤í~ôøô&��ölÿ��L

�£ðøôøëjíB�jëlòvê£ÿ��u.Lÿªñ)�Âê£ëlòvê£ë¤ñ�òvÿEö¤ÿ��6�£ðøôÀë¹í~ò�ícôÀôw.
ðÃþ7ë��+ò¢ñvë��jë¤ô&��ð	�6�?ÿcñ¢òvíc÷ªòt�Íÿcñ<�ªÿ-ÿ��*�?ë¤ñ'�Íÿcñ,�¹í~÷oö¤ë��
õØÿ-þÊòÂÿ��Tòvê£ë�öló£ñvñvë¤÷-ò¢ô&��í;îwí~ðøôøí��£ôøë�ë��+ëIölóJòvðÀÿª÷Èë9÷�

î+ðøñ¢ÿª÷��jë¤÷-òvþ�.Jþeóoö�êEícþx!wíGy�ë¹û z~ýLí~÷��pì�a(vÛü��Àüjû {wý
ë��L�oôÀÿG��ôøð&�ÎðÀò¢ë��	ê£ë¤ó£ñvðÃþÊòvðøö9þÖò¢ÿ0�JëIölðA�Jë¹ÿc÷ �Âê£ë¤÷
ùVÿcñr�Âê£ëlòvê£ë¤ñ_ú�ò¢ÿ�ölÿ��L�oðÀôøë	ì��Êé)�?|£ÿªñÈë��£í��6�£ôøë�.
v�í�y?ëhò#���£ðÃö¤ícôÀô&��ò¢ñ�í~÷oþ¢ôøí~ò¢ëIþMíD�jëlòvê£ÿ���ÿc÷�ðÀòvþ4}oñ�þÊò
ðø÷+îcÿJö¤í~ò¢ðøÿc÷4.Jñvë��-í~ñ%�JôÀëIþ¢þAÿ��Cê£ÿG�%ôÀÿª÷��jðÚòÂò�í�!cëIþ'ò¢ÿ
ðø÷-ò¢ë¤ñ,�£ñvëlò�lIò¢ñ�í~÷WþeôÃíwòvëkl;ë��Jë9öló£ò¢ëÈò¢ê£ë��jëlòvê£ÿ�� í~÷��
ê£ÿG�~�¹í~÷���òvð	�jë9þ#ò¢ê£ëD�jë¤ò¢ê£ÿ��jðÃþhðÀ÷+îªÿ�!cë��u�Tì�aFv
ü�� 7EóWþeëIþ�ôøð	�jðÀò¢ë���ê£ë¤óoñ¢ðÃþÊòvðøö9þnþ¢óoö�ê�íªþE�Jë¤ò¢ëIö_ò¢ðø÷��
�£ñvë9þ¢ë¤÷Wölëtÿ���ôÀÿ+ÿ��Îþeò¢ñvóoö_òvó£ñvë$þ�.��Âê£ðÀôøëtò¢êoë$þeÿ��£ê£ðÃþ#

ò¢ðÃö¤í~ò¢ë��Ôÿ��Jòvð	�jð&�9íwòvðÀÿª÷oþB�Jÿc÷£ë����fòvê£ë.ê£ÿcòpþ'�Wÿcò
ölÿ��L�oðÀôøë¤ñjí~÷£÷oÿcó£÷oö¤ë���ñvë9ö¤ë¤÷-ò¢ô&� û �;ý$í~ñvë�÷£ÿcò8�cë¤ò
í;îwí~ðøôøí��£ôÀë��8�[ò�ðÃþ�÷£ÿ~ò�ö¤ôÀëIí~ñ�ê£ÿG�Y�'ë¤ôøôhÿc÷oëjö¤ÿcó£ôA�
�JÿJ�ÂðÀò¢ê.í¹þ'�¹í~ñ¢ò¢ë9ñ$ê£ë¤óoñ¢ðÃþÊòvðøö�ò¢êoíc÷0�Âêoíwò(�jíc÷��
ÿ���ò¢êoë9þ¢ëØë¤÷+î+ðÀñvÿc÷��jë9÷ªò�þm�£ñvÿwî+ð&�Jë��b�	ë�ðø÷-îªë9þeò¢ð	

�ªí~ò¢ë{òvê£ë9þ¢ë�ðÃþvþeó£ëIþ.ðø÷ òvê£ðÃþxþ¢ë9ölò¢ðøÿc÷ óoþ¢ðø÷���}oîªë
þ��?ë9ö9ìcïÖõ0��zxû �wý<�?ë¤÷Wö�ê��¹í~ñ,!+þÎù�òvÿ��ªëlò¢êoë¤ñW�ÂðÀò¢ê�í
þeð&�6�£ôøë��!ë¤ôøôÀÿ��xÿªñ¢ôA���oñ¢ÿ��cñ�í��C��ú7ÿc÷�ò¢ê£ëDv�íGy�ë�û z~ý
ë¤÷+î+ðÀñvÿc÷��Îë9÷-ò��
|7ð&�có£ñvëjüÖþ¢ê£ÿG�$þ'òvê£ë�ñ¢ëIþeó£ôÀòvþx�Íÿªñ'ò¢ê£ë��Jð	y�ë¤ñvë¤÷-ò

�Wë9÷oö�ê��¹í~ñ,!Jþ��<=$ôøô?ë��Jë9ö¤óJò¢ðøÿc÷jòvð	�jë9þAí~ñvëÂ÷£ÿcñ,�¹í~ô	

ð	�9ë��m�ÂðÀò¢ê�ñ¢ëIþ��?ë9ölò#ò¢ÿ�ò¢ê£ë�ë��Jë9ö¤óJò¢ðøÿc÷jòvð	�jë�òví�!ªë¤÷
���Zòvê£ëxì��Êé ölÿ��6�£ðÀôÃíwòvðÀÿª÷��jÿ��Jë.ÿª÷bv�íGy�ë�û zwý5�
|£ÿªñÎëIícö�êfí����£ôøðÃö¤íwòvðÀÿª÷4.#òvê£ëB}oñ�þÊòm�oícñÎðø÷��JðÃö¤í~ò¢ëIþ
ò¢ê£ë	òvð	�jëxòví�!ªë¤÷Qò¢ÿfñ¢ó£÷Qò¢ê£ë �£ñvÿ��ªñví�� ðø÷Qòvê£ðÃþ
�jÿ��£ë��jétê£ðøþ)�Wí~ñ�ðøþF�Íóoñeòvê£ë¤ñ)�£ñvÿ�!ªë¤÷��£ÿG�Â÷.ðø÷ªòvÿ
ðÚò�þ�ò#�'ÿ�ölÿ��L�?ÿc÷oë¤÷-òvþ�.Lòvê£ë¹òvÿ~òvícôhò¢ð&�jë¹òví�!cë9÷xòvÿ
ò¢ñ�í~÷oþ¢ôÃíwò¢ëGlwö¤ÿ��6�£ðøôÀëEòvê£ë.ðø÷+îcÿ�!ªë��~�jëlòvê£ÿ��£þÈíc÷��
ò¢ê£ë�òvð	�jë�ò�í�!ªë¤÷%ò¢ÿ ë��JëIölóJòvë�ò¢ê£ëIþeë�òvñvíc÷oþeôÃíwòvë��
ùÍ÷oí~ò¢ðøîcëtölÿ��Jë;úI�jë¤ò¢ê£ÿ��£þ��7étêoëtö¤ÿc÷oþ¢ðA�Jë¤ñvë��E�Aÿªñ'!�

ôÀÿ-í��£þhþ'�oíc÷nòvê£ë!þ'�WëIö_òvñ¢ó��r.��Íñ¢ÿ�� òvê£ÿªþ¢ëÂðÀ÷6�Âê£ðÃö�ê
ò¢ê£ënò¢ñ�í~÷WþeôÃíwòvðÀÿª÷Øò¢ð&�jë9þ)�Jÿ��jðø÷oíwòvënþ¢óoö�ê.íªþ�Ìo¸l¿�¿À½
í~÷���Æª×$ù��WëIö¤í~óWþeë?�jÿ-þÊò#ÿ��?òvê£ë?�jëlòvê£ÿ��£þ4ícñ¢ëÂ÷oë¤ð	

ò¢ê£ë9ñ¹ò¢ð&�jë.ölÿª÷oþ¢ó��jðÀ÷���÷£ÿªñ¹ðÀ÷+îªÿ�!cë���÷+ó��jë9ñ¢ÿªóoþ
ò¢ð&�jë9þ�úi.£òvÿjò¢ê£ÿ-þeë�ðø÷r�Âê£ðÃö�êÈòvê£ë�÷oí~ò¢ðøîcë�ö¤ÿ��£ë�ë���

ë9ö¤óJò¢ðøÿc÷B�Jÿ��jðø÷oíwòvë9þtþeóWö�êpíªþÖ¼�½w·!¾?Áv¸_¯�¯Aíc÷��E�¤Äª¼,�
ù��Âê£ë9ñ¢ëxò¢êoë�ö¤ÿªþeòpÿ���ò¢ñ�í~÷WþeôÃíwòvðÀÿª÷ÔðøþEí��Îÿªñeòvð	�9ë��
ÿwîcë9ñÎ÷+ó��jë9ñ¢ÿªóoþÎðÀ÷+îcÿJö9íwò¢ðøÿc÷Wþvú��hq�÷Zò¢ÿ��Zÿ���òvê£ë
ì��Êé ölÿ��6�£ðøôÃíwò¢ðøÿc÷Që��Jë9ö¤óJò¢ðøÿc÷��oí~ñpðøþB�ªðÀîªë¤÷ òvê£ë
ñví~ò¢ðøÿØÿ��tò¢êoë�ò¢ð&�jë¹òví�!cë9÷9���.ò¢ê£ðÃþ8�Îÿ��Jë�ò¢ÿØòvê£ë
ò¢ð&�jëAò�í�!ªë¤÷��ÍÿªñhðÀ÷-òvë¤ñ,�£ñ¢ë¤ò¢ðø÷���ò¢ê£ë��£ñvÿ��ªñví��%óoþ¢ðø÷��
v�íGy�ë4ïÖõ9��=�þ7ë����WëIö_òvë��u.G�'ë�}o÷���ò¢êoí~òLòvñvíc÷oþeôÃíwò'

ðÀ÷���ùVö¤ÿ��6�£ðøôÀðø÷���ì��Êé$úCòvê£ë!ðø÷+îcÿ�!ªë��8�jëlò¢êoÿ��oþAþ¢ð	��

÷£ð	}Wö¤íc÷ªòvô	�.ÿcóJò,�Wë9ñ��Íÿªñ'�¹þÖðÀ÷-òvë¤ñ,�£ñ¢ë¤ò¢ðø÷��Èò¢ê£ë¹ìªï�õ
���ªòvë9ö¤ÿ��£ë9þ��
étêoëÈì��ÊéÛölÿ��6�£ðøôÃíwò¢ðøÿc÷K�Îÿ��JëÈðÀ÷~v�íGy�ëÈö¤ÿ��L

�£ðøôÀëIþ�íC�Îë¤ò¢ê£ÿ���ò¢ÿ�÷Wíwò¢ðøîcëÎölÿ��Jënÿc÷.ðÀòvþW}oñ�þÊòÖðÀ÷�

îcÿJö¤í~ò¢ðøÿc÷4���xëp÷£ë��+òÎðÀ÷+îcëIþÊòvð	�-íwòvë�ê£ÿG�j�'ë¤ôøô4òvê£ë
þ��¹ícñeòvë9þeò�ê£ë¤ó£ñvðÃþÊòvðøö�ö9í~÷h�Jÿ$.$þeÿ�òvêoíwòC�'ë.ö¤ÿ��L

�£ðøôÀë�ÿª÷£ô&�{ò¢êoÿªþ¢ë��Îë¤ò¢ê£ÿ��£þ�ò¢êoí~ò�í~ñvëEò¢ð&�jë.ölÿª÷�

þeó��Îðø÷���ù�òvê£ë.òvñvíc÷oþ¢ôøí~ò¢ðøÿc÷el~ölÿ��6�£ðøôÃíwò¢ðøÿc÷ ö¤ÿªþeòÈðÃþ
ÿcóJò#�'ë¤ð&�cêoë��6���Îò¢ê£ë�ë��Jë9ö¤óJò¢ðøÿc÷¹òvð	�jë;ú4íc÷��¹ðø÷ªòvë¤ñ'

�£ñvëlò'ò¢ê£ëÖñ¢ë��¹í~ðø÷£ðÀ÷��E�jëlòvê£ÿ��£þ��#étêoðøþtö¤íc÷�òvë¤ôøô?óWþ
�Âê£ëlòvê£ë¤ñ8�AëÈþeê£ÿªó£ôA��þÊòvñ¢ðøîcëjòvÿ��Jë¤îªë¤ôøÿ���í��jÿcñvë
ðÀ÷-òvë¤ôøôÀð&�cë9÷ªò�ê£ë9ó£ñvðøþeò¢ðÃöní~ò�í~ôøô�.Líc÷��xð��tþeÿ$.u�Âêoíwò�ðÃþ
ò¢ê£ë6�?ë¤ñ'�Íÿcñ,�¹í~÷oö¤ëE�?ë¤÷£ë�}£ò�ò¢êoí~òF�'ëÎö9í~÷xë����WëIö_ò��
�Më¤ò�óoþ�þvík�Øò¢êoí~ò�ír�jëlò¢êoÿ�� �!òví�!ªë9þ*���Âò¢ð&�Îëjòvÿ

���B�������L�u�6�k�- k�%¡�¢?£%¤i�6£% �¥0¢?£,¦��i§)¨#�i k¨#��©kªw���i �ª
« £%ª��#�r�i -¡��k��ªWªw��¢D¬k���(¬k§w�i­i§w£%¢)®u� ¡Wªw�#§�¯��#ª?¡w�6� « ªw�#§�¯��¡��k� « �#�G£�¯����i§°�%±�¡��k�³²%´�µb��¢D¬k���#¢D�# �¡w£,¡w���i D�I�k�����<����£%��¶�� k­8£% k�J§w�#ª��i� ¯��� k­Eª�¥�ª�¡��#¢Y¨��·£%ª�ªw�#ªD�k©k§��� k­Eª�¥�ª�¡���¢Y�� k� ¶
¡��·£%����¸�£,¡w���i �¹

1 2 3 4 5 6 7
0

20

40

60

80

100

120

 N
o

rm
a
li
ze

d
 E

x
e
c
u

ti
o

n
 T

im
e

 0.25 0.08 0.13 0.13 0.01 0.25

 db javac jess jack compress hello

 Execn. Time
 Trans. Time
 Interpret. Time

|7ð&�có£ñvë�ü�20a(�+÷oí��jðÃö Q ÿ��6�£ðøôøí~ò¢ðøÿc÷42��$ÿG�º�'ë¤ôøô
ö9í~÷B�Aë*�JÿC»

ðø÷-ò¢ë¤ñ,�£ñvëlò�.�¼ � ò¢ð&�jë�ò¢ÿ.ò¢ñ�í~÷oþ¢ôÃíwò¢ë�.#í~÷��9½ � òvð	�jë
òvÿØë��Jë9ö¤óJò¢ëjòvê£ëjò¢ñ�í~÷oþ¢ôÃíwò¢ë��xö¤ÿ��Jë���étêoë¤÷4.Lò¢ê£ë9ñ¢ë
ë��+ðÃþeòvþ�í�ö¤ñ¢ÿ-þ¢þ¢ÿwîcë9ñ8�?ÿcðø÷-òC¾E�m¿À¼u�wÁJù����xÂ�½?�[úi.
�Âê£ë9ñ¢ë�ðÀò>�Aÿªó£ôA�Ã�?ë
�Wë¤òeò¢ë9ñ�ò¢ÿ�òvñvíc÷oþeôÃíwòvëfò¢ê£ë
�jëlòvê£ÿ��{ð	�Âò¢ê£ëp÷+ó��E�?ë¤ñÎÿ��Âòvð	�jëIþní��Îë¤ò¢ê£ÿ���ðÃþ
ðø÷+îcÿ�!ªë���Ä4�?ÅY¾E�'.Líc÷��.ðø÷-ò¢ë9ñ'�£ñvëlò�ðÀò�ÿ~ò¢êoë¤ñ,�Âðøþ¢ë��
�	ë�ícþvþeó��jë.ò¢êoí~òEíc÷Qÿcñ�ícö¤ôÀë	þeó����£ôøðÀëIþ-Ä4�pù�òvê£ë
÷+ó��8�Wë9ñÈÿ��Öòvð	�jëIþÈíK�Îë¤ò¢ê£ÿ�� ðÃþÈðÀ÷+îcÿ�!cë��oújí~÷��
¾8�4ù�òvê£ë!ðA�JëIí~ô�ölóJò'
²ÿ�yÈòvê£ñ¢ëIþeêoÿcôA�L�ÍÿcñAí��Îë¤ò¢ê£ÿ��oú��
�5�EÄ ��Æ ¾ � .W�'ë	ðÀ÷-ò¢ë9ñ'�oñ¢ë¤òpí~ôøô�ðÀ÷+îªÿ+ö9íwòvðÀÿª÷oþ�ÿ��
òvê£ëD�jëlò¢êoÿ��4.-íc÷���ÿcò¢ê£ë9ñ'�ÂðÃþ¢ëAòvñvíc÷oþ¢ôøí~ò¢ëtðÚò#ÿª÷Îò¢ê£ë
îªë¤ñ,�)}oñvþeòhðÀ÷+îªÿ+ö9íwòvðÀÿª÷4�Tétê£ë$þ¢ë9ö¤ÿc÷��E�oí~ñ<�Íÿªñhë9íªö�ê
í����£ôøðøö9íwò¢ðøÿc÷	þeêoÿG�$þ$òvê£ë8�?ë¤ñ'�Íÿcñ,�¹í~÷oö¤ëE�ÂðÀò¢êxò¢ê£ðÃþ
ÿªñvíªölôøëpðø÷b|7ð&�có£ñvë�ü�.D�Âê£ðÃö�êh�'ë�þeêoícôÀôÖö¤ícôÀôn½�¾?°w�
�[òØö¤íc÷h�Wë	ÿ��oþ¢ë¤ñvîcë��fò¢êoí~ò�òvê£ë¤ñvë.ðÃþ�îªë¤ñ,�ZôøðÀòeò¢ôøë
�Jð	y�ë¤ñvë¤÷oö¤ë9�Wë¤ò#�Aë9ë¤÷%ò¢ê£ë{÷Wí~ðøîcë�ê£ë¤óoñ¢ðÃþÊòvðøö	óoþ¢ë��
���-v�í�y?ë�íc÷���½v¾?°I�Íÿcñ�¼�½w·!¾?Áv¸_¯�¯Âí~÷��L�¤Äc¼%��þ¢ðø÷oölë
�jÿªþeòEÿ���òvê£ë.òvð	�jë�ðÃþpþ'�?ë¤÷-òpðø÷%ò¢ê£ë	ë��Jë9ö¤óJò¢ðøÿc÷
ÿ��=ò¢ê£ë�ícölò¢óoícôWölÿ��JëÖí~÷����'ík�pùÍîªë¤ñ,�nôøðÚò¢ò¢ôøë!òvð	�jëÖðÀ÷
òvñvíc÷oþeôÃíwòvðÀÿª÷�ÿcñ7ðÀ÷-òvë¤ñ,�£ñ¢ë¤òví~ò¢ðøÿc÷Wú��I=!þTò¢êoë4òvñvíc÷oþeôÃíG

òvðÀÿª÷�ölÿ��6�?ÿc÷£ë9÷-òW�cë¤òvþÂôÃí~ñ,�cë9ñ�ùVí����£ôÀðÃö¤í~ò¢ðøÿc÷oþ$ôÀð&!cë
Æª×�.x�¤ÄwÏwÄc¼EÿªñØÌo¸l¿�¿ø½¤úi.Öòvê£ëÔ½v¾?°)�jÿ��Jë¤ô�þ¢ó����ªë9þeòvþ
òvêoíwòÂþeÿ��jë�ÿ��Mò¢ê£ëÖôøë9þvþ4òvð	�jë�
[ö¤ÿc÷oþ¢ó��jðÀ÷��ÈùÍÿªñtôÀëIþ¢þ
�Íñvë�@-ó£ë9÷ªòvô	� ðø÷+îcÿ�!cë��Wú6�jëlò¢êoÿ��oþ-�?ë�ðÀ÷-òvë¤ñ,�£ñ¢ë¤ò¢ë��
òvÿØôÀÿG�'ë¤ñ�òvê£ë¹ë��Jë9ö¤óJò¢ðøÿc÷	òvð	�jë��pétê£ðÃþ�ñ¢ëIþeóoôÚò�þ�ðÀ÷
íØü�ÇG
�ü�c�È0þ¢í;î+ðø÷��ªþtðø÷�ë��+ëIölóJòvðÀÿª÷Eò¢ð&�jë*�Íÿcñ!ò¢ê£ëIþeë
í����£ôøðøö9íwò¢ðøÿc÷Wþ��<�[ò$ðÃþtò¢ÿ6�?ë�÷£ÿ~òvë��Èò¢êoí~òÂò¢ê£ë�ë��£ícö_ò
því;î+ðÀ÷��-þE�'ÿcóoô&�~�Jë�}W÷£ðÚòvë¤ô&�K�Jë��Wë9÷���ÿª÷�òvê£ëEë�É6

ö¤ðÀë9÷oö��Øÿ��hò¢ê£ënò¢ñ�í~÷oþ¢ôÃíwò¢ðøÿc÷.ñ¢ÿªóJò¢ðø÷£ë9þ�.?ò¢ê£ënò¢ñ�í~÷Wþ#

ôÃíwòvë��Eölÿ��Jë�ë��JëIölóJòvðÀÿª÷píc÷��pðÀ÷-ò¢ë9ñ'�oñ¢ë¤òvíwòvðÀÿª÷4�

étêoëj½�¾?°�ñ¢ëIþeóoôÚò�þÊ�ªðÀîªë!óoþ¢ë��Íóoô?ðø÷oþ¢ð	�ªê-òvþ��<|7ð&�có£ñvë
üAþ¢ê£ÿG�$þLò¢êoí~ò7ñvë��-í~ñ%�JôÀëIþ¢þMÿ��£òvê£ëAêoë¤ó£ñvðøþeò¢ðÃöhòvêoíwòCðÃþ
ë��6�£ôøÿG�cë���ò¢ÿ)�JëIölðA�Jëtÿc÷E�Âêoë¤÷elG�Âê£ëlòvê£ë¤ñ7ò¢ÿ�ö¤ÿ��L

�£ðøôÀë$ì��Êé).wÿc÷£ëÂö9í~÷jíwò��WëIþÊò#êoÿ��?ëAòvÿ�ò¢ñvð	�Üü�ÇG
�ü�c�È
ðÀ÷jòvê£ë$ë��+ëIölóJòvðÀÿª÷Îò¢ð&�Îë��1q�÷nòvê£ë$ÿcò¢ê£ë9ñ#êoí~÷$�u.��'ë
}o÷���ò¢êoí~ò�íÈþeó��WþÊò�í~÷-ò¢ðÃí~ôCí��jÿcóo÷ªòÖÿ��#òvê£ëÎë��Jë9ö¤ó�

ò¢ðøÿc÷�ò¢ð&�ÎëEðÃþjþ��?ë¤÷-òjðÀ÷�ò¢ñ�í~÷oþ¢ôøí~ò¢ðøÿc÷�íc÷��$lwÿcñÎë���

ë9ö¤óJò¢ðø÷��Èò¢ê£ënò¢ñ�í~÷oþ¢ôÃíwò¢ë��Øölÿ��Jë�.Mí~÷��Eòvê£ë¤ñvënö¤ÿcó£ôA�
�Wë��?ëlò¢ò¢ë¤ñhñvë��tí~ñ%�£þI�Íñ¢ÿ���ÿ��Jòvð	�jð&�¤ðø÷��Öò¢ê£ëIþeëÂö¤ÿ��L

�Wÿª÷£ë¤÷-ò�þ��Mn+óoö�ê{ÿ��Jò¢ð&�jð	�Iíwò¢ðøÿc÷Wþnö9í~÷{óoþ¢ëC�?ëlò¢ò¢ë9ñ
ölÿ��L�oðÀôÃíwòvðÀÿª÷�ò¢ëIö�ê£÷£ðA@-ó£ë9þhíc÷��$l;ÿªñTêWí~ñ%���'ícñ¢ëAþeó���

�WÿªñeòD�ÍÿªñW���+÷oí��ÎðÃö�ö¤ÿ��6�£ðøôøí~ò¢ðøÿc÷4�'étê£ë�÷£ë��+ò�þ¢ë9ö�

ò¢ðøÿc÷¹ÿ��?òvê£ðÃþ1�oí��Wë9ñ1�JðÃþ¢ö¤óoþvþeëIþ4í~ñ�ö�ê£ðÀò¢ëIö_ò¢óoñvícô£þeó���

�WÿªñeòI�ÍÿcñMë9÷£êoí~÷Wölðø÷��!ì��Êé	ö¤ÿ��6�£ðøôÀë9ñ4�?ë¤ñ'�Íÿcñ,�jíc÷oölë��

Ë Ì�ãWç�T!èÊâ�VLç?â£æ$ã�Í�](ÎtæW[W[�ä#ã£ârÏ�ä#ã Ð
ÑxÒ
áWÍ�Z�è¢çb_Îã�ÍháWÓ�]�ÍTâ£èeä4á

=!ñvö�êoðÚòvë9ö_òvó£ñ�í~ôWþ¢ó����?ÿcñ¢ò1�Íÿªñx���-÷Wí��jðøö$ò¢ñ�í~÷oþ¢ôÃíG

ò¢ðøÿc÷Îö¤í~÷�òvícñ'�ªëlòhíwòCÿ��Jòvð	�jð&�¤ðø÷���ë9ðÚòvê£ë¤ñ7òvê£ë'ò¢ñ�í~÷oþ�

ôøí~ò¢ðøÿc÷ �oí~ñ¢ò�ÿcñ�íwò�ð	�6�£ñvÿwî+ðÀ÷���òvê£ë6�Wë9ñ��Íÿªñ'�¹í~÷Wölë
ÿ��#òvê£ëÎë��Jë9ö¤óJò¢ðøÿc÷0�Wí~ñ¢ò�ÿ��4ò¢ê£ë�ò¢ñ�í~÷oþ¢ôøí~ò¢ë���ölÿ��Jë��
=Ûôøðøþeònÿ����?ÿªþvþ¢ð	�£ôøëJ�Jðøñ¢ëIö_òvðÀÿª÷oþ�ðø÷>�£ñvÿwî-ðA�Jðø÷��Øí~ñ'

ö�ê£ðÀò¢ë9ölò¢ó£ñ�í~ôJþ¢ó����?ÿcñ¢ò°�Íÿªñ����+÷oí��jðÃö#òvñvíc÷oþeôÃíwòvðÀÿª÷�ðÃþ
�cðøîcë9÷-�?ë¤ôøÿG�*�

ÔKÕ ñvÿwî+ð&�£ëfþ¢ó����?ÿcñ¢òM�Íÿcñ�ñvë��jÿwî+ðÀ÷��%ò¢êoë�����
÷oí��ÎðÃöÈò¢ñ�í~÷oþ¢ôÃíwò¢ðøÿc÷�ÿ��!òvê£ë�ölÿ��Jë-�Íñvÿ�� òvê£ë
�£ñvÿ��ªñví��BÖ þ�ölñvðÚòvðøö9í~ô>�Wíwò¢êI� �[òY�¹ík�×�?ë
�'ÿcñ¢ò¢ê��Âê£ðøôÀëCòvÿ$ðÀ÷+îªë9þeòLðÀ÷�êWí~ñ%���'ícñ¢ëhþ¢ó����?ÿcñ¢ò
ùÍë9ðÚòvê£ë¤ñpÿc÷Ôò¢ê£ë	þ¢í��Îë Q Õ1Ø ÿªñ�óoþ¢ðø÷��Zíc÷�

ÿ~òvê£ë¤ñF�£ñvÿJölë9þvþ¢ÿcñ!ð	�4ðÀòÖðÃþ�íBn£õ Õ úÂò¢êoí~ò�ö9í~÷
�Jÿpò¢êoëjò¢ñ�í~÷oþ¢ôøí~ò¢ëjðø÷ �Wí~ñ�í~ôøôÀë9ôt�ÂðÀò¢ê	òvê£ë¹ðÀ÷�

ò¢ë9ñ'�oñ¢ë¤òvíwòvðÀÿª÷�ÿ��I���ªòvë9ö¤ÿ��£ë9þ'ÿcñtÿ~òvê£ë¤ñtóoþ¢ë��Íóoô
�'ÿcñ,!J�Jÿc÷£ë*���¹òvê£ë�ícölò¢óoícôu�£ñvÿ+ö¤ë9þvþeÿªñ��

ÔKÕ ñvÿwî+ð&�£ëfícñvö�ê£ðÀò¢ëIö_òvó£ñvícô¹ë¤÷£êWí~÷oö¤ë��jë¤÷-òvþ	òvÿþ¢ó����?ÿcñ¢òt���+÷oí��ÎðÃö4ö¤ÿ��Jë1�ªë¤÷£ë9ñví~ò¢ðøÿc÷�í~÷$��ðÀ÷�

þeòví~ôøôÃíwò¢ðøÿc÷I�°� ê£ðøôøë�ölóoñ¢ñvë¤÷-ò³�£ñvÿJölë9þvþ¢ÿcñ�þ<�£ñ¢ÿ�

î+ð&�£ë-�VíªölðøôÀðÀò¢ðøë9þÎòvÿMOoóoþ¢ê�òvê£ë��£íwò�í�í~÷��ZðÀ÷�

þeò¢ñvóoö_òvðÀÿª÷xö¤íªö�ê£ë9þ�òvÿpþ¢ó����?ÿcñ¢ò�þ¢ë¤ô	�Ê�jÿ��Jð	����

ðø÷��¹ölÿ��Jë�.JðÀòD�¹ík�J�Wë)�?ë¤÷£ë�}WölðÃí~ô�òvÿ6�£ñ¢ÿwî+ðA�Jë
ölÿ��Jë �cë9÷£ë¤ñ�íwòvðÀÿª÷h�£ó�y�ë¤ñ�þpÿcñEíZö9í��oí��£ðÀôøðÀò#�
ò¢ÿr�ÂñvðÚòvëjðÀ÷-ò¢ÿr�5
}ö¤íªö�ê£ë9þ��Ln+óWö�ê��£ó�y?ë9ñvþ�ö9í~÷
�£ñvë¤îªë¤÷-ò4òvê£ë!òvñvíc÷oþ¢ôøí~ò¢ðøÿc÷¹ñvÿcóJòvðÀ÷£ëIþ³�Íñvÿ��Ûí��f

�Íë9ölò¢ðø÷��jò¢êoë�ôÀÿJö¤ícôÀðÀò#��ðø÷pò¢ê£ë��£í~òvíjö¤íªö�ê£ë9þ��

ÔKÕ ñvÿwî+ð&�£ëní~ñ�ö�ê£ðÀò¢ëIö_ò¢óoñvícô7þ¢ó����?ÿcñ¢ò)�Íÿcñ)�£ñvÿ�}oô	
ðø÷����F|£ÿcñ�ë��£í��6�£ôøë�.=í�ö¤ÿcó£÷-òvë¤ñ�ö¤ÿcó£ôA�Eòvñvíªö%!
ò¢êoëA÷+ó��8�Wë9ñTÿ��£ê£ðÚò�þCícþvþeÿJölðÃíwòvë��)�ÂðÀò¢ê�íc÷�ë¤÷�

ò¢ñ,��ðø÷Zò¢ê£ë0�oñvíc÷oö�ê{ò�í~ñ,�cëlòm�£ó�y?ë9ñ���� êoë¤÷
ò¢êoëjö¤ÿcó£÷-òvë¤ñ�þ¢í~ò¢ó£ñ�íwòvë9þ�.?ðÀò�ö¤í~÷.ò¢ñvð	���cë9ñ!òvê£ë
ölÿ��6�£ðÀôøë¤ñÎòvÿ �?ë¤ñ'�Íÿcñ,� ö¤ÿ��£ëÈðø÷£ôøðÀ÷£ðø÷���ÿ��£ò¢ð	

�jð	�IíwòvðÀÿª÷�ò¢êoí~ò	ö9í~÷�ñvë��£ôÃícö¤ë�ò¢ê£ëZðÀ÷$�JðÀñvë9ölò

�oñvíc÷oö�êxðø÷oþeò¢ñvóoö_òvðÀÿª÷M�ÂðÚòvêxòvê£ë�ö¤ÿ��£ë¹ÿ��'ò¢ê£ë
ðø÷+îcÿ�!cë��\�jëlòvê£ÿ��u�ÙqW��ölÿcóoñvþ¢ë�.J�'ë��¹ík�
÷oë¤ë��0þ¢ÿ��jë
�jë9ö�êoíc÷£ðøþ'��òvÿP�jÿc÷£ðÀò¢ÿªñ�ò¢ê£ë
�oñ¢ÿ��cñ�í��À�Wë9êoí;î+ðÀÿªñÎö�êoíc÷��cëIþ�òvÿ�ó£÷��Jÿ�í~÷��
ÿ��Jò¢ð&�jð	�IíwòvðÀÿª÷oþ¹òvêoíwòC�¹ík�~�WëIölÿ��Îë.ðÀ÷+îwí~ôøð&�
ôÃíwòvë¤ñ�� =!ôøþ¢ÿ�.hðÀò6�Aÿªó£ô&�>�WëB�Aÿªñeòvê��Âê£ðÀôøë�ðø÷�

îªë9þeò¢ð&�ªí~ò¢ðø÷���òvê£ë6�Wÿ-þeðÀò¢ðøÿc÷£ðø÷��pÿ��Aò¢ê£ëÎò¢ñ�í~÷Wþ#

ôÃíwòvë��	ölÿ��Jënò¢ÿG�tí~ñ%�£þ�ð	�6�£ñvÿwî+ðÀ÷��Èò¢êoëÎôøÿJö¤ícô�

ðÀò#���£ó£ñ¢ðø÷��Øþ¢ó��oþ¢ë�@-ó£ë¤÷-ò�ë��JëIölóJòvðÀÿª÷4�m=?�ªícðÀ÷
���-÷Wí��jðøö��Îÿª÷£ðÀò¢ÿcñvðø÷���ö¤í��oí��£ðøôøðÚòvðÀëIþ!þ¢óoö�ê�ícþ
�¹ícðÀ÷-òvícðÀ÷oðÀ÷��-�oíwòvê.ê£ðÃþeò¢ÿcñ,�Eÿ��#òvê£ë6�jëlò¢êoÿ��
ë��Jë9öló£ò¢ðøÿc÷oþÂö9í~÷pê£ë¤ô&�4�

Ô>Õ ñ¢ÿwî+ðA�Jë$òvê£ë�ö¤í��oí��oðÀôøðÚò#�jòvÿjë��+ò¢ë9÷��Èò¢ê£ë*����
÷Wí��jðøö¹ö¤ÿ��6�£ðøôøí~ò¢ðøÿc÷�ö¤í��oí��£ðøôøðÚò#�.ò¢ÿØë¤÷Wölÿ��L

�Wícþvþ4êoícñ,���'ícñ¢ë!ö¤ÿc÷�}$�có£ñ�íwòvðÀÿª÷�ícþtþeêoÿG�Â÷�ðÀ÷
|7ð&�có£ñvë�üªù��Wúi�Cétê£ëÂðA�Jë9íÖÿ��3���+÷oí��jðÃötölÿc÷�}���

óoñví~ò¢ðøÿc÷{ðÃþnò¢ÿxò¢ñ�í~÷oþ¢ôøí~ò¢ë�ò¢ê£ëB���ªòvë9ö¤ÿ��£ëpþ¢ë�

@-ó£ë9÷oölëIþÖÿ��4ípìªí;îwíJ�jë¤ò¢ê£ÿ���ðø÷-ò¢ÿpñ¢ëIölÿª÷�}���

óoñví��£ôÀë¹êWí~ñ%���'ícñ¢ëjÿª÷�
Oòvê£ë�
wO�����nJó��oþ¢ë�@-ó£ë¤÷-ò
ðø÷+îcÿJö¤í~ò¢ðøÿc÷oþ�ÿ���íK�Îë¤ò¢ê£ÿ��h�Wícþvþ�òvê£ë �oíwòví
òvÿØò¢êoë�ñ¢ëIölÿª÷�}��cóoñví��£ôÀëjêoícñ,���'ícñ¢ë�ÚTölÿ��6�£ó�

ò�íwòvðÀÿª÷oþ�ícñ¢ëJ�?ë¤ñ'�Íÿcñ,�jë���ðø÷�ò¢ê£ëpölÿª÷�}��cóoñ¢ë��
êWí~ñ%���'ícñ¢ëAí~÷���ñvë9þ¢ó£ôÀòvþ7í~ñvë4þ¢ë¤÷-òt�Wícö%!�ò¢ÿ�ò¢ê£ë
ö9í~ôøôÀðø÷��6�jëlòvê£ÿ��u�

�}÷�ò¢ê£ë.ñ¢ëIþÊò�ÿ���ò¢ê£ðÃþJ�oí��Wë9ñ�.��'ë��ÂðÀôøô)�JðøþvölóWþ¢þ
òvê£ër�Îÿcò¢ðøîwíwò¢ðøÿc÷fí~÷��K�jë9ö�êoíc÷£ðøþ'�Û�Íÿcñ¹þ¢ó����?ÿcñ¢ò�

ðø÷��Ü���-÷Wí��jðøö.ölÿ��Jë.ðø÷oþeòvícôÀôÃíwòvðÀÿª÷Ôí~÷��h���+÷oí��jðøö
ö¤ÿc÷�}��ªó£ñ�íwò¢ðøÿc÷-�£ñvðÀë�O����
ÝCÞ4ßtà�á>â�ã�ä8å4ætç"èBç�ß°ç�éGà�ê�â�åeßëà�ßtæíì�ß4î

ï ê�à�ð�ð�à�ê�â�åeß�ñ4ò°ó°óÊå�ékê�ôx�}÷Eÿcñ%�Jë¤ñ'òvÿÎðø÷+îcëIþÊòvð	�-íwò¢ë
�Âê£ë¤ò¢ê£ë9ñ.òvê£ë{òvñvíc÷oþ¢ôøí~ò¢ðøÿc÷�ñvÿcóJòvðÀ÷£ëIþxí�y?ëIö_òxò¢ê£ë
ö9ícö�ê£ë�ôÀÿJö¤ícôÀðÀò#��.��'ë�ðÃþeÿªôøí~ò¢ë��jò¢ê£ë�ö¤íªö�ê£ë?�?ë¤êoí;î+ðøÿcñ
�Jóoñ¢ðø÷��$òvê£ëAò¢ñ�í~÷oþ¢ôøí~ò¢ðøÿc÷��Wí~ñ¢ò7í~÷$��ò¢ê£ë'ñvë9þeòTÿ��oò¢ê£ë
ì��Êé�ölÿ��L�oðÀôøë¤ñÖë��Jë9ö¤óJò¢ðøÿc÷I��étê£ëjþÊòvó����r�tícþ?�?ë¤ñ'

�Íÿªñ'�jë���óWþeðø÷��Eò¢êoëx¼�Äc¼�Ì£¸l¯�¶�·mõÈö¤ícö�êoë�þeð&��ó£ôÃíwòvÿcñ
�Íñvÿ��+nJêoí��JëØûÀü�Ç;ýhòvÿ+ÿcô#þ¢ëlò�ÿc÷�í~÷ Ø ôÀò¢ñ�í�n Õ =Wö Q
�¹ícö�êoðÀ÷£ë�ñ¢ó£÷o÷£ðÀ÷��-n+ó£÷�q)n�c�� {��tétêoënö¤íªö�ê£ë*�?ë�

êoí;î+ðøÿcñMÿ��Jò¢ê£ë4ò¢ñ�í~÷oþ¢ôÃíwò¢ë1�WÿªñeòvðÀÿª÷�ðøþTðÀôøôøóoþÊòvñví~ò¢ë���ðÀ÷
|7ð&�có£ñvë?:��Cétê£ëW�£í~òví�ö9ícö�ê£ëD�jðÃþ¢þ¢ë9þ#ðÀ÷jòvê£ëÂò¢ñ�í~÷Wþ#

ôÃíwòvëW�?ÿcñ¢ò¢ðøÿc÷¹ÿ���òvê£ëÖö¤ÿ��Jë!ölÿª÷-ò¢ñvð	�£ó£ò¢ëÂòvÿE;�Ç�
5z�Ç�È
ÿ��+ícôÀô��£íwò�í��ÎðÃþvþeëIþ3�Íÿcñ4�¹íc÷���ÿ��-ò¢ê£ë1�Wë9÷oö�ê��¹í~ñ,!Jþ��
=W�Îÿª÷��Öò¢ê£ëIþeë�.wò¢êoë��oíwòví(�ÂñvðÚòvëx�jðÃþ¢þ¢ë9þ<�Jÿ��jðÀ÷oí~ò¢ë
�ÂðÀò¢ê£ðø÷�ò¢êoëEò¢ñ�í~÷oþ¢ôøí~ò¢ë��?ÿcñ¢ò¢ðøÿc÷�í~÷���ö¤ÿc÷-ò¢ñvð	�oóJò¢ë
òvÿ
{�Ç�È ÿ��L�jðÃþ¢þ¢ë9þ��£ó£ñ¢ðø÷��fò¢ñ�í~÷WþeôÃíwòvëfùOþeë9ë�ò¢ê£ë
òvê£ðÀñ%�
�oícñ6�Íÿcñ�ëIícö�ê~�Wë9÷oö�ê��¹í~ñ,!�ðø÷h|Tð&�cóoñ¢ë0:-úi�
õØÿ-þÊò�ÿ��Aòvê£ë9þ¢ë6�Âñ¢ðÀò¢ëm�jðÃþ¢þ¢ë9þ)�'ë¤ñvënÿ��oþ¢ë¤ñvîcë���ò¢ÿ
ÿJö¤ö¤ó£ñ��Jó£ñvðø÷���òvê£ëm�cë9÷£ë¤ñ�íwòvðÀÿª÷xíc÷��.ðø÷oþeòvícôÀôÃíwòvðÀÿª÷
ÿ���ò¢ê£ë	ölÿ��Jë��pn+ðø÷oölë�.Âò¢ê£ë��cë9÷£ë¤ñ�íwòvë�� ölÿ��Jë��Íÿcñ
òvê£ë?�jëlòvê£ÿ��¹ðøþ1�Âñ¢ðÀòeòvë¤÷jòvÿ��jë��jÿcñ,���Íÿªñ#ò¢êoëD}oñ�þÊò
òvð	�jë�.wðÀòCñ¢ëIþeó£ôÀòvþTðø÷nölÿ��6�£ó£ôÃþeÿªñ'�F�jðøþvþeëIþMðø÷�òvê£ëxaW

Q íªö�ê£ë��0q�÷£ëm�¹ík�.ë����?ë9ölònþ¢ð	�jðøôøícñ�ölÿ��L�oó£ôøþ¢ÿcñ,�

�jðøþvþeëIþJ�Âê£ë9÷ ò¢êoë����-ò¢ë9ö¤ÿ��Jë9þÈí~ñvë�ñ¢ëIí��h�Jóoñ¢ðø÷��
ò¢ñ�í~÷oþ¢ôÃíwò¢ðøÿc÷I�³�$ÿG�'ë¤îcë9ñ�.-òvê£ë��Eí~ñvë�ñ¢ë9ôøí~ò¢ðøîcë¤ô&��ôøë9þvþ
�Íñ¢ë�@-ó£ë¤÷-òjò¢êoíc÷fò¢ê£ër�ÂñvðÚòvëB�jðÃþ¢þ¢ë9þ¹þ¢ðø÷oölë07�cx÷oí�

ò¢ðøîcë�ùwn Õ =Wö Q ú$ðÀ÷oþeò¢ñvóoölò¢ðøÿc÷oþ�í~ñvë*�cë¤÷oë¤ñ�íwò¢ë��B�Wë9ñ
���ªòvë9ö¤ÿ��£ëÖÿª÷Øí~÷Eí;îcë¤ñ�í��ªënûÀücü_ý5�
�}÷WþÊò�í~ôøôÀðø÷���òvê£ëEölÿ��JëC�ÂðøôøôAñvë�@-ó£ðøñ¢ëC�Âñ¢ðÀò¢ðø÷���òvÿ

ò¢ê£ë��£íwò�í�ö9ícö�ê£ë�.�í~÷$� òvê£ë9þ¢ëÔí~ñvëÔölÿªó£÷-ò¢ë���íªþ
�jðøþvþeëIþ�þ¢ðÀ÷oö¤ë�ò¢ê£ÿ-þeë�ôøÿJö¤í~ò¢ðøÿc÷oþØêWí;îcë�÷£ÿ~ò��Wë9ë¤÷
ícö9ölë9þvþ¢ë��	ë9ícñ¢ôøðÀë9ñ�ùVö¤ÿ��6�£ó£ôÃþ¢ÿcñ,�0�jðøþvþeëIþvú��Øétê£ë9þ¢ë
�jðøþvþeëIþ�ðø÷ªòvñ¢ÿ��JóWölë0ò#�'ÿg!-ðø÷��£þ ÿ���ÿwîcë9ñ¢ê£ëIí��£þ��
|7ðÀñ�þÊò�.Iò¢ê£ë1�oíwòvítêWícþ�òvÿ?�Wë³�Íëlòvö�êoë��F�Íñvÿ��/�Îë��jÿcñ,�
ðÀ÷-òvÿ�ò¢ê£ëWaW
}ö¤ícö�êoëD�Wë��Íÿcñvëtò¢ê£ë��Îícñ¢ëD�ÂñvðÚò¢ò¢ë9÷Îðø÷-ò¢ÿ$�
étê£ðÃþhðøþhíÖñvë��Jóo÷��£í~÷-òhÿ��?ë¤ñ�íwòvðÀÿª÷Îþ¢ðø÷oölë'ò¢êoëD�Îë��L

ÿcñ,��ðøþÎðø÷£ðÚòvðøícôÀð&�¤ë��9�Íÿªñnòvê£ë-}oñvþeòÎò¢ð&�Îë��Kn+ë9ö¤ÿc÷��4.
ò¢ê£ëx÷£ë��Âô&�~�Âñ¢ðÀòeòvë¤÷Ôðø÷oþeò¢ñvóoö_òvðÀÿª÷oþJ�ÂðøôÀô�ò¢êoë¤÷��?ë
�jÿwîcë��jùOí~óJòvÿ��¹íwòvðøö9í~ôøô	��ÿc÷�ðø÷oþÊòvñ¢óWö_ò¢ðøÿc÷F�Íë¤òvö�ê�ÿ���

ë¤ñ�íwòvðÀÿª÷oþvú1�Íñvÿ��Üò¢ê£ëEaW
}ö¤ícö�êoë�òvÿjò¢ê£ëE�5
[ö9ícö�ê£ë��³�[ò
�Aÿªó£ôA�E�?ëÂóoþ¢ë��Íó£ô+òvÿ�êoí;îcëtíF�ÎëIö�êoí~÷oðøþ'�P�Âê£ë¤ñvë¤ðø÷
ò¢ê£ëÖölÿ��JëÖö¤í~÷m�?ëW�ªë¤÷£ë9ñví~ò¢ë��m�JðÀñvë9ölò¢ô&�jðÀ÷-ò¢ÿ�ò¢ê£ë(�5

ö¤íªö�ê£ë��¹étê£ðÃþ*�'ÿcó£ôA�.ñvë�@-ó£ðøñvëjþ¢ó����?ÿcñ¢ò)�Íñ¢ÿ�� òvê£ë
�5
[ö9ícö�ê£ë$ò¢ÿníªö¤ö¤ÿ��6�jÿ��oíwò¢ëÖí��ÂñvðÚòvë!ÿ��Wë9ñví~ò¢ðøÿc÷�ùÍð	�
ðÚòC�£ÿ-ëIþj÷£ÿ~ò�ícôÀñvë9í����{þeó����Wÿªñeò¹ðÀò�ú�.tíc÷��Ü�£ñ¢ë��Íë¤ñ'

í��£ô&�xír�ÂñvðÀò¢ë�
5�oíªö%!��5
[ö9ícö�ê£ë��J�[ònþ¢ê£ÿcó£ôA��í~ôÃþeÿr�?ë
÷£ÿ~òvë��Èò¢êWíwòD�ÍÿcñD�ªÿ+ÿ��-�?ë¤ñ'�Íÿcñ,�jíc÷oölë�.+ÿc÷£ë�þ¢ê£ÿcó£ôA�
�Wëpö¤ícñ¢ë��Íó£ôhò¢ÿ.ôÀÿJö¤í~ò¢ë¹òvê£ëÈö¤ÿ��Jëm�Íÿcñ�ò¢ñ�í~÷oþ¢ôøí~ò¢ðøÿc÷
ðÚò�þeë9ô���þ¢óoö�ê�ò¢êWíwò�ðÀò-�Jÿ+ë9þ�÷£ÿ~òÈðÀ÷-ò¢ë9ñ��Íë9ñ¢ëGlIòvê£ñvíªþeê
�ÂðÚòvêpò¢ê£ë*�ªë¤÷£ë9ñví~ò¢ë��pölÿ��Jë�ðø÷pò¢ê£ë*�5
}ö¤íªö�ê£ë��

Java
Mathod

FPGAProcessor

K - Dynamic compilation threshold

L - Dynamic configuration threshold

Interpreter

Compiled
Code

E < K

Hardware

E>L

Macros

Configure

FPGA

Dynamic
Compilation

E=K K<E<L E = L

E - Execution count for method

|7ð	�ªó£ñ¢ëM7�2~=+a(�+÷oí��jðÃöxéTñvíc÷oþ¢ôøí~ò¢ÿcñ-�ÂðÚòvê�a(��

÷oí��jðÃö Q ÿc÷�}$�có£ñ�íwòvðÀÿª÷píc÷�� Q ÿ��6�£ðøôøí~ò¢ðøÿc÷ Q í��oí�

�£ðøôÀðÀò#�
Ý-Þ4ßtà�á>â�ã ä8åeßI÷<ø$ò°éGà�ê�â�å$ßÊô |7ð	�ªó£ñ¢ë ü

þeêoÿG�$þ�ò¢êWíwò�òvê£ë¤ñvëÈícñ¢ëÈí����£ôøðÃö¤íwòvðÀÿª÷oþ�.7ôøð&!cë	¼�½~·n±
¾?Á¢¸l¯�¯i.!í~÷��>�¤Äc¼%�G.�ðÀ÷��Âê£ðøö�êÔíZþeð&�c÷oð�}Wö9í~÷-òC�?ÿcñ'

ò¢ðøÿc÷ ÿ��¹ò¢ê£ëZò¢ð&�jëZðÃþ	þ��?ë¤÷-òxðø÷ ë��Jë9öló£ò¢ðø÷��Ôòvê£ë
ò¢ñ�í~÷oþ¢ôÃíwò¢ë���ö¤ÿ��£ë��hétê£ë¤ñvë�ðøþtíjölÿ��6�Îÿª÷xùOí~÷��ÈðÀ÷�

òvë¤ñvë9þeò¢ðø÷��-únòvñvícðÚò�ðø÷�ò¢ê£ëIþeë�í����£ôøðøö9íwòvðÀÿª÷oþ�.��Âê£ë9ñ¢ë
òvê£ëxë��Jë9öló£ò¢ðøÿc÷ òvð	�jëM�Jÿ��jðø÷oíwòvë9þ�íc÷��Qí�þeð&�c÷£ð	�f

ðÃö¤íc÷ªòM�?ÿcñ¢ò¢ðøÿc÷ ÿ���ò¢ê£ðÃþxò¢ð&�jëfðÃþ�þ��?ë¤÷-ò�ðÀ÷�ölë9ñ�

ò�í~ðø÷�þ'�?ë9ölð	}Wö��Íó£÷oölò¢ðøÿc÷oþ��ù|£ÿªñØðÀ÷WþÊò�í~÷oö¤ë�.�¼�½w·Î±
¾�Á¢¸_¯�¯!ë��6�£ôÀÿG�Jþ�íEþÊò�í~÷��oí~ñ%��þeë¤ò�ÿ��1�Íóo÷oö_òvðÀÿª÷oþÖò¢ÿ
ë9÷oölÿ��Jë�ícôÀôLò¢ê£ëL�£íwò�í����5�#ÿc÷oë�ÿ��Jòvð	�jð&�¤ëIþÂò¢êoë�ë���

ëIölóJòvðÀÿª÷�ÿ��#þ¢óoö�ê��Íó£÷oölò¢ðøÿc÷oþ�.?ò¢ê£ë9÷Øò¢êoë¤ñvë�ðøþ�ê£ÿ��Wë
�ÍÿªñÊ�nóoö�êC�?ëlò¢ò¢ë¤ñ��?ë¤ñ'�Íÿcñ,�¹í~÷oö¤ë����!ícñ,���tí~ñvë!ö¤ÿc÷�

}��ªó£ñ�íwò¢ðøÿc÷.ÿ��#òvê£ë9þ¢ë8�jë¤ò¢ê£ÿ��£þÖóoþ¢ðÀ÷��-|7ðÀë9ô&� Õ ñvÿ�

�ªñví��L�¹í��£ôÀë0ú�í~ò¢ë�=!ñ¢ñ�ík�JþØù�| Õ ú)=Öú¹ÿc÷�
Oòvê£ë�
wO��ùOþeð&�jðÀôÃí~ñZò¢ÿ êoÿG� ì��Êé ölÿ��6�£ðÀôøë¤ñ
���+÷oí��ÎðÃö¤ícôÀô&�
ÿ��Jòvþ�òvÿ ölÿ��L�oðÀôøë�
[ë��Jë9ö¤óJò¢ë ñ�íwòvê£ë¤ñ�òvêoí~÷Ûðø÷-ò¢ë9ñ�

�£ñvëlò_ú'ðøþÂíc÷EðÀ÷-ò¢ë9ñ¢ëIþÊòvðÀ÷��nÿ��Jò¢ðøÿc÷4�
�xë�í~ñvë�öló£ñvñ¢ë9÷-ò¢ô&�~�jÿ��Jð	���+ðÀ÷��Zò¢êoë ���+÷oí��jðøö

ö¤ÿ��6�£ðøôÀë9ñtò¢ÿ�ðø÷-ò¢ë��ªñví~ò¢ëÖò¢êoë����+÷oí��jðÃö�ölÿc÷�}��có£ñ�íG

òvðÀÿª÷h�ÎëIö�êoí~÷oðøþ'� íªþ�þeêoÿG�Â÷fðø÷�|7ð	�ªó£ñvë�7��/�xë
�£ôÃí~÷�òvÿ{óoþ¢ë�êoícñ,���tí~ñvë{ùÍÿ���sÊë9ölòvþ�ú¹ölÿªñ¢ëIþ�ölÿªñ¢ñvë�

þ'�Wÿª÷��Jðø÷���ò¢ÿnþeë9ôÀëIö_ò¢ë��jìªí;îwí)�jëlòvê£ÿ��£þ1�Jë9îcë9ôÀÿ��Wë��
����êoícñ,���tí~ñvëJ�JëIþeð&�c÷£ë9ñvþ8�ÂðÀò¢êZí	þ'�WëIölð	}Wö�ðø÷-ò¢ë9ñ�

�VíªölëÂòvÿ�ò¢ê£ë!ñ¢ëIþÊò#ÿ��?òvê£ë�ìªï�õ íªþhÿ����Wÿ-þeë��Îò¢ÿ�����

÷oí��jðøö9í~ôøô	��òvñvíc÷oþ¢ôøí~ò¢ðø÷��(���-ò¢ëIölÿ��JëIþCðÀ÷-ò¢ÿ�í)| Õ ú)=ö¤ÿc÷�}��ªó£ñ�íwò¢ðøÿc÷K}oôøë{ûÚük7Iýw�%étê£ðøþ�í~ôÀò¢ë¤ñv÷oí~ò¢ðøîcëEö¤í~÷
í;îªÿcðA��òvê£ëÎêoí~ñ%���tí~ñvë�ö¤ÿ��6�£ðøôøí~ò¢ðøÿc÷.ö¤ÿªþeò��?�[ò�í~ôÃþeÿ
�?ë¤÷£ë�}£òvþ>�Íñ¢ÿ�� ò¢êoëh�Wë¤òeò¢ë9ñK�?ë¤ñ'�Íÿcñ,�¹í~÷oö¤ëfÿ��pí
ö¤óoþÊòvÿ��jð&�¤ë��pêoícñ,���'ícñ¢ëÖölÿcñvë�ÿwîcë9ñtí¹þ'�+÷-ò¢ê£ëIþeð&�¤ë��
ùVêoí~ñ%���tí~ñvë�ölÿ��L�oðÀôøë��oúnölÿªñ¢ë���� ê£ë9÷Zí��jëlò¢êoÿ��
ðÃþÂë��JëIölóJòvë��B�ÍÿcñW�Îÿªñ¢ë�òvð	�jëIþtò¢êoíc÷�í6�£ñvë��Jë�}o÷£ë��
òvê£ñ¢ëIþeêoÿcôA�u.'ò¢ê£ë�ë��Jðøþeò¢ë9÷oölëØÿ���í�êWí~ñ%���'ícñ¢ëEölÿªñ¢ë
�ÍÿªñCò¢ê£ëÂñvë�@-ó£ëIþÊòvë��8�Îë¤ò¢ê£ÿ��ÎðÃþhö�ê£ë9ö%!ªë��u�°�5��í�ölÿªñ¢ë
ðÃþÊ�Íÿcó£÷��4.+ò¢ê£ë*���+÷oí��ÎðÃö!ò¢ñ�í~÷oþ¢ôøí~ò¢ÿªñ4ðø÷£ðÚòvðøí~ò¢ëIþ'ò¢ê£ë
ôøÿªí��JðÀ÷���ÿ��hòvê£ënö¤ÿc÷�}��ªó£ñ�íwò¢ðøÿc÷r}WôÀënÿ��hò¢êoënölÿªñ¢ñvë�

þ'�Wÿª÷��Jðø÷��Îêoí~ñ%���tí~ñvë!ölÿªñ¢ëÖðÀ÷-òvÿ�òvê£ëF| Õ ú)=��£étê£ëë��+ëIölóJòvðÀÿª÷Èÿ��Lòvê£ë*�jëlò¢êoÿ��B�£ñvÿJölë9ë��£þ'ðø÷EíL�oícñvícô�

ôøë¤ô'ò¢êoñ¢ëIí���ë9ðÚòvê£ë¤ñjðø÷{ðÀ÷-òvë¤ñ,�£ñ¢ë¤ò¢ë��{ÿcñÎì��ÊéÜölÿ��L

�£ðøôøë¤ñx�Îÿ��Jë)�Jó£ñvðø÷���òvê£ëÖö¤ÿc÷�}$�có£ñ�íwòvðÀÿª÷4�I� ê£ë9÷Èí
þ¢ó��oþ¢ë�@-ó£ë9÷ªò$ö9í~ôøô?ðÃþ��¹í��Jë�ò¢ÿÎòvê£ë�þ¢í��ÎëF�jëlòvê£ÿ��u.
òvê£ë.ölÿ��6�£ôÀë¤ò¢ðøÿc÷ ÿ��Öòvê£ëxö¤ÿc÷�}$�có£ñ�íwòvðÀÿª÷Ü�£ñvÿJölëIþ¢þ
ðÃþ�ö�ê£ëIö%!cë��u�J�5�tò¢ê£ëÈölÿc÷�}��có£ñ�íwòvðÀÿª÷�ðøþ�ö¤ÿ��6�£ôøëlòvë�.
òvê£ë$ðø÷��£óJòÊ�oíwòvíÖòvÿ�ò¢ê£ëW�Îë¤ò¢ê£ÿ��jðÃþ³�oíªþ¢þ¢ë���ò¢ÿ�ò¢ê£ë
| Õ ú)=Ûíc÷��xò¢ê£ë¹ë��Jë9öló£ò¢ðøÿc÷M�Wë��cðø÷oþ�ðø÷xòvê£ë�ö¤ÿc÷�

}��ªó£ñvë��{êWí~ñ%���'ícñ¢ë��K� ê£ë9÷�òvê£ë��jëlòvê£ÿ��ZðÃþjë���

ëIölóJòvë��	ÿc÷	ò¢êoëJ| Õ ú)=�.=òvê£ë�ìªï�õ ölÿªó£ô&�xë¤ðÀò¢êoë¤ñ
�?ë)�£óoþ'�m�WÿªôÀôøðÀ÷��nó£÷-òvðÀô�òvê£ë�ñ¢ëIþeó£ôÀòvþtícñ¢ë�ñ¢ë¤ò¢ó£ñv÷£ë��
ÿªñtþ'�ÂðÀòvö�êÈò¢ÿÎò¢ê£ë�ë��+ëIölóJòvðÀÿª÷Èÿ��Tí~÷oÿ~ò¢êoë¤ñ'ò¢ê£ñvë9í��u�
étê£ëAÿcóJò,�£óJò��£íwò�í?�ªë¤÷£ë9ñví~ò¢ë��)���Öò¢êoë'ö¤óoþÊòvÿ��jð&�¤ë��
êoícñ,���'ícñ¢ëÈðøþm�oó�y?ë9ñ¢ë��Zíc÷���ò¢ñ�í~÷oþ��Íë¤ñvñ¢ë���òvÿ�ò¢ê£ë
�£ñvÿJölëIþ¢þ¢ÿcñCÿc÷WölëÂòvê£ëÂë��Jë9ö¤óJò¢ðøÿc÷¹ðÃþ#ö¤ÿ��6�£ôøëlò¢ë��<�xë
ö¤ÿcó£ôA�Eí~ôÃþeÿ¹óoþ¢ë�òvê£ë��oícñeòvðøícô=ñ¢ëIölÿc÷�}��có£ñ�íwòvðÀÿª÷pö9íG

�oí��£ðøôÀðÀò#�nðø÷jò¢êoëW| Õ ú)=!þhò¢ÿ�ð&�6�£ôÀë��jë¤÷-ò1��óoôÚòvð	�£ôøëö¤ÿcñvë9þ1�Íÿcñtþeó����WÿªñeòvðÀ÷��L�Jð	y?ë9ñ¢ë9÷ªò��jëlòvê£ÿ��£þtþeð&��ó£ô	

ò�í~÷£ë9ÿcóoþ¢ô	���

û X	ä4á!çu]¢æWÓ+èÊä4á

étêoë³!cë��!òvÿ!í~÷�ë�É¹ö¤ðÀë9÷-ò7ì-í;î;ítî+ðøñeòvóoí~ô��¹ícö�ê£ðø÷£ë
ð	�6�£ôøë��jë9÷ªò�íwòvðÀÿª÷.ðÃþ$òvê£ënþ'�+÷£ë¤ñ,���B�Wë¤ò#�Aë9ë¤÷��Aë9ôÀô	

�Jë9þ¢ð&�c÷£ë�� þ¢ÿ���ò#�tí~ñvë�.jí~÷�ÿ��Jòvð	�jð&�¤ðø÷���ölÿ��L�oðÀôøë¤ñ�.
þeó����WÿªñeòvðÀîªë�í~ñ�ö�ê£ðÀò¢ëIö_ò¢óoñ¢ë�íc÷��Eë�É�ölðøë¤÷-ò!ñvó£÷-ò¢ð&�jë
ôÀð&�£ñ�í~ñvðÀëIþ��0étê£ðÃþB�oí��?ë¤ñpêoícþpôøÿ+ÿ�!cë�� íwòEÿc÷£ô&�Ôí
þ��¹ícôÀô+þeó��oþeë¤òTÿ��+ðÃþvþeó£ëIþI�ÂðÀò¢ê�ñ¢ëIþ��?ë9ölòLò¢ÿÖþeó����Wÿªñeò'

ðÀîªë�í~ñ�ö�ê£ðÀò¢ëIö_ò¢óoñvícôu�Íë9í~ò¢ó£ñvë9þ?�Íÿcñ�ì-í;îwí�.?í~÷��pòvê£ë¤ñvë
í~ñvë�íjôÀÿcò$ÿ��hðÃþ¢þ¢ó£ë9þÂò¢êoí~ò�í~ñvë�ñ¢ð&�Wë��ÍÿcñD�ÍóJòvó£ñvë�ñ¢ë�

þeëIí~ñ�ö�ê4�

ü V4Ï%VMã�VLá�ç3VIÓ
ûÀülý�é)�)�Mðø÷��Jê£ÿªô	��íc÷��Y|x�Fý#ë¤ôøôÀðø÷4.{µ?Ìo¸�­JÄwÏwÄ

ÐL¶�Á_°²®oÄw¿CÑ.Äª¼vÌJ¶�´?¸-þ~¾o¸�¼l¶ ÿ'¼�Äw°²¶V½w´��-=W���JðÃþ¢ÿc÷
�	ë9þ¢ôÀë���.=ü��������

û 7;ý�é)� Q ñ�í��jë¤ñ�.
ö*��|£ñvðøë����¹í~÷I.�é)�xõØðÀôøôøë¤ñ�.
a8�Fn+ë��Wë9ñ'�ªë¤ñ�.�ö*�W� ðøôøþ¢ÿc÷I.�í~÷���õ>�W�	ÿcô	

ö���!cÿ$.E� Q ÿ��6�£ðøôÀðø÷��{ì-í;îwíJsÊóoþeò�ðø÷Zòvð	�jë9. �
³������ ÑØ¶V¼¤Á¢½G.Öîcÿªô��Öük��.D���4�D:�{���;�:�.Âõ�ík��

ìªó£÷£ëjü��������

û :wý����hõ�ö�úÖêoí~÷�í~÷$��õ9�1q8Ö Q ÿc÷£÷£ÿªñ�.*� Õ ðÃölÿ�
ì-í;î;í�2°=/�Jðøñ¢ëIö_òtë��Jë9ö¤óJò¢ðøÿc÷�ë9÷��cðø÷£ëW�Íÿcñtìªí;îwí
���-ò¢ë9ö¤ÿ��Jëm. ��³��������h½~·$¾�®J°[¸¤Ái.����4�$7�7	��:�Ç�.
qÖö_òvÿ��?ë¤ñ�ü�����z��

û ;~ý�
��Iï!ð seík��!+ñ¢ðÃþeêo÷oí~÷4.w³�¯�¯_®o¸l¯A¶�´j°�Ìo¸��Î¸_¯_¶ÚËc´�½ÊÇ
ÄÎ­JÄwÏwÄ�
tÁ¢½9¼�¸l¯�¯l½~Á���Á¢¼�Ì+¶�°}¸�¼l°²®JÁ¢¸�� Õ ê�aÔò¢ê£ë�
þ¢ðøþ�. Q ÿªôÀôøë��ªëÂÿ����#÷��cðø÷£ë¤ë9ñ¢ðø÷���. Ø ÷£ðøîcë9ñvþ¢ðÚò#�nÿ��
n+ÿªóJò¢ê
|7ôÀÿªñ¢ðA�£í�.AéTí��L�Wí�.Ê|<�N:�:�{�7�Ç�.#ìªó£ô	�
ü�����z��

û c;ý Ø �G�!ÿcô&�¤ôøë�.u�¢ì-í;îwíÂÿc÷6n-ò¢ë9ñ¢ÿªð&�oþ�2In+óo÷4Ö þCêoð	�ªê�

�?ë¤ñ'�Íÿcñ,�jíc÷oölë�ì-í;î;í%ð&�L�oôÀë��Îë9÷-òvíwòvðÀÿª÷4. � ðø÷

'Á¢½I¼�¸�¸vÆ~¶�´-Ë~¯ ½ÊÇ��n½w°��LÌ+¶ ¾W¯ ³��*.h=$ó��cóoþeò
ü��������

û {wý��%q�îªë¤ñvî+ðÀë�� ÿ���ìªí;îwí+�£ôøí~ò��Íÿªñ'� �oñ¢ÿ��Jóoölò
�Ví��jðøô	��� �
ê-òeò,�42�l�lk�D�D�*� seí;îwícþ¢ÿ���ò�� ölÿ��Clk�£ñvÿ��Jóoö_ò�þ
l�q$ï s���! Õ ñ¢ÿ��Jóoölò�� ê-ò'�jô��

û��Iý�a8��úÖñ¢ðÃþ'�Aÿªô&�u.u�vétê£ëÂìªí;îwí(�$ÿ~òin��?ÿ~ò#ï!ðøñ¢ò¢óoícô
õ�íªö�ê£ðÀ÷oë/=!ñvö�ê£ðÀò¢ëIö_òvó£ñ¢ëp. � õ�í~ñ�ö�ê ü�����z��
n+ó£÷ØõØðÃölñvÿªþ'�JþÊòvë��¹þx� ê£ðÀò¢ë��Wí��?ë¤ñ��

û zwý�� v�íGy�ë ï!ðøñeòvóoí~ô õ.ícö�ê£ðø÷£ë�� �
ê-òeò,�42�l�lk�D�D�*� ò¢ñ�í~÷oþ¢î+ðÀñ¢ò¢óWí~ôw� ö¤ÿ��r�

û �wý�� n Õ � Q ìcïÖõ0��z �'ë¤÷oö�ê��¹ícñ'!Jþ�� �
ê-òeò,�42�l�lk�D�D�*� þ��?ë9ö�� ÿªñ'��l;ÿ-þ���l,sÊî��m��z�l��

ûÀü�Ç~ý*ö���|x� Q �jë¤ôøð&!�í~÷��-aE��v�ë����?ë¤ôw.��,n+êoí��Jë�2�=
�VíªþÊò�ðø÷oþeò¢ñvóoö_òvðÀÿª÷�
}þeë¤ò�þeð&��ó£ôÃíwòvÿcñ*�Íÿªñ�ë��JëIöló�

òvðÀÿª÷m�£ñvÿ�}oôøðÀ÷���. ��éLëIö�ê4��öÂë��4��nJõ0�I�#éDö�
���:G

ük7�.�n+ó£÷ØõØðÃölñvÿªþ'�JþÊòvë��¹þ��}÷oö�.=ü�����:��

ûÀücü¤ý*ö��×ö$í��£êoí�!+ñvðøþ¢ê£÷oíc÷4.�ì$�×öÂó��£ðÀÿ$.�í~÷��
�1�#ìcÿªê£÷4.L� Q êoícñvíªö_òvë¤ñvð	�Iíwò¢ðøÿc÷�ÿ��Öì-í;îwí�í���

�oôÀðÃö¤í~ò¢ðøÿc÷oþ�í~ò¹ò¢ê£ë����-òvë9ölÿ��JëØôøë¤îªë¤ô!íc÷���íwò
Ø ôÚòvñví�n Õ =Wö Q
5���=õ�íªö�ê£ðÀ÷oë Q ÿ��JëÊ�Lë¤îªë¤ôw. ��ðÀ÷

tÁ¢½9¼�¸�¸�Æw¶�´+Ëw¯�½ÊÇ�³_´W°[¸¤Á_´?Ä~°O¶V½~´?Ä~¿��h½~´9Çl¸¤Á¢¸¤´?¼�¸
½~´��#½~·$¾�®J°[¸¤Á��Î¸_¯_¶ÚËc´�.4qÖö_òvÿ��?ë¤ñ�ü��������téLÿ
í����?ë9í~ñ��

ûÀü�7wý�ì$�hõ9� Õ � Q í~ñ%�Jÿ-þeÿ ��� Q ��
$ë¤ò¢ÿ$.E�¢õ.ícölñvÿ�

�Wícþ¢ë��)êoícñ,���'ícñ¢ë ö¤ÿ��6�£ðøôøí~ò¢ðøÿc÷ ÿ�� ì-í;î;í
���-ò¢ëIölÿ��JëIþ ðø÷-ò¢ÿ í×���+÷oí+�jðøö ñ¢ëIölÿª÷�}���

óoñví��£ôÀëpölÿ��L�oóJò¢ðø÷���þ��Jþeò¢ë��6��.#ðø÷ Õ ñ¢ÿJölë9ë���
ðø÷��-þ�ÿ��Øò¢ê£ëY�Iòvêº�������ën����6�Wÿ-þeðøó�� ÿc÷
|7ðøë¤ôA� Õ ñvÿ��ªñví��6�jí��£ôøë Q óoþÊòvÿ�� Q ÿ��6�£ó£ò�
ðø÷��¹õ�íªö�ê£ðÀ÷oë9þ�.�=?�£ñvðÀô4ü��������

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o

rm
a

liz
e

d
 N

u
m

b
e

r
o

f
M

is
s
e

s

compress db javac jack mtrt mpeg

I−Misses In Translate
D−Misses In Translate
 % Misses that are write in Translate

|7ð&�có£ñvëD:�2 Q íªö�ê£ëÂõØðÃþ¢þ¢ë9þ<�ÂðÀò¢ê£ðø÷�éTñvíc÷oþeôÃíwòvë Õ ÿªñ�
òvðÀÿª÷4� Q íªö�ê£ëAö¤ÿc÷�}��ªó£ñ�íwò¢ðøÿc÷�óoþ¢ë��J24;�
5�'ík�Öþeë¤ò7íªþ#

þ¢ÿJölðÃíwò¢ðøîcë�.u{�;�vja Q ícö�êoëE�ÂðÀò¢ê�í�ôøðÀ÷oëÎþ¢ð	�9ënÿ��Ê:�7
���-ò¢ëIþ�íc÷���7G
w�tík�pþ¢ëlò�ícþvþ¢ÿ+ö¤ðøí~ò¢ðøîcë�.${�;�vp� Q ícö�ê£ë
�ÂðÀò¢ê�í�ôÀðø÷£ë�þeð&�¤ë.ÿ��8:�7M���ªòvë9þ�� étê£ë�}oñ�þÊòB�oí~ñ
þ¢ê£ÿG�$þ7ò¢êoë?�5
 Q íªö�ê£ë��jðøþvþeëIþhðø÷jò¢ñ�í~÷oþ¢ôøí~ò¢ëtñvë¤ôÃíwò¢ðøîcë
òvÿxí~ôøô��5
 Q íªö�ê£ëJ�jðÃþ¢þ¢ë9þ�.Cò¢ê£ëEþ¢ë9ölÿª÷��9�oícñÎþ¢ê£ÿG�$þ
òvê£ë aW
 Q ícö�ê£ë��ÎðÃþvþeëIþ�ðø÷Ôòvñvíc÷oþeôÃíwòvë.ñvë¤ôÃíwòvðÀîªëØò¢ÿ
ícôÀô1aW
 Q ícö�ê£ëm�jðÃþ¢þ¢ë9þ�.Lòvê£ë¹òvê£ðÀñ%� �oí~ñnþeê£ÿG�$þ�ò¢ê£ë
aW
[ö9ícö�ê£ë6�ÂñvðÚòvëm�jðøþvþeëIþ�ðÀ÷	òvñvíc÷oþeôÃíwòvëjñ¢ë9ôøí~ò¢ðøîcëÎò¢ÿ
ÿwîªë¤ñ�í~ôøôeaW
[ö9ícö�ê£ë)�jðÃþ¢þ¢ë9þtðø÷pò¢ñ�í~÷oþ¢ôøí~ò¢ë��

Exploiting Hardware Resources:
Register Assignment across Method Boundaries

Ian Rogers, Alasdair Rawsthorne, Jason Souloglou
The University of Manchester, England

{Ian.Rogers,Alasdair.Rawsthorne,Jason.Souloglou}@cs.man.ac.uk

Abstract
Current microprocessor families present dramatically
different numbers of programmer-visible register
resources. For example, the Intel IA32 Instruction Set
provides 8 general-purpose visible registers, most of
which have special-purpose restrictions, while the IA64
architecture provides 128 registers. It is a challenge for
existing code generators, particularly operating within
the constraints of a just-in-time dynamic compiler, to
use these varying resources across a number of
architectures with uniform algorithms. This paper
describes an implementation of Java using Dynamite, an
existing Dynamic Binary Translation tool. Since one
design goal of Dynamite is to keep semantic knowledge
of its subject machine localized to a front-end module,
the Dynamite code generator ignores method boundaries
when allocating registers, allowing it to fully exploit all
hardware register resources across the hot spots of a
Java program, regardless of the control graphs
represented.

1. Introduction
Current microprocessor famili es present dramaticall y

different numbers of programmer-visible register
resources. For example, the Intel IA32 Instruction Set
[1] provides 8 general-purpose visible registers, most of
which have special-purpose restrictions, while the IA64
architecture [2] provides 128 registers. In the former
case, register renaming and out-of-order issue is used in
the microarchitecture to exploit a richer resource set than
indicated by the instruction set, but the paucity of the
visible instruction set remains a severe constraint on a
just-in-time code-generator. In particular, it is difficult to
pass method parameters efficiently in registers in x86
implementations, since register pressure ensures that the
li fetimes of values in registers are so short.

In the case of RISC, and particularly EPIC [3]
architectures, the visible instruction set more closely
models the register hardware resources provided in an
implementation. Register assignment becomes viable
using a conventional approach, such as defining a
method calli ng sequence, involving caller-saved, callee-
saved and parameter registers, and allocating local

variable and temporary registers within individual
methods.

In the distant future, it is possible that unconventional
CPU architectures may provide extremely high levels of
performance without any significant number of registers.

This disparity of hardware resources has been
addressed by designers of current Java Virtual Machines
by providing different register allocation algorithms for
(e.g.) IA32 and RISC machines. In this paper, we
describe a single register allocator appropriate to
register-rich and register-poor architectures, and we
explain how this allows us to set optimization boundaries
independently of method boundaries, giving performance
advantages.

Conventional static compilers, and existing JIT
compilers, use method-inlining, more or less
aggressively, to uncover a number of optimization
possibiliti es, with register assignment among them.
Inlining may have its limitations, however, and we have
found a number of cases where inlining (particularly
leaf-method inlining) does not completely address hot
regions of an application.

In this paper, we present some techniques we use to
run Java byte-coded programs on Dynamite, our existing
dynamic binary translation environment. As will be
described below, our techniques rely on optimizing
regions of code without reference to the semantic
boundaries of methods. Broadly, we claim to gain the
performance benefits of inlining, without its limitations.

We describe the Dynamite binary translation system,
its interfaces and its approach to optimization. In section
4, we show how Java programs are implemented using
the Dynamite facili ties, and section 5 discusses our
preliminary results. Previous work in register
assignment for Java programs is introduced in section 6.

2. Dynamite
Dynamite is a reconfigurable Dynamic Binary

Translation system, whose aims are to extend the “Write
Once, Run Anywhere” paradigm to existing binary
applications, written and compiled for any binary
platform. To enable the quick configuration of a
particular translator, Dynamite is constructed as a three-
module system, as shown in figure 1.

The function of the major components is almost self-
explanatory: the Front End transforms a binary input
program into an intermediate representation (IR), which
is optimized by the Kernel, and the Back End generates
and executes a binary version on the target processor.
The Front End interface supports a number of
abstractions convenient for efficient Front End
implementation, such as the “abstract register” , which
holds intermediate representations of the effects of
subject instructions. This interface is configured by an
individual Front End module, since different subject
architectures require different numbers of registers.

Two features of this front end interface are relevant to
the current discussion: firstly, the interface resembles a
RISC-like Register Transfer Language, containing no
peculiarities (such as condition codes or side-effects)
adapted for particular subject architectures. Secondly,
procedure (method) calli ng is achieved at a primitive
level, typicall y by having the front end create IR to
compose a link value in subject state space, and then
branching or jumping to the callee. Return from a
procedure is similarly implemented by having the Front
End create IR which causes a jump to be made to the
return address. Parameter passing and stack-frame
management is implemented by having the Front End
create the appropriate IR to model the subject
architecture’s requirements.

The Kernel contains about 80% of the complexity of
the translator system. It creates and optimizes IR in
response to Front End calls, and invokes the Back End to
code generate and execute blocks of target code.
Register assignment for the target machine code
generator currently takes place within the Kernel, again
using a Back End interface that is parameterized for
specific target architecture. Optimization is performed
adaptively at a number of different levels, starting with
initial translation as described below.

To achieve its performance goals, Dynamite operates
in an entirely lazy manner. An instruction is never
translated until that instruction must be executed, either
because it is a control (jump, branch, exception or call)

target, or because the immediately preceding branch has
fallen through. As instructions are decoded by the Front
End, their IR is combined until a control transfer is
encountered. During this process, the kernel performs
optimizations such as value forwarding and dead code
elimination. When the block of IR is complete, it is code
generated, executed by the back end, and cached for
subsequent reuse. After a block of target code is
executed, its successor location may either be found
within the cache, or may need translation using the same
actions.

In efficiency terms, target code blocks generated
using this initial scheme leave something to be desired.
The benefit is that the initial translation is quick, taking
only a few thousand instructions per subject instruction.
Register usage is determined by an individual Back End,
largely as a result of the method calli ng sequence
mandated by the static compiler used to compile
Dynamite. Target registers are used to store temporary
results within the block, but existing Back Ends preserve
all subject register values in target memory at the
boundary of basic blocks.

More optimization and higher quali ty code generation
are triggered when an individual target block is executed
more frequently than a dynamic execution threshold.
This event causes the kernel to create a group containing
this and related blocks in a hot region, and to optimize
this Group Block as a single entity. Group Blocks may
span arbitrary boundaries in the subject machine:
indeed, in other applications, Dynamite optimizes across
programs and their procedures, static and dynamically-
linked libraries, OS Kernels, and across different virtual
machines.

Within a Group Block, the Dynamite kernel examines
the existing control flow of the region, identifying certain
blocks as entry and exit blocks, and performing value
propagation and dead-code elimination across the entire
group. The control flow is used to straighten the
conditional branches and eliminate jumps within the
group, so that frequent cases fall through, minimizing
taken branches and maximizing I-cache utilization.

Code generation for a Group Block occurs next. To
avoid the expense of an iterative algorithm, a very simple
incremental register allocation algorithm is used.
Starting with the target block, operands are allocated to
registers (if the target machine architecture requires), and
operation results are allocated to registers if they are to
be reused. As the register set is exhausted, spill code is
generated to relinquish previously allocated registers for
new operations. Register allocations are carried across
basic block boundaries, and the act of code generating
from the most- to the least-frequently executed blocks
within the group ensures that spill s are minimized.

We emphasize that during this code generation
process, all abstract registers and target registers are
treated symmetricall y. We do not distinguish between

KernelKernelFront
End

Front
End

Back
End

Back
End

Subject
Software

Subject
Software

Target
CPU

Target
CPU

Dynamite

Figure 1. Dynamite Structure

registers used to pass parameters, those used to carry
visible results, and those used to hold temporary values.
In this way, we can code generate a region containing
multiple procedure call and returns as efficiently as one
containing just a portion of a large procedure.

The final stage of code generation is to generate stubs
for the entry and exit blocks, which need to load abstract
register values into target registers and compute and store
exit values from the group block.

This group-block creation phase can be invoked and
re-invoked any number of times during program
execution, creating larger and smaller groups of basic
blocks, always independent of method boundaries, as the
subject program proceeds through its execution.

3. Implementing Java
The critical design decisions when implementing

Java using Dynamite are the mapping of JVM registers,
local variables, and the stack to the relevant Dynamite
objects, namely abstract registers .

To allow Dynamite to optimize across different Java
methods, we need to map multiple stack frames
simultaneously to different abstract registers. Two
schemes were considered for doing this.

3.1 Sliding frame
On entering a method the front-end would create a

frame within the abstract registers. The arguments to the
method (stored at JVM local variable 0 upwards) become
the base for the frame. After the local variables the return
address is held in the next available abstract register. The
JVM stack is held at the end of the frame. However,
studies [4] show that the stack is usually empty on basic
block boundaries. The purpose of the stack in the frame
is therefore to hold onto stack values that occasionally
span basic blocks and to pass arguments to called
methods. The arguments could become part of the next
frame by overlapping the stack part of the caller’s frame
and the local variable part of the callee frame.

Unfortunately, the problem with this scheme is that
the IR for an individual method needs to refer to specific
abstract registers. This fixes its translation to a particular
stack depth. If the same method is called at a different
stack depth, we need to re-translate it for this new depth.
This is particularly expensive for recursive methods. We
could possibly generate special case translations for
recursive methods and fall back on a scheme that saves
the frame to memory on a method call . Otherwise, for
methods that are called from multiple stack locations we
could avoid re-translation if the method’s frame is at a
greater abstract register location than the current frame.
We would, however, still have to copy the arguments to
the method from the caller’s frame to that of the callee.

Our research has shown that around 90% of
execution time is spent in methods called from more than

16 call sites. These methods are typically utility
functions which are prime candidates for optimization.
Expensive optimizations would be prohibitive for these
methods as the optimization would need repeating many
times.

We conclude that using a sliding frame is therefore
undesirable.

3.2 Fixed frame
The drawback with the “sliding-frame” scheme is

that it is necessary to recompile methods called with
different frame base pointer values. If we fix the address
where a method’s frame lives in abstract registers we
remove this problem. To do this, we allocate a new,
unique frame from a large pool of abstract registers the
first time a particular method is invoked.

We do, however, still need to pass arguments to the
called method from the stack of the calling method. On
encountering a method call , the arguments to the method
are held in intermediate representation ready to be
written to registers. At this point, they can be written
directly to the called method’s local variables avoiding
any copy operation.

The first penalty for this scheme is that we need to
retranslate these abstract register assignments for
different methods called from the same call site. A study
using Harissa [5] shows that at least 40% of method calls
can be accurately statically predicted for 100% of the
time, and dynamic statistics are even better than this.

As in the “sliding-frame” design, recursion needs to
be handled differently, as two invocations of a method
cannot share a single frame. A simple scheme to handle
recursion is to save a frame to memory before using it, if
it is active, and to restore it on exit. Alternatively, we
may find some circumstances in which it is advantageous
to generate special-cased versions of recursive methods,
each of which uses a different frame of abstract registers.
This special-casing will be triggered by a heuristic
monitored by code planted in the initial translation of a
(potentially recursive) method.

Finally, assigning unique abstract registers to every
method presents a problem when the static pool is
exhausted. For programs studied to date, fewer than 8000
abstract registers would be sufficient. If greater numbers
were required, the front-end could start re-using frames.
For example, all l eaf methods can share the same frame,
and more generally, methods that occur only on disjoint
subtrees of the call graph can share frames. In the
pathological case, frames of abstract registers can be
reused by planting code that spill s a number of frames to
memory and refills them when necessary.

4. Discussion
To evaluate this scheme before its implementation,

we carried out a number of experiments by instrumenting

Kaffe [6] to log information about the dynamic
behaviour of Java applications. We keep sufficient
information to create the dynamic method call tree of the
application. We create a call tree, in which methods
appear once for each call site, to assess our
implementation alternatives. For each method
occurrence, we keep the number of byte codes executed
in this invocation, and its local variable requirement,
including parameters.

To estimate the number of target registers needed in
optimization regions of different sizes, we identify hot
spots on this call tree (methods with high contributions to
overall i nstruction counts), and successively add them to
optimization regions, counting the total number of local
variables required at each step. This approximates to
code generating by hottest method first, then by
successively cooler region. As each successive method
is added to the optimization region, we require more
local variables. This gives us the characteristics we show
below. For these experiments, we monitored “ javac”, the
Java compiler in Java, since it is the largest Java
application we can find.

0%

20%

40%

60%

80%

100%

1 10 100 1000

Local Variables

In
st

ru
ct

io
n

 C
o

u
n

t

In figure 2, we show how a straightforward “hottest first”
selection algorithm can use varying numbers of target
registers to code generate “spill-free” regions of different
sizes. As we intuitively expect, as we allocate more and
more local variables into target registers, we can
encompass larger and larger regions, contributing to ever
increasing fractions of total instruction count. For
example, with 5 target registers, we can code generate a
region that contributes 22% to total execution count, and
with 26 registers, 46% of execution count.

In Figure 3, we use a slightly different heuristic to
select methods to include within our selection region.
Here, we select methods based on their run-time
contribution per local variable. That is, comparing
methods with similar run-time contributions, we

���

�����

� ���

� ���

�����

� �	���

1 10 100 1000

Local Variables

In
st

ru
ct

io
n

 C
o

u
n

t

preferentially select the method with the smaller
requirement for local variables. This gives better results
when there are fewer target registers available: for
example with 8 registers, we can cover 30% of total
instruction count, and with 25 registers, we can cover
54% of the instructions.

5. Previous Work
The success of Java has resulted in many JVM

implementations. Some implementations such as Harissa
[5], and J2C translate Java to C code. They then rely on a
C compiler to perform register allocation within and over
method call boundaries. Register mappings within C
programs are beyond the scope of this paper.

In this section we examine how other JVM
implementations perform register mapping and allocation
and compare these to Dynamite.

5.1 Register allocation
Cacao [4] initially maps the JVM stack and local

variables to pseudo-registers, which are then allocated to
CPU registers. Each mapping and allocation begins at the
start of a basic block and builds on the mappings and
allocations of previous basic blocks. When CPU registers
are exhausted a register is spill ed to memory and fill ed
by a pseudo register.

On method call boundaries Cacao pre-allocates
registers. It uses CPU registers to pass arguments and to
receive return values. On machines without register
windows pre-allocation of arguments is only possible for
leaf methods.

Pre-allocation can tie in with existing compiler
method call conventions: for example, in the DAISY
JVM [7] arguments and return values are passed and
received using the Power PC’s C compiler calli ng
conventions, which uses standard registers for passing
arguments.

Figure 2. Instruction Count against
 Local Variables

Figure 3. Instruction Count against
 Local Variables

5.2 Comparison with Dynamite
Method invocation creates a new frame on a call

stack. Cacao avoids unnecessary accesses to this frame
by pre-allocation, utili zing register windows or
potentially by using the machine’s standard calli ng
convention. However, these static mappings take no
account of run-time information on register usage.
Therefore registers could be allocated and then
subsequently unused. Cacao would also calculate any
parameters even if they were unused. Cacao would also
have to copy from one register to another if it repackaged
arguments to another method. Dynamite on the other
hand can avoid this by value forwarding and dead code
elimination within a group block.

Also, when registers are spill ed only the surrounding
and previous basic blocks are considered. This means
that a pseudo register could be spill ed in one basic block
and then filled back again in the next, and Cacao
wouldn’ t know it could spill different registers which are
unused in subsequent basic blocks. Dynamite’s runtime
information about register usage can provide a better
register allocation in this case.

6. Conclusion
In this paper, we have introduced Dynamite, an

environment for creating dynamic binary translators. We
have shown how the run-time concepts of the Java
Virtual Machine are mapped onto the Dynamite front end
interface and its internal register allocation algorithms.
This mapping necessarily discards the concepts of
methods and their local variables.

Preliminary investigations show that “method-free”
register allocation shows promise for efficient code
generation across architectures providing wide ranges of
hardware register resources. We look forward to
presenting more definitive numerical results at the
workshop in October.

7. References
[1] Intel Corporation, “ Intel Architecture Software Developer’s

Manual, Volume 1: Basic Architecture,” Order Number
243190, 1999.

[2] Intel Corporation, “ IA-64 Application Developer’s
Architecture Guide,” Order Number 245188, 1999.

[3] Trimaran consortium, “Trimaran Project Homepage,”
http://www.trimaran.org

[4] Andreas Krall , “Efficient JavaVM Just-in-Time
Compilation,” International Conference on Parallel
Architecture and Compilation Techniques (PACT98), Paris,
France, October 13-17, 1998.

[5] G. Muller, B. Moura, F. Bellard, C. Consel, “Harissa: A
Flexible and Eff icient Java Environment Mixing Bytecode
and Compiled Code,” Third USENIX Conference on
Object-Oriented Technologies (COOTS-97), Portland,
Oregon, June 16-20 1997.

[6] Transvirtual Technologies Inc., “Kaffe Product
Architecture,”
http://www.transvirtual.com/products/architec
ture.html

[7] K. Ebcioglu, E.R. Altman, E. Hokenek, “A JAVA ILP
Machine Based on Fast Dynamic Compilation” , IEEE
MASCOTS International Workshop on Security and
Efficiency Aspects of Java, Eilat, Israel, January 9-10, 1997.

� �������	��
��
����������������������� �!�����!�"�$#%���&�(')�*���,+�-.���/�0�"�����1�"�32546
����/7	�
8 ����9:�;�<43�������=�>9@?A��7B�C�D�E�����!�"-��>�

FHGJI�KMLONPF!GRQ"N�GJS5TOUVLON"W"GJW GJW"QPX�UVYMZ\[^]�TOU_GRWa`JbJN"W
X�GJcdbeTfGhgfbeT�ZjikbeTHl	beInm"]�gOK%TpoETrqsN"UVgOK%qtgf]"TrK

u�KMm�GJT�gfInK%WvgpbJi�w�xVK%qtgfTOUVqyGJxzGJW"Qal	beI�m�]�gfKMTpw�W�{e{"|
}AN"K�~!W"U��eK%TrLOU�g�Z@bJi�}�K:�"GRLEGRgHo!]"LrgOU�Wz�"o!]"LrgOU�Wz��}/Kt��GJLE�J�v�����

�����e�e�"�J���<���f�e�����5�d�h���"�J��� ��¡"�e¢���£����v�e�

¤\¥�¦M§©¨�ª�«J§
¬y­:®f­!¯±°�¯³²e´
µ ¶.­s°.¯³²y·E¯³²!¸�¹.¸Jº©»¼­:µ�¯³½V¾!¯³²¿½ÁÀ�¶;°�¹kÂ.½�Ãd­sµÄ¶Å¯³²JÆ:ºy°.Ç
½Vµ�¾fÈ/­s²eÆ�¯±°pÉÄ¶�¯³²%·^ºy°�¶ÄÆE½Ê¹E¯³Ë/¸J»¼¶�ËÅ¶�²h½/°�¶
µ�®s¶
µp­:²JÆ^¶�²h½Ê¶
µ�Ç
¸Jµ�¯±°�¶�°�´Ä­:»¼¶d¸JµÄ¹ÊÌ�¶.´
½V°�Í�ÎJºh´ÄÀ!­Ä¸M¸J»Ï¯�´.­:½V¯�¹:²�°Ðµ ¶.Ñ
º©¯³µ ¶�À©¯Ò·OÀB¸h¶
µ�Ç
Â
¹sµ�ËA­s²J´.¶
È�­:²JÆ!²J¶.¶.Æ!½_¹!µ�º©²Ó¶�Ô\´�¯�¶
²R½V»Ï¾tÍ^ÕR¶.´ÄÀ©²h¯�Ñ�ºh¶�°>»Ï¯¼Öt¶
¬f×%Õj´Ä¹:Ë�¸e¯³»¼¶�µ.°>­s²JÆÅØ0¯�´.¹:¬©­:®f­�´.Ày¯ ¸R°>¹ÚÙ/¶�µB°�¹sËA¶B°�¸h¶Ä¶.Æ:ºO¸RÈ
É
º©½p¯³²Û½³À©¯±°E¸�­.¸�¶�µÜÃd¶n»¼¹r¹OÖ ­:½�­:»Ï½Ê¶
µ�²e­s½Ê¶Ü½Ê¶.´ÄÀ©²h¯�Ñ�ºh¶�°Ý¯³²
À�­sµÄÆsÃd­sµÄ¶¿Ã�Ày¯�´.ÀÞ´Ä­:²ÞÉ.¶ß¯³²J´.¹:µ�¸�¹:µ ­s½Ê¶.Æn¯³²ÝÂ.º©½�º©µ ¶^Ë	¯�´�µ ¹sÇ
¸Jµ ¹O´.¶�°.°�¹sµ.°�ÍHà�¶z¸Jµ ¹.¸�¹s°
¶>­Bá>¶.´.¹sºO¸e»¼¶.Æ�Õ�µ ­s²h°.»â­s½Ê¶/ã�äy¶.´
º©½Ê¶å á�Õeã�æzç�µ ´.Ày¯³½Ê¶.´
½�º©µ ¶
ÈJÃ�À©¯�´ÄÀÅ½_­OÖt¶
°z­MÆs®s­s²h½Ê­�·%¶�¹ÚÂdµ�º©²RÇÊ½V¯³ËA¶
´ÄÀh­sµ ­M´
½Ê¶
µ�¯±°�½�¯�´�°H¹ÚÂA¬y­:®f­MÍjÕeÀh¶>á�Õeã)­sµ ´.Ày¯³½Ê¶.´
½�º©µ ¶H´.­:²�É.¶
¯³Ë�¸e»¼¶
ËA¶�²h½Ê¶ÄÆEºy°�¯³²y·E­EË	¯Òä^¹ÚÂÐÀh­sµ Æ:Ãd­sµ ¶p­:²JÆ!°�¹kÂ.½�Ãd­sµÄ¶p¹sµ
­s»Ï½Ê¶
µ�²e­s½�¯³®f¶�»Ï¾Ð¸eº©µ ¶�»Ï¾A¯³²�Àh­sµ Æ:Ãd­sµ ¶OÍ

è 25�	�����H�^���0�"-
�	�
éMêfësêÐìÄírî.ï�ð�ñMò¼ñMótôÅïhêMõdöJí�írðEêM÷©ñtø©ìÄír÷AöyôÅìÄï�íÐí�ð%ì írù ø�ùÄú±õÚí/ì ñ
ñ:ûeí�ù�õ ñ:ü³ìkýzê:ùÄí�õ ñtòâþ©ì úâñtðRõzú¼ð�ësê:ùÄú¼ñMþhõ0ÿhíròâ÷�õ��h÷©þhíÐì ñAú¼ìÄõ�êM÷ �ëfêtð%ìÄê:óMírõ�ñ:ühøJñtù ìÄêtö�úâò¼ú¼ìkô��tõ írî�þ�ùÄúÒìkôBê:ðR÷��Åñ©÷©þ�ò±ê:ùÄúÒìkô � � ü�êtî �ì ñtùzý�ï�ú±î.ï�êsûeírî�ì.õ0ì ï�íÐí	�yíOî
þ©ìÄú¼ñMðEõ øJí�ír÷!ñ:ü"éMêfësê>úâõ0ìÄïhêsì�ú¼ì
úâõ<õÚì úâòâòRø�ùÄír÷�ñ��Åú¼ðRê:ð%ì òâô>êBõ ñ:ü³ìkýzê:ùÄízí	�;þhòâê:ì ír÷Åò±ê:ðhótþhêtótí � �ø�ù ñMótù.ê
�Dý�ùÄú¼ìÚì írðBú¼ð�é%êfësêzúâõvì ù.ê:ðhõ òâê:ì íO÷��Áöyô�õ ñ:ü³ìkýzê:ùÄí"í	�>þ �òâê:ì úâñtð�
�ìÄñ;ê:ð!ê:ù.î.ï�úÒìÄírî
ì þ�ùÄí � ð�í�þ�ì ù.ê:ò©úâðhõkìÄù þRî�ì úâñtðpõ í
ìzî�êtò¼òâír÷ö%ô%ìÄírî
ñ©÷©íOõ ��� ïhírõ í�öyôMìÄírî�ñy÷�írõ/êtù íBøhòâê:ìÚüÁñtù�� ú¼ðR÷©í�øJí�ðh÷�í�ð%ìê:ðh÷	î�êtð	öJí�í��©íOî
þ©ìÄír÷	ñtðAê:ðyô;õ ô©õkìÄí	�Ûý�ï�úâî.ïAõ þ�ø�øJñtù ìÄõ�ìÄï�í
éMêfësêzùÄþ�ð%ì ú��	ídí�ðyëyú¼ùÄñtð��ÅírðMì ��� ô%øhúâîrê:òâò¼ô/ì ï�í,ö%ô%ìÄírî
ñ©÷©íOõ5ê:ùÄíú¼ð%ì írù øhù í�ì ír÷;ñtù�î
ñMðyëtí�ù ì íO÷Ðì ñÐðhê:ì úâëtí0ú¼ðRõkìÄù þhî
ì úâñtðÅõÚí�ì�ñtühìÄï�í
�ÅêMî.ï�úâð�íÐö%ô!ê	éMþhõÚì � ú¼ð � � ú��Åí��Vé�� �
zî�ñ��Åø�úâò¼írù �
� ù.ê:ðhõ òâê:ì úâñtð�î�ñtðhõ þ��Åírõ�ê��Aê��kñtù�øhê:ù ì�ñtü©ì ï�ízî
ô©î
òâírõ�÷©þ�ù �ú¼ð�óEéMêfësêHí��©írî�þ©ì úâñtð^þRõÚúâð�ó�êHé�� � î
ñ��	øhú¼òâí�ù������ � �Êð �Åêtðyôñ:ü�ìÄï�í"!yøRíOî�é�#%$"&�'¿ø�ù ñMótù.ê
�Aõ��"êtø�ø�ùÄñ(�©ú)�AêsìÄí�òâôÝïhê:ò¼ü/ìÄï�í

ì ú��	íBú±õ�õ øRírðMì�úâð�î
ñ��	øhú¼òâí�ì ú��	íBñMøRírùÄê:ì úâñtðhõ�êtðh÷!ñtð�òâôpïhêtòÒü
ñ:ü0ì ï�íÅìÄú)�Åípú±õ�õ øRírðMì>ú¼ðÝí��©íOî
þ©ìÄíAù íròâê:ì ír÷¿ñMøRírùÄê:ì úâñtðhõ��)�*� �
� ï�ín÷�ê:ìÄê@î�êMî.ï�í+�ÅúâõÄõ^ù.êsìÄírõ^÷�þ�ù úâð�óDí	�©írî
þ�ì úâñtðÞý�úÒìÄï(êé�� � î�ñ��Åø�úâò¼írù	ý0í�ùÄí!õ í�írðÜìÄñßöJí�÷©ñ��ÅúâðhêsìÄír÷ÜöyôÜî�ñ��Åø�þ�ò �õÚñMù ôAý�ùÄúÒìÄí,�	ú±õÄõÚíOõ	�©ý�ï�ú±î.ï�ý,írù íBêtù ú±õÚúâð�ó>üÁù ñ�� úâðhõkì.ê:òâòâê:ì úâñtð
ñ:ü�ì ïhíHìÄùÄêtðhõÚò±êsìÄír÷Óî�ñy÷�í � � ð�ñtì ï�írù>ø�ïhí�ð�ñ��	írð�ñtðnúâõ;ì ïhê:ìì ï�í�ìÄùÄêtðhõ òâê:ì ír÷\î�ñy÷�í�úâõ!÷©í�øJñMõ úÒìÄír÷\úâð%ì ñÓìÄï�í�÷�ê:ìÄêÓî�êMî.ï�í

ê:ðh÷Hòâê:ì írùdüÁí�ìÄî.ï�íO÷AüÁùÄñ��)ì ïhí�úâðhõÚì ùÄþhî�ìÄú¼ñMðHî�êMî.ï�í��yùÄírõ þ�ò¼ìÄõ,ú¼ð
êfëtñMúâ÷�êtö�òâí�÷�êsì.êÜìÄùÄêtðhõÚüÁí�ù�ê:ðh÷P÷©ñtþ�öhò¼í � îrêtî.ï�úâð�ó � �Êð ì ï�ú±õøhê:øJí�ù-�Ðý,íÓøhù íOõÚírðMì�ìÄï�í/.�írî
ñMþ�ø�òâír÷ � ùÄêtðhõÚò±êsìÄí+01�©írî�þ©ì í�2. � 03
 � ùÄî.ï�ú¼ì íOî�ìÄþ�ù íBý�ïhúâî.ïEüÁñtù��Aõ�êÅõÚñMò¼þ©ìÄú¼ñMðEì ñÅöRñtì ï�ñtüì ï�í�êtöRñsëMí�øhù ñMö�ò¼í��Aõ �

4 �)+��1� �Û� �*���,+�-.���/�0�"�����
Õ©µÄ­s²�°�»¼­:½V¯�¹:²!êtðh÷ßã�äy¶.´
º©½�¯�¹s²Eê:ùÄíÐìký,ñE÷©ú±õkìÄú¼ðhî
ì�ñMøRírùÄê:ì úâñtðhõ
ñ©î�î
þhù ùÄú¼ðhóß÷©þ�ùÄúâð�ó¿é%êfësê^í	�yíOî
þ©ìÄú¼ñMð �/5 ï�úâòâíEúâð%ì írù ùÄí�ò±êsìÄír÷6�ì ï�írù í�ú±õpõ ú¼óMð�ú¼ÿRî�êtðMìpøJñ:ìÄí�ð%ì ú±ê:ò/ñsëtí�ùÄò±ê:øÜìÄïhêsìEî�ê:ð\öJí�í�� �ø�òâñtú¼ì ír÷nöRí�ìký,írí�ðnì ï�íOõÚí!ìký,ñßñtøJí�ù.êsìÄú¼ñMðhõ;þRõÚúâð�óßê7.�írî
ñMþ �ø�òâír÷ � ùÄêtðhõ òâê:ì í�08�yíOî
þ©ìÄí9�:. � 0;
 � ùÄî.ï�ú¼ì íOî�ìÄþ�ù í>ê:òâñtð�óAìÄï�íò¼úâð�íOõ"ñ:ühìÄï�í0ì ù.êt÷©ú¼ì úâñtðRê:ò<. � 0ÝêtùÄî.ï�ú¼ì íOî�ìÄþ�ù íOõ3� =<�
>��
?�� �A@ úâó �þ�ùÄíB�Aú¼òâò¼þRõkìÄùÄê:ì írõBì ï�íHõÚì ùÄþhî
ì þ�ùÄíAñ:ü0ì ï�íHø�ù ñMøRñ%õÚíO÷ß÷�írî
ñMþ �ø�òâír÷ êtùÄî.ïhúÒìÄírî�ìÄþ�ùÄí���ý�ï�ú±î.ïPî�ñtðhõ úâõÚìÄõ!ñ:üBìÄï�í¿í��©írî�þ©ì íÝê:ðh÷
ì ù.ê:ðhõ ò±êsì ínø�ù ñ©î�írõÄõÚñMùÄõ�êtðh÷ ð�íOî
írõÄõÄê:ùÄôDö�þ©ûeí�ù.õ^üÁñMù�úâð%ì í�ù �ø�ùÄñyî�írõÄõÚñMù�î
ñ����>þ�ð�ú±î�êsìÄú¼ñMð �C� ïhíÓö%ô%ìÄírî
ñ©÷©íÓí	�©írî
þ�ìÄê:öhò¼íý�ú¼òâòeí�ð%ì írù0ì ï�í,01�©írî�þ©ì í,D<ùÄñ©î
íOõ õ ñtùE�:0FD;
dêtðh÷AìÄï�íÐí��©írî�þ©ì í
ø�ùÄñyî�írõÄõÚñMùBý�ú¼òâò,î.ïhírîHG�ý�ïhí
ì ïhí�ù�ìÄï�ú±õI�Åí
ìÄï�ñ©÷Óúâõ>êfësê:úâòâêtö�ò¼í
ú¼ðpì ï�í � ù.ê:ðhõ ò±êsì íO÷KJ,ñ©÷©íLJ0êtî.ïhí�� � J�JM
<ú¼ðAìÄï�í�ì ù.ê:ðhõ òâê:ì íO÷üÁñtù�� � �_ü"ú¼ì�úâõzð�ñtìzüÁñtþ�ðh÷!úâð!ìÄï�í � J�J%�©ú¼ìzý�úâòâò�÷©í�øJñMõ ú¼ì0ìÄï�í�Åí
ì ïhñy÷hõ/ìÄñHöJí;ìÄùÄêtðhõ òâê:ì ír÷^ú¼ð%ì ñHì ï�í�0 � ì ñ � �ON þ�írþ�í �P� ï�í
� ù.ê:ðRõÚò±êsìÄíQD<ùÄñyî�írõÄõÚñMùQ� � D;
Ðý�ú¼òâò,ì ù.ê:ðhõ òâê:ì íÅìÄï�í!î�ñy÷�íHê:ðh÷ø�þ©ì�ì ï�í;ì ù.ê:ðhõ ò±êsì íO÷R�Åí
ì ïhñy÷hõ�úâð%ì ñHì ï�í � J�J �S� ïhí�ì ù.ê:ðRõ �òâê:ì íBñMøRírùÄê:ì úâñtð�ø�ùÄñtótùÄírõÄõ írõzî
ñMðhî
þ�ùÄùÄí�ð%ì òâôHý�ú¼ì ï�í	�yíOî
þ©ìÄú¼ñMðT�
ñtðhî�í^êÝüÁí�ý ùÄñtþ©ìÄú¼ðhírõAïhêfëMí�öRírí�ð\ìÄùÄêtðhõÚò±êsìÄír÷ �O� ï�í^í	�©í �î
þ©ìÄú¼ñMðÜø�ùÄñ©î
í�íO÷�õ	êtõ�òâñtðhóßêtõ;ì ïhíHð�í	�%ìÅùÄí N þ�úâù íO÷U�	í�ì ï�ñ©÷ïhêtõ/öRírí�ð�ìÄùÄêtðhõÚò±êsìÄír÷�êtðh÷�÷©í�øJñMõ ú¼ì ír÷�úâð%ì ñHì ï�í � J�J �S� ï�íótù.ê:ðyþ�ò±ê:ùÄúÒìkô	üÁñMùzì ù.ê:ðhõ òâê:ì úâñtðEî�ê:ðEöJíBö%ô%ìÄírî
ñ©÷©íÐñMùBËÅ¶�½³Àh¹rÆ �� ò¼ì ï�ñMþ�ótï N þ�í�þhí+�	úâótï%ì^õ ú)�Åø�òâúÒüÁôaî
ñMðMìÄù ñMò:�Ðê\î�êMî.ï�í � ò¼ú�GtíõkìÄù þRî�ì þhù í�îrê:ðÅï�í�òâø��Åí
ìÄï�ñ©÷Åù írþhõÚí �AV í�ðhî�í�ý0í�ê:ùÄí�þhõÚúâð�ó�êî�êMî.ï�í � ò¼ú�GtíBõÚì ùÄþhî�ìÄþ�ùÄíBüÁñtù � Djì ñK03D@î
ñ����>þ�ð�ú±î�êsìÄú¼ñMð^ê:ðh÷êÐõÚú��Åø�ò¼í N þ�írþ�í�õkìÄù þRî�ì þhù í0üÁñtù803Dßì ñ � DÝî
ñ����>þ�ð�ú±î�êsìÄú¼ñMð �W�ð�òâú)GMíK. � 0dõ���õ ø�ò¼ú¼ìÚìÄú¼ðhó�î
ñ©÷©íAúâð%ì ñ�ì ù.ê:ðRõÚò±êsìÄíÅêtðh÷¿í�� �írî�þ©ì í;ì ï�ùÄírêM÷�õ/ú±õ�írêtõ úâí�ù�êtðh÷^õÚì ù.ê:úâótï%ìÚüÁñMù ýzê:ù.÷�÷©þ�í;ì ñpìÄï�í
ú¼ðhï�í�ùÄí�ð%ìÐì ï�ùÄírêM÷©ír÷�ðhêsìÄþ�ùÄí>ñtü0é%êfëfêEî
ñ©÷©í �X� ï�íÅú��Åø�ù ñsëMí ��Åí�ð%ìHñtö�ìÄê:úâð�íO÷�þRõÚúâð�ónõ þhî.ï@êÜ÷©íOî
ñtþhø�ò¼úâð�óÜõÚì ù.êsìÄí�ótôný�ú¼òâò

Translated

Code Cache

(TCC)

Translate
Processor

E-to-T Q

Translate
Controller

Bytecodes

Execute
Processor

@ úâótþhù í���Y � ïhí�./íOî
ñMþ�ø�òâír÷ � ùÄêtðhõ òâê:ì íI01�©íOî
þ©ìÄí � ù.î.ï�ú¼ì írî �ì þ�ùÄí��2. � 0 �
Z\[^]:_H[a`cb dfehgMi\jai<k7l(m-n�oqpAl
or]as6oqout,]:v(o8Z�w�oqxqm-]yo3z(py_	xqoqeyey_*p8{)Z}|6~
gHt-�%]:v(o8`<p�gHt(e:��g�]yo1z(p:_�xqoqeye:_*pF{)`T|6~���m(e:ou�%l	�E]:v(o1Z}|Q]y_�xq_*���3m(t(d [
xug�]:o���oq]:v(_	�(er��l��]yoqxq_��-oueM]:_Pl
o�]ypygHt(ey��g�]:oq��]y_,]:v(o�`T|\��`A�T�7dfe3g
xugHx�v-oSm(eyoq�8l��1`T|L]y_hxq_*���;m(t(dfxug�]:o\]:p�gHt-ey��g�]:ou�F��or]yv-_��(e���l	�]:ouxq_	�(oqe
l(gHx���]y_;]:v(o1Z�|\�-j^]he2]y_*p:oqeT]:v(o�]:p�gHt(e:��g�]yoq�,��or]:v(_	�(er��l���]:oqxq_��(oqe1gHt-�
� gHxqdf�fd]�g�]:oqeh��or]:v(_	�%p:oum-eyo*�

÷©í�øJí�ðh÷nñtðnì ï�í�ñsëtírù ò±ê:øÝìÄïhêsìAî�êtðnöJíEê:ìÚì.ê:úâð�ír÷nöRí�ìký,írí�ð
ì ù.ê:ðhõ òâê:ì í	ê:ðh÷ßí��©írî�þ©ì í	ñtøJí�ù.êsìÄú¼ñMðhõ � �Êð�ìÄùÄêM÷©ú¼ì úâñtðhêtòA. � 0ì í�ù��Åú¼ðhñtòâñtótô��eì ï�ú±õBý0ñtþ�ò±÷¿öRípîrê:òâò¼íO÷Ü°�»Ï¯ ¸ �9� ï�íp÷�úâõÚì úâðhî�ìÄò¼ôõÚírøhê:ù.êsìÄíAì ï�ùÄírêM÷�õ�ùÄí N þ�úâùÄír÷Ü÷©þhù úâð�ó�é%êfësê�í��©írî�þ©ì úâñtð�ø�ùÄñ �ë%ú±÷©íOõzøRñtì í�ð%ìÄúâêtòeüÁñtù/õ ú¼óMð�ú¼ÿRî�êtðMìzñsëtírù ò±ê:øEê:ðh÷!øhêtùÄêtò¼òâí�òâúâõ�� �
� ïhí�ì ù.ê:ðhõ ò±êsì í�øhù ñ©î
íOõ õ ñtùS�Aêfô/þRõÚídõ ñ:ü³ìkýzê:ùÄí�ì ù.ê:ðhõ ò±êsì úâñtðñtù�ïhêtùÄ÷�ý0êtù íÐìÄùÄêtðhõÚò±êsìÄú¼ñMð � !yñtü³ìký0êtù íÐìÄùÄêtðhõÚò±êsìÄú¼ñMð�î
ñtðRõÚú±õkì.õñ:üÐí���êtî
ì òâôÜì ïhí�õ ê��Åí�ñtøJí�ù.êsì úâñtðRõ	ì ïhê:ìHïhê:øhøRírðhõAúâðDî
þ�ù �ù írðMì�é�� � õ0÷�þ�ù úâð�ó	ì ïhí�ìÄùÄêtðhõ òâê:ì í�ø�ïhêtõ í �1V ê:ù.÷©ý0êtù í�ì ù.ê:ðhõ �òâê:ì úâñtðDý0ñtþ�ò±÷DúâðyëtñMò¼ëMí�ì í��	øhòâê:ì í7�Åê:ìÄî.ï�úâð�ójê:ðh÷ ótí�ðhí�ù.ê �ì úâñtð�ñ:ü"ìÄùÄêtðhõÚò±êsìÄír÷�î
ñ©÷©í>êtõ��Åñ©÷©írù ð���'��Åø�ùÄñ©î
íOõ õ ñtù.õzótírð �í�ù.êsì íB���LDdõ-�,���u!\J ñtøhõH
	ñtùQW,�LD3!6�P���u!\J ò¼ú�GtíB�Åú±î
ùÄñ �ñtøJí�ù.êsì úâñtðRõ�
 � � �;þ�ò¼ì ú¼ì ï�ùÄírêM÷©ír÷�ø�ùÄñ©î
írõÄõ ñtù;þ�ì úâò¼ú���úâð�óÓ÷©ú¼ü �üÁí�ùÄí�ð%ìHìÄï�ù íOêt÷�õHüÁñtù!ì ù.ê:ðRõÚò±êsìÄú¼ñMð ê:ðh÷ í��©írî�þ©ì úâñtð��Åêfô\öJí

î
ñtðRõÚú±÷©í�ùÄír÷	êtõ�êBõ ñ:ü³ìkýzê:ùÄízú)�Åø�òâí	�ÅírðMì.êsìÄú¼ñMð	ñtüRìÄï�íE. � 0 � �
� �)+����1�B��� ���&� �*���d+�-������0�������
�Êðpì ïhúâõ�õ írî
ì úâñtðHý0íÐ÷©írõÄî
ùÄú¼öJíÐê>õ þ�öhõ í
ìzñ:ü5ìÄï�íP. � 0 � ù.î.ï�ú �ì írî
ì þ�ùÄí��<ì ï�í�� V ê:ù.÷�. � 0F� � ùÄî.ïhúÒìÄírî�ìÄþ�ùÄí � �ÊðÜìÄï�í V êtùÄ÷. � 0 êtùÄî.ïhúÒìÄírî�ìÄþ�ùÄíÅì ï�íAìÄùÄêtðhõ òâê:ì úâñtðÝñ:ü�öyô%ì írî�ñ©÷©írõ�ì ñ^ðhê �ì úâëtíßî�ñ©÷©í�ú±õ�÷©ñtð�í�ì ï�ùÄñtþhótï ênïhê:ù.÷©ýzê:ùÄí�ì ù.ê:ðhõ ò±êsì ñMù���êMõ
ñtø�øJñMõ ír÷¿ìÄñ^þhõ ú¼ð�óßê�õ ñ:ü³ìkýzê:ùÄí	í��;þ�ò±êsìÄñtù �"� ï�ú±õ;ø�ùÄñsëyúâ÷�írõêt÷©ësê:ð%ì.ê:ótíOõ0ñ:ü�õ øJí�ír÷EúâðEì ù.ê:ðhõ òâê:ì úâñtðT�©öhþ©ì�êsìzìÄï�í�í��©øJí�ðhõ í
ñ:ü�úâðhî�ù íOêtõ ú¼ð�óÅ÷©íOõÚúâótð�î
ñ��	øhò¼í	�yú¼ìkôHêtðh÷�î.ï�ú¼ø�ê:ùÄírê �!©ñ:ü³ìkýzê:ùÄí(í	�>þ�ò±êsì úâñtð ñ:ünöyô%ì íOî
ñ©÷©írõ��Áúâð%ì írù ø�ùÄí
ì.êsìÄú¼ñMðT�
é�� � î
ñ��Åø�ú¼ò±êsìÄú¼ñMð�
Ðú±õ;õ ò¼ñsý � ��þhù;õkìÄþh÷©úâírõ>ñtðÜé%êfësê�ý,ñMù�G �

ò¼ñ%êt÷�õ�� �-��õÚï�ñsý)ìÄïhêsìÅúâðMìÄí�ùÄø�ùÄí
ì íO÷Óí��©íOî
þ©ìÄú¼ñMðnùÄí N þ�úâù íOõ�ñtðì ï�í¿êfëtírùÄêtótí">���!<D � ��J úâðhõkìÄù þRî�ì úâñtðRõpìÄñní	�>þ�ò±êsì í�írêtî.ï
öyôMìÄírî�ñy÷�í �h� ïhí0êfëMí�ù.ê:ótí8!<D � ��J¿ú¼ðRõkìÄù þhî
ì úâñtðhõ�ùÄí N þ�úâù íO÷Ðì ñí	�>þ�òâê:ì í	êAöyôMìÄírî�ñy÷�í;ýzêtõ/êtø�ø�ùÄñ(�©ú)�AêsìÄí�òâô�=��Aý�ï�í�ð�þhõÚúâð�ó
ê!é�� � î�ñ��Åø�úâò¼írù�� ��� � !yñtü³ìký0êtù í>í	�>þ�òâê:ì úâñtðßúâõÐíOêtõ ô!ìÄñ�ú)� �ø�òâí	�Åí�ð%ì/üÁñMù/ð�írý ø�ò±êsìÚüÁñMù��Aõ/ö�þ©ì�îrê:ð�ðhñ:ì/ñtûJírù�êpõ ñtòâþ©ì úâñtð
üÁñtùHü�êtõÚìHí��©írî�þ©ì úâñtð@ñtü�éMêfësêÝöyô%ì írî�ñ©÷©írõ � W/õ ú¼ð�ó�êÓïhê:ù.÷ �ý0êtù í!õÚñMò¼þ©ìÄú¼ñMðT��ý�ï�ú±î.ïÜú��	øhò¼úâírõ	í��©íOî
þ©ìÄú¼ð�ó�ì ï�í!öyôMìÄírî�ñy÷�írõ
÷©úâù íOî�ì òâô^úâðßïRê:ù.÷©ý0êtù í	ý0ñtþ�ò±÷^írò¼ú��Åú¼ðhê:ì íÅìÄï�íAù í N þ�ú¼ùÄí	�ÅírðMìñ:ü"êAõÚñtü³ìký0êtù í�òâêfôMí�ù0ì ñAí��;þ�ò±êsìÄí�ìÄï�íBöyô%ì írî�ñ©÷©írõ �
� ï�í�ùÄí;ê:ùÄí;õ í�ëMí�ù.ê:òvú±õ õ þ�írõ�ì ñpöJí>î�ñtðhõ ú±÷©í�ùÄír÷Eý�ï�úâò¼í>í	� �ø�òâñsô%úâð�óAïhêtùÄ÷�ý0êtù íÐìÄñpøRírùÚüÁñMù�� ì ù.ê:ðRõÚò±êsìÄú¼ñMð ��� ï�í>î�þ�ùÄù írðMìïhê:ù.÷©ýzê:ùÄí<ú��	øhò¼í��	írð%ìÄêsìÄú¼ñMðhõ�ñ:ü©ìÄï�í�éMêfësê�#�ú¼ù ì þhêtò<$^êtî.ï�úâð�í

��é�#%$c
<õÚþhî.ïAêMõ8D<ú±î
ñ%éMêfësê�ê:ùÄízõÚìÄêMîHG;öhêMõÚíO÷ ��V ñsý0í�ëtírù��fìÄï�í�ÊðhõÚì ùÄþhî�ìÄú¼ñMð��5írëtí�ò;D�ê:ù.ê:òâò¼írò¼ú±õ�� �¡�q�hD3
;ý�ï�ú±î.ïnî�êtðÜöRí!í�� �ø�òâñtú¼ì ír÷�þhõ ú¼ð�óEê!õÚìÄêMîHG�ê:ù.î.ï�úÒìÄírî
ì þ�ùÄí;ú±õ/òâú��	ú¼ì íO÷ ��@ úâótþ�ùÄí�=õÚïhñsý�õ�ìÄï�í�øJí�ù.î
í�ð%ì.ê:ótí0ùÄír÷©þhî
ì úâñtð	ú¼ð	í��©íOî
þ©ìÄú¼ñMð	î�ôyî�ò¼íOõ�ê:ðh÷
ú)�Åø�ùÄñsëtí��Åí�ð%ì/úâð^ú¼ðRõkìÄù þhî
ì úâñtðhõ�øJí�ùIJ,ôyî�ò¼í��¡�qDMJM
züÁñtùÐé%êfëfê
ê:ø�øhò¼ú±î�ê:ì úâñtðhõ�í��©írî�þ©ì íO÷�þhõ úâð�ó�ìÄï�í,úâð%ì írù ø�ùÄí
ìÄí�ù"ê:ðh÷�ì ï�ízé�� �î
ñ��	øhú¼òâí�ù �%� ï�í>ø�ùÄñtótù.ê
�Aõ�í	�©írî
þ�ì ír÷�þhõ ú¼ð�óHì ï�í	é�� � î�ñ�� �ø�úâò¼írù/ê:ùÄí�õÚírí�ðEì ñ!õÚï�ñsýaõÚòâúâótï%ì òâôHï�úâótïhí�ù�ú��Åø�ù ñsëMí	�Åí�ð%ì.õzú¼ð
öRñtì ïEí��©írî�þ©ì úâñtðHì ú��ÅíÐêtðh÷Q�qDMJjý�ï�írð!í	�yíOî
þ©ìÄír÷!ñtð9? � ý0êfôê:ðh÷¢�-� � ý0êfôßø�ùÄñyî�írõÄõÚñMùÄõ �R� ï�íHúâðh÷©úâëyúâ÷©þRê:òz÷�êsì.ê�üÁñtù>írêtî.ïöRírðhî.ï��Aê:ù�GBî�êtð;öJídüÁñMþ�ðh÷�úâðR���*���têtðh÷�ý0ídúâðhî
òâþh÷©í @ úâótþ�ùÄí;=ú¼ðÅìÄï�ú±õd÷©ñ©î
þ\�	írð%ì<ì ñ;õ í�ùÄëtí�êMõ<êP�Åñ:ìÄú¼ësê:ì úâñtð	üÁñtù,ïhê:ù.÷©ýzê:ùÄí
ì ù.ê:ðhõ ò±êsì úâñtð;ú¼ð%ì ñÐê�ð�ñtð � õÚìÄêMîHGL�u! � � ��þ�ù"õÚú��;þhòâê:ì ñtù��Åñ©÷©í�ò±õù íOê:òâúâõÚì ú±î�öhùÄêtðhî.ïAø�ùÄír÷©ú±î�ìÄú¼ñMðT�yï�ñsý,írëtírù��%êtõÄõÚþ��ÅíOõ,ê;øRírùÚüÁíOî�ì
£0ùÄêtðhî.ï � ê:ùÄótí�ìM£0þ©ûeí�ùI�:£ � £�
zêtðh÷pìÄï�í�ùÄí
üÁñMù í�ì ïhíBøRírùÚüÁñMù ��Aê:ðhî�íAñ:üzì ï�íAúâð%ì írù ø�ùÄí
ìÄír÷Ýø�ùÄñtóMùÄê��Aõ�ý�úâòâòdöJípõkìÄú¼òâòdý0ñtù.õÚí
ñtð�ê;ùÄírêtòS�ÅêMî.ï�úâð�íÐú¼ðEý�ï�ú±î.ïHìÄï�íP£ � £Dúâõ;�Åñ©÷©í�òâír÷U��õ úâðhî
íì ï�í,ú¼ð%ìÄí�ùÄø�ù í�ì írù�ïhêMõT�ÅñtùÄí<úâðh÷©úâù íOî�ì�öhùÄêtðhî.ï�írõ5ì ïhêtðBì ïhí,é�� ��Åñy÷�íBñ:ü�í	�©írî
þ�ì úâñtð�
 �
£0êMõÚíO÷@ñtð ù íOõÚþ�ò¼ìÄõ!ñ:ü>ø�ù írò¼ú��Åú¼ðRê:ùÄô�øJí�ù üÁñtù��Aê:ðhî�í�írõÚì ú ��Aêsì íOõ	�Aý0í�ü�êfëtñtùÝêaïhê:ù.÷©ýzê:ùÄínú��Åø�ò¼í��Åí�ð%ìÄê:ì úâñtð&ñ:üHìÄï�í

. � 0 � î
ñMðhî
írø©ì � £0ñ:ìÄïB0FD@ê:ðR÷ � D@î�ê:ð�öJí�ö�þhú¼ò¼ì�ñMð!ìÄï�íõ ê��Åí>î.ï�úâø�ê:ðR÷�ì ï�íÅê:ù.î.ï�ú¼ì íOî�ì þhù í;îrê:ð^öJí	ëtí�ùÄô�õÚú��Åú¼ò±ê:ù�ì ñ
�Åñy÷�í�ùÄðH÷©ôyðhê
�Åú±î�êtò¼òâôAõ î.ï�íO÷©þ�òâír÷��Åú±î
ùÄñtø�ùÄñ©î
íOõ õ ñtù.õ�í���î�í�ø©ì
üÁñtù"ê�üÁírýÜö�þ�úâò±÷©ú¼ðhó�ö�òâñ©îHG©õ �A� ï�úâõ"êtùÄî.ï�ú¼ì íOî�ìÄþ�ù í,ý�ú¼òâòyú¼ðRî
òâþh÷©íê�ïhê:ù.÷©ýzê:ùÄí>þhð�úÒìBìÄñ^î
ñMð%ëMí�ù ìÐì ï�íAöyô%ì íOî
ñ©÷©írõ�ú¼ð%ì ñ^õ ú��	øhò¼í
���u!\J ò¼ú�GtíEú¼ðRõkìÄù þhî
ì úâñtðhõ �¤� ïhírõ í�î�ñtðyëtírùÚìÄír÷ÓúâðhõÚì ùÄþhî�ìÄú¼ñMðhõý�ú¼òâò©öJí�ù írótú±õkìÄí�ù"öhêtõ ír÷T�sì ï�írù íröyô�í�ðhêtö�òâú¼ð�óÐþhõ ízñ:üvõkì.ê:ðh÷hê:ù.÷
ì íOî.ï�ð�ú N þhírõvìÄñ�ñtö©ì.ê:úâðBï�úâótïBøJí�ù üÁñtù��Åêtðhî
í ��� ï�í � ù.ê:ðhõ òâê:ì íO÷J,ñ©÷©íLJ0êtî.ïhí�� � J�JM
<ý�ú¼òâòJõÚì ñMù í�ì ï�í�î
ñtðyëMí�ù ì ír÷	öyô%ì íOî
ñ©÷©írõ �
� ï�í � J�JÝý�úâòâò�öRí�ëMí�ùÄô;õ ú)�Åúâòâêtù"ì ñ�ê � ù.êtî�í�î�êtî.ïhí,�f¥¦��'��y�Mú¼ðì ï�íÐõ í�ðhõ í�ìÄïhêsì0úÒì�î�êtø©ì þ�ùÄírõdì ïhí�÷©ôyðhê��Åúâî�ì ù.ê:ðhõ òâê:ì íO÷pî
ñ©÷©í
÷©þ�ùÄú¼ðhó;ø�ùÄñtóMùÄê��Ûí	�yíOî
þ©ìÄú¼ñMð � � ï�ú¼óMï � ò¼írëtí�òJö�òâñ©îHGÅ÷�úâêtótù.ê
�ñ:ü5êBõ ôyõÚì í��Ûý�ú¼ì ïÅìÄï�í�ø�ùÄñtøJñMõ ír÷	ïhêtùÄ÷�ý0êtù ízþ�ð�ú¼ìÄõdúâõdõÚï�ñsý�ð
ú¼ð @ úâótþ�ùÄíc> � �ÊðhõÚì íOêt÷\ñtü�üÁí�ìÄî.ï�úâð�óÜöyô%ì íOî
ñ©÷©íOõAüÁùÄñ���ìÄï�íõkì.ê:ðh÷hê:ù.÷Ðú¼ðhõÚì ùÄþhî
ì úâñtð>îrêtî.ï�í��fý�ï�í�ð�írëtírù�øJñMõÄõÚúâö�òâí��fì ïhí,î
ñMð �ëtírùÚìÄír÷Óöyô%ì íOî
ñ©÷©írõ;üÁùÄñ���ì ï�í�÷©íOî
ñ©÷©ír÷nöyôMìÄírî�ñy÷�íHúâðhõkìÄù þRî �ì úâñtðHîrêtî.ï�í�ý�ú¼òâòeöRí�÷©úâù íOî�ì òâôÅüÁí
ì.î.ï�ír÷Hê:ðh÷Hí��©írî�þ©ì íO÷Aöyô>ìÄï�í
ø�ùÄñyî�írõÄõÚñMù<î
ñMù í � � òâòJö�ò¼ñ©îHG©õ�úâð @ ú¼óMþ�ù íP���Mí	��î
í�ø�ì<ì ï�í/ï�ú¼óMï �ò¼úâótï%ìÄír÷Ýö�òâñ©îHGyõ;ê:ùÄípøhê:ù ì�ñ:ü/êtðyôßõÚìÄêsìÄípñ:üzìÄï�í!êtùÚì��Åú±î
ùÄñ �

=

@ úâótþhù í�=�Y � î�ñ��Åøhê:ùÄú±õÚñMðPñtüAõÄî�êtòâêtö�úâò¼ú¼ìkôP÷©þhù úâð�ó@úâðMìÄí�ù �ø�ù í�ì íO÷!êtðh÷�é�� � î
ñ��Åø�úâòâír÷!í��©írî�þ©ì úâñtð �|�oqpyxqoqt�]�gH§*o�pyoq�(m(xr]:df_*tBdftRorw-oqxqm-]:df_*tBxr�-xq�foqePgHt(�Rdf��z-py_�¨�oq��oqt�]%dft
ja|S�9pyoq��g�]:d ¨�o�]y_Mg;©H[^sTgq�%xq_*t-ª(§*m(p�g�]:df_*t,dfeTeyv(_us�t¦�\`�v-o1dft]:oqpyz(p:oq]:oq�
xq_	�(oFdfe�dft(xqpyougHeydft-§*� �Le2]�gHx���[a_*p:dfout�]:ou���¦s�v(df�fo1]yv-oM«*ja`7xq_	�(o3dft-xu_*p:z
_H[
pyg�]yoqehpyoq§*dfe:]:oqph_*z-]:df��df¬ug�]ydf_*t-e��1{)`�v-dfehª�§*m(p:o8dfehz(p:_�¨�df�(oq�PgHeA��_H]:d ¨*g�[
]:df_*t � _*pTt(_*t-[ae2]�gHxy�Ej2­	® dftE]yv(o1xq_*p:o1_ � «�gq¨*g;z(p:_�xqoqeye:_*pyeu� ~

ø�ù ñ©î�írõÄõÚñMù � � ò¼ì ï�ñMþ�ótï!ð�ñ:ìzí��©ø�òâúâî�úÒìÄò¼ôHú¼ðh÷�úâîrêsì íO÷6�%ì ï�írù íÐê:ùÄí
N þhí�þ�íOõBöRí�ìký,írí�ðÓësê:ùÄúâñtþhõÐö�òâñ©îHG©õBú¼ð @ úâótþ�ùÄíQ>���írõ øJírî
ú±ê:òâòâôöRí�ìký,írí�ð¿ì ï�íHüÁí
ì.î.ïÓþ�ð�ú¼ì	ê:ðR÷�ìÄï�í V ê:ù.÷©ý0êtù í � ùÄêtðhõ òâê:ì ñtù �!%ì ñMù úâð�ó�ìÄï�í�ì ù.ê:ðhõ ò±êsì íO÷pöyô%ì íOî
ñ©÷©írõ*¯(�Åí�ì ï�ñ©÷�õ,ú¼ð!ì ïhí � J�Jê:ò±õÚñ�ø�ù ñsëyú±÷©írõ�ñMø�øRñMùÚìÄþ�ð�ú¼ìkôÐüÁñtù<ê�ësê:ùÄú¼í�ìkôBñ:üRñMø©ì ú��Åú)�OêsìÄú¼ñMðhõ
êtõ5øJí�ù üÁñtù��Åír÷Ðöyô�ì ï�ídÿhòâò � þ�ð�ú¼ì�úâð;î�ñtð��kþ�ðRî�ì úâñtð;ý�úÒìÄï>êzìÄùÄêMî
íî�êtî.ïhí�� &�� �
°M±u² ³�´uµuµ·¶¹¸E´ § ª�ºEº/¨\»<ª�«\¼ §<» ½E¾�«S»�½ ´�¸�¿

¥3Àz§<¾�«S»�½�¾�¦
� ï�íÐö�ò¼ñ©îHGH÷�úâêtótù.ê
� ñ:ü�ì ï�íÐüÁùÄñtð%ì � írðh÷püÁñMùzì ï�í V ê:ù.÷K. � 0úâõ"õ ï�ñsý�ð;úâð @ úâótþ�ùÄí;? ��� ï�ízïhê:ù.÷©ýzê:ùÄí�ì ù.ê:ðhõ ò±êsì ñMù*¯:÷©írî�ñ©÷©í�ùý�ú¼òâò%î�ñtðyëtírùÚì�öyôMìÄírî�ñy÷�írõ�ú¼ð%ì ñ�õu�Aêtò¼òâí�ù�ÿ��©ír÷Bòâí�ðhó:ì ï>ú¼ðRõkìÄù þhî �ì úâñtðhõ���ý�ï�ú±î.ïÓý�úâò¼ò,öRípøRêtîHGtíO÷�úâð%ì ñ�ìÄï�í � ùÄêtðhõÚò±êsìÄír÷/J,ñ©÷©íJ0êtî.ï�íL� � J�JM
�öyôÐì ï�í0ÿhòâò©þ�ð�ú¼ì � � ò¼úâð�ízúâð;ìÄï�í � J�JÓî�êtð;öJíÿhðhê:òâú���ír÷>ñtù<î�ñ��Åø�òâí
ìÄír÷	ý�ï�í�ðAñMð�í�î
ñ��	íOõ�êtî�ù ñ%õ õ"êBî
ñMð%ì ùÄñtò
Á ñsýnúâðhõÚì ùÄþhî�ìÄú¼ñMð �A� ïhí�ö�ù.ê:ðhî.ï	þ�ð�ú¼ìdý�úâò¼òRø�ù ñsëyú±÷©í0ì ï�í�ðhí��yìú¼ðhõÚì ùÄþhî
ì úâñtð;êM÷�÷©ùÄírõÄõ	�fê:ðh÷�úÒì�úâõ�üÁír÷;öhêtîHG�ì ñ/ì ï�í0ú¼ðRõkìÄù þhî
ì úâñtð
î�êtî.ïhí;ê:ðh÷�ì ï�í � J�J � �_ü�ì ï�í	ò¼ñyñ�G%þhø^ú¼ð�ì ï�í � J�JPùÄírõ þ�òÒì.õú¼ðÓêEï�ú¼ì���ì ï�írðßìÄï�íp÷©íOî
ñ©÷©ír÷¿úâðhõÚì ùÄþhî�ìÄú¼ñMðhõBê:ùÄí	üÁír÷ßì ñ�ìÄï�í
÷©ôyðhê
�Åú±î�ê:òâòâô^õ î.ï�íO÷©þ�òâír÷ �Åúâî�ù ñ � írð�ótúâð�íÅ÷©ú¼ùÄírî
ì òâô�üÁùÄñ�� ìÄï�í
� J�J �
� ïhí�ÿhò¼ò�þhð�úÒìHêtðh÷�ì ï�í � J�J ï�í�òâøjú¼ð@î
ùÄírê:ì úâð�ó¿òâêtù óMí�ùêsì ñ��ÅúâîÝþ�ðhúÒì.õ^ñ:üAý0ñtù�GS�Bý�ï�úâî.ï îrê:ðÞöJíÓüÁír÷ÞìÄñ\ì ï�íj÷©ô �ðhê
�Åú±î�ê:òâòâô;õ î.ïhír÷©þ�òâír÷��Åú±î
ùÄñ � í�ð�óMú¼ð�í � �Êðhî�ù íOêtõ ú¼ðhó�ìÄï�í�üÁí�ìÄî.ïöhê:ðh÷�ý�úâ÷yìÄïT�fþhõ ú¼ð�ózìÄï�í<ïhêtùÄ÷�ý0êtù í�ì ù.ê:ðRõÚò±êsìÄñtù5ê:ðR÷/ìÄï�í � J�Jý�ú¼òâò5ê:òâò¼ñsý þhõ0ì ñAí	�yíOî
þ©ìÄí�ì ï�íÐöyô%ì írî�ñ©÷©írõzúâð�ê>õ þ�øJí�ù.õ îrê:ò±ê:ù

Data Cache

F.P unit

Load Store Unit

M
em

o
ry

 a
n

d
 I

/O
 I

n
te

rf
ac

e
u

n
it Instruction

 Cache

Decode

Fetch Unit

 Unit

Hardware
Translator

Translated
Code

Cache (TCC)

Integer unit

@ ú¼óMþ�ù íÂ>�Y � ïhí V êtùÄ÷ � . � 0 � ú��Åø�ò¼í��Åí�ð%ìÄê:ì úâñtð � �	ú �î
ùÄñMêtùÄî.ï�ú¼ì íOî�ìÄþ�ù í�ñtü�ê�÷©íOî
ñtþhø�ò¼íO÷Aø�ùÄñ©î
írõÄõ ñtù�ìÄïhêsì0øRírùÚüÁñMù��Aõ
ì ù.ê:ðhõ ò±êsì úâñtðRõ,úâð�ïhê:ù.÷©ýzê:ùÄí

translator
h/wI-Cache

Register

Renaming

Unit

Fill
Unit

T

C

C
Units

Func.

branch unit

next instruction address

@ ú¼óMþ�ù í,?�Y8£,òâñ©îHGH÷©ú±ê:óMùÄê�� ñ:ü�ì ï�í V ê:ù.÷©ýzê:ùÄíL. � 0 � ý�ú¼ì ïê:ðEú¼ðRõkìÄù þhî
ì úâñtðEÿhòâòvþ�ð�ú¼ì

>

ü�êtõ ï�ú¼ñMðT�©þ�ð�òâú�GtíÐì ïhí�D<ú±î
ñ%éMêfësê�ý�ïhúâî.ï�÷©ú±÷�ð�ñ:ì�í	�©írî
þ�ì íÐú¼ð �õkìÄù þhî
ì úâñtðhõ�ñtþ©ì;ñtü0ñMùÄ÷�í�ù;êMõÐì ï�íHú¼ðhõÚì ùÄþhî
ì úâñtðÝüÁí
ì.î.ïÓöhê:ðR÷ �ý�úâ÷yìÄï!ýzêtõ0ëMí�ùÄô	òâú��	ú¼ì íO÷ �F� ï�í,D<ú±î
ñ%éMêfësê�üÁí
ìÄî.ïhírõ0ñtð�òâô"� � =ö%ô%ìÄírî
ñ©÷©í0úâðhõkìÄù þRî�ì úâñtðRõ�írëtírù ôBî
ô©î�ò¼í �A� ï�í�õÚìÄêMîHGÐî�ù íOêsìÄírõ"ê:ðú)�Åø�òâúâî�úÒì�÷©írøRírðh÷©í�ðRî
ôDê
�ÅñMð�óMõÚìHìÄï�íßöyô%ì íOî
ñ©÷©íOõ!êtðh÷@ìÄï�í
ëfêtù ú±ê:öhò¼í^òâí�ðhó:ì ïPñ:ü�ìÄï�í¿ö%ô%ìÄírî
ñ©÷©í¿úâðhõkìÄù þRî�ì úâñtðRõK�Aê
GMí�ú¼ì
ïhê:ù.÷©í�ù0ìÄñÅ÷�írî
ñ©÷©í,�>þ�òÒìÄú¼øhò¼íBúâðhõÚì ùÄþhî�ìÄú¼ñMðhõ�õÚú��;þhòÒì.ê:ð�írñtþhõ ò¼ô �
°M±:Ã Ä ¾�«S»�½ ´�¸�¿ ¥;Àz§<¾�«S»�½�¾�¦ ´u¸ §<»ÆÅ ´ «e¨�»1Ç-»8º�¦
� ïhê:ù.÷©ýzê:ùÄí�÷©írî�ñy÷�í�ù<ý�úâò¼òJî
ñMð%ëMí�ù ì"ì ï�í�ö%ô%ìÄírî
ñ©÷©íOõ"ì ñ��;þ�ò �ì úâø�ò¼íB�Åú±î
ùÄñ � ñtøJí�ù.êsìÄú¼ñMðhõ � � ÷©íOî
ñ©÷©úâð�óÜõÚì ùÄþhî�ìÄþ�ù í�õ ú)�Åúâòâêtùì ñ�ìÄï�í,�Êð%ì í�ò6D3�;÷©íOî
ñ©÷©í�ùzî�êtðHöJí�þRõÚíO÷6�yý�ï�úâî.ïEî�êtð!÷©íOî
ñ©÷©í
�;þ�ò¼ì úâø�òâí/õÚú��Åø�òâí/ê:ðh÷	ñMð�í�î
ñ��	øhò¼í	�>úâðhõkìÄù þRî�ì úâñtðAúâðAñtðhí�î
ô �î
òâí � � ð�ñtì ï�írù,ê:øhø�ù ñ%êtî.ï	úâõ<ì ñ�÷©íOî
ñ©÷©í�ñMð�òâô;ìÄï�í/î
ñ����	ñMð�òâôþhõÚíO÷Aöyô%ì írî�ñ©÷©írõ0ê:ðh÷HõkìÄñtùÄí�ì ïhí	� úâðpì ïhí � J�J%�yê:ðh÷pì ñ>í�� �írî
þ�ì ízì ïhí�ñ:ì ïhí�ù�öyô%ì írî�ñ©÷©írõ"öyôBìÄùÄêtø�ø�úâð�ó�ì ñP�Åúâî�ù ñ � î�ñ©÷©í,ñMùõÚñtü³ìký0êtù í �J,ñMðhõ úâ÷©írù/ìÄï�í	ö%ô%ìÄírî
ñ©÷©í��6È�É�Ê\Ë �%� ï�ú±õ�ö%ô%ìÄírî
ñ©÷©í	÷©þ�ø�òâú �î�êsìÄírõHì ï�í¿ìÄñtøDìký0ñnírò¼í��Åí�ð%ìÄõEñ:ü;ì ï�íÓõÚìÄêtîHG@êtðh÷Dø�þRõÚï�íOõ
ì ï�í�� ñtðAìÄï�í�õÚìÄêMîHG �A� ï�ú±õ0öyôMìÄírî�ñy÷�í�î�êtðHöJí�õ ø�òâúÒìzúâðMìÄñ�ìÄï�íüÁñtòâò¼ñsý�úâð�ó>ÿhëtí,�Åúâî�ù ñ � ñMøRírùÄê:ì úâñtðhõ�Y

Ì�Í¦Î�ÏOÐ�Ñ�Ñ ÒrÎ�Ó\Ñ�Ô<Õ×ÖcØ¦Ù�Ú È Ì\Í�ÎÜÛuÝ�Ù Ê Ù¦Þàß�Ý�Ú\á�â}ã
Ì�Í¦Î�äåÐ�Ñ�Ñ ÒrÎ�Ó\Ñ¦æ¦Õ×ÖcØ¦Ù�Ú È Ì\Í�Î<Ñ}ç
Î�ÓOÐ¦Ñ�Ñ�Î�Óéèåæ ÖRÌ\Í¦Îëê¹Ì\Í¦Î¹è Ë
ÒrÎ�Ó\Ñ�Ô<Õ�Ð¦Ñ�Ñ�Ì\Í¦Î�ä Ö7ß�Ý�Ù�ì<í¤î\í�ïéÌ\Í¦Î
ÒrÎ�Ó\Ñ¦æ¦Õ�Ð¦Ñ�Ñ�Ì\Í¦Î�Ï Ö7ß�Ý�Ù�ì<í¤î\í�ïéÌ\Í¦Î<Ñ}ç

�ÊðA÷©íOî
ñ©÷©úâð�ó�ì ï�ú±õ�öyô%ì írî�ñ©÷©í��:ý0ízþhõ ír÷�=�ìÄí	�ÅøJñtù.ê:ùÄôBù író �úâõÚì írùÄõ � �,! � ê:ðh÷ � �,!<£ ��5 í�êtòâõ ñc�Åñ©÷©ú¼ÿhír÷nì ï�í�õÚìÄêMîHGøRñMú¼ð%ì írù��:!<D;
 ��� ï�íÅöyô%ì íOî
ñ©÷©íÅù í N þ�ú¼ùÄír÷7=EõkìÄñtùÄírõ���=pòâñMêM÷�õê:ðh÷��pî
ñ��Åø�þ©ìÄê:ì úâñtðÝúâðhõkìÄù þRî�ì úâñtðÜêtðh÷¿þhõ ír÷/=EúâðMìÄí�ù��Åír÷©ú �êsì í�ùÄí�óMúâõÚì írùÄõ>ì ñÓõÚì ñMù íEì í��ÅøRñMùÄêtù úâírõ � !yú)�Åúâòâêtù òâô��0ý0í�îrê:ðî�ê:ò±î
þhòâê:ì íBìÄï�í;òâñMêM÷�¯sõÚì ñMù íBúâðhõÚì ùÄþhî�ìÄú¼ñMðhõ/êtðh÷^î
ñ��Åø�þ©ìÄê:ì úâñtð
ú¼ðhõÚì ùÄþhî
ì úâñtðhõzùÄí N þ�úâù íO÷AìÄñ	ú��Åø�òâí	�Åí�ð%ì/÷©ú¼ûJírù írð%ì�ö%ô%ìÄírî
ñ©÷©íOõì ñÐî
ñ��Åízþ�ø	ý�úÒìÄï	ê�ùÄírõ ñtþ�ù.î
ídì í��	øhòâê:ì ízý�ï�ú±î.ï	îrê:ð;öJízþhõ ír÷
÷©þ�ùÄú¼ð�óA÷©íOî
ñ©÷©úâð�ó �
ð ñ �	���������^-��Ròôó �/4C�B�1õH�
�ÊðBì ï�ú±õ�øhê:øJí�ù�ý,í,ø�ù ñMøRñ%õÚí"ìÄï�í3. � 0�êtùÄî.ïhúÒìÄírî�ìÄþ�ùÄídê:ðh÷;ê:ò±õÚñ÷©írõÄî
ùÄú¼öJíHê V ê:ù.÷/. � 0���ý�ï�ú±î.ïÜúâõ	ê�õ þ�öhõ í
ì	ñ:ü�ìÄï�í9. � 0ê:ù.î.ï�úÒìÄírî
ì þ�ùÄí �/� ï�íB. � 0ÛêtùÄî.ïhúÒìÄírî�ìÄþ�ùÄípìÄê�GtíOõ	êM÷©ësê:ð%ìÄêtótíñ:ü<ìÄï�íAî
ñtðRî
þ�ùÄù írðhî
ô^êfësêtú¼ò±ê:ö�òâí>ê:ì�éMêfësêpùÄþ�ðßì ú��Åí���÷©þhù úâð�ó
ì ï�íA½�µ ­s²h°�»¼­s½Ê¶zê:ðh÷Ó¶Ääy¶Ä´�º©½Ê¶,õÚìÄêtótíOõ ��/ìÄï�í�ù�ùÄírõ írê:ù.î.ï�írùÄõzïhêfëMí�ø�ùÄñtøJñMõ ír÷EìÄñpìÄê�Gtí;êM÷©ësê:ð%ìÄêtótí
ñ:ü�ì ïhí!î
ñMðhî
þhù ùÄí�ðhî�ôßöJí
ìký0í�írðÓì ù.ê:ðRõÚò±êsìÄí!ê:ðR÷Óí��©írî�þ©ì í!öyô
þhõÚúâð�óEêHõ í�øhêtùÄê:ì íBìÄï�ù íOêt÷�ñMð�êHõ í�øRê:ù.êsì í;ø�ù ñ©î�írõÄõÚñMù�ì ñ�÷©ñ
ì ï�íÝìÄùÄêtðhõÚò±êsìÄú¼ñMð �ö� ï�í/. � 0 êtùÄî.ï�ú¼ì íOî�ìÄþ�ù íÝ÷©ú¼ûJírùÄõ�üÁù ñ��õÚþhî.ï�êAõÄî.ï�í	�ÅíBúâð�ì ï�í�ü�êtî�ì/ì ïhê:ì�ì ï�í>î
ñ����>þ�ð�ú±î�êsìÄú¼ñMð�öRí �ìký,írí�ðAìÄï�í � D�ê:ðh÷K0FDÝì.ê
GtíOõdøhòâêMî
í�ìÄï�ùÄñtþ�óMï�÷�þ�í�þhírõ0ê:ðh÷

ì ï�í � J�J%��ý�ï�ú±î.ïjù íO÷©þhî
íOõ>ì ï�í�î
ñ%õkì � �Êð�ì ï�í". � 0Ûírêtî.ïø�ùÄñyî�írõÄõÚñMù�îrê:ð¿ù þhð¿êtï�írêM÷�ñtü,írêMî.ïßñtì ï�írùÐý�ï�í�ðÝøJñMõÄõÚúâö�òâí��
õÚúâðhî�íBý,í�þRõÚíBö�þ�ûJírùÄõ�ì ñHõÚì ñMù íÐìÄï�í�ùÄírõ þ�òÒì�ñtü�írêtî.ï�ø�ùÄñ©î
íOõ �õÚñMù � !©î.ï�ír÷�þ�ò¼úâð�óHì ï�ùÄírêM÷�õ�ìÄñHùÄþ�ð^ñMð�÷©ú¼ûJírù írðMì�ø�ùÄñyî�írõÄõÚñMùÄõî�êtð!öJíBí��©øJí�ðhõ ú¼ëMí�ú¼ü�ì ï�írù íBú±õ�ê	ò¼ñtìzñtü�õ ý�úÒì.î.ï�úâð�ó\��êtðh÷Eþ�ð �ò¼íOõ õ�ìÄï�í�ùÄízúâõ�ê�òâñ:ì<ñ:ü}�Åí
ì ïhñy÷>ùÄí � þhõÚí0ý0í0ý0ñtþhòâ÷	õÚírí�ê�òâñ:ì�ñtüì ù.ê:ðhõ ò±êsì úâñtð>ìÄê�Gyú¼ð�óBøhòâêMî
í � £0ô	êM÷�÷©úâð�óP�ÅñtùÄízüÁþ�ðhî
ì úâñtðhêtò¼ú¼ìkôì ñ!ì ï�í>ì ù.ê:ðRõÚò±êsìÄí;ø�ùÄñ©î
írõÄõ ñtù-�Rý0í	îrê:ð Gtí�írø^ú¼ìÐöhþhõÚô�úâð^ìÄï�í
î�êMõÚíBñtü�òâñtð�óAùÄþ�ð�ðhú¼ð�ópêtø�ø�òâúâîrêsìÄú¼ñMðEý�ú¼ì ï�ïhú¼óMï��Åí�ì ï�ñ©÷�ùÄí �þhõ í �I� ï�í � D îrê:ð�øhù íO÷©úâî
ì�ñMù�óMþ�írõÄõ/ì ï�í��Åí
ì ïhñy÷hõÐý�ï�úâî.ïê:ùÄí�óMñtúâð�ó	ì ñÅöJí�î�ê:òâòâír÷!ú¼ðEì ïhíÐüÁþ©ì þ�ùÄíBê:ðh÷�î�ñ��Åø�úâò¼í�ì ïhí	�R�
õÚñÅìÄïhêsì/ì ï�í>ðhêsìÄú¼ëMí�î
ñ©÷©í;îrê:ð�öRí>þhõ ír÷!ì ï�í>ð�í��yì�ìÄú)�ÅíBìÄï�í
�Åí
ì ïhñy÷Eú±õzú¼ðyëMñ�GtíO÷ �
� ï�í;. � 0 � ê:ù.î.ï�ú¼ì íOî�ì þhù ídêtðh÷Búâð;øhêtùÚìÄúâî�þ�ò±ê:ù-�rìÄï�í V ê:ù.÷ �. � 0 � êtù í&öJí�úâð�ó írësê:òâþhêsìÄír÷*þRõÚúâð�ó ì ï�íø!yøJírîré�#L$"&�'öRírðhî.ï��Aê:ù�G©õ � � õÚí�ì�ñ:ü�éMêfësê��Åúâî�ù ñ � öJí�ðhî.ï\�Åêtù�G©õzê:ùÄíBê:ò±õÚñþhõ ír÷�üÁñMù�ësê:òâú±÷�êsìÄú¼ñMð^ø�þ�ùÄøRñ%õÚíOõ�úâð^ìÄï�í>õÚì þh÷�ô �P� ï�í>êtö�úâò¼ú¼ìkôñ:ü<ìÄï�í�. � 0 � î�ñtðhî�í�ø©ì�ì ñEí��©ø�òâñtú¼ìÐî�ñtðhî�þ�ùÄù írðhî
ô�öJí
ìký0í�í�ðì ù.ê:ðhõ ò±êsì úâñtð!ê:ðh÷Aí	�©írî
þ�ì úâñtðT�yï�ú±÷©í�ì ï�íBî
ñ%õkì0ñ:ü5ìÄùÄêtðhõ òâê:ì úâñtðT�

ê:ðh÷Eírðhê:ö�òâí;é%êfësê;ìÄñHêtî.ïhú¼írëtí�ì ï�í;øRírùÚüÁñMù��Aê:ðRî
íBñ:ü�ñtû � ò¼úâð�íî
ñ��	øhú¼òâír÷Bî�ñy÷�í�ý�úÒìÄï�ñtþ©ì�ò¼ñ%õÚúâð�ózì ïhídêt÷©ësêtðMì.ê:óMírõvêtõÄõ ñyî�úâê:ì íO÷
ý�úÒìÄï�é�� � î
ñ��Åø�úâò±êsì úâñtðEú±õ�öRírú¼ðhóÅõÚì þR÷©ú¼íO÷ �
ó ��9:�������������
ùfú�ûLüEýXü3þ-ÿ��¦þ������	�
���¦þ���
��%ý���� ��þ��������	�
���¦þ���
���ý�������� þ���ÿ
� ý! ��	"�þ��
#�$��uþ�%Iþ����	#�%!
'& � ��()���+*�,-(.*�#��uþ�/102�
�
#�,.�3�	�4�(þ�"-þ
ü5#���*��6%7,8 9���:*�,-%7�-
 ;=<>,-()��ý�ü5,-?\ý�<�üA@CB�B�DFE�ú�B9
G�}þ�$H���uþ�*����
�
��I�JK��%7?�#�*�,L� � ��()���+*�,-(.*�#���,-ýNMO/	,-(.*
���	(*þ�/�þ��¦ÿPJK��%7?�#�*�,.�
MQ��R��	��,.,.���	��RTS8,.?�þ��
�%7,.�9�
VU5���	"F,.���
�+*C�W��IV<�,.X�þ�� þY*
� #��:*��6�Z
�ú-B�B�B�ý
��*
�?�[\�\�]^]^]�ý ,.(-,-ý #��,.X�þ��Hý ,Hÿ�#H\Y?����Y�:,-(L*��)\�,-(-,�\�/	(*þF\�?��)\Y*
�)B�B�DFE
ú�B�ý ?�ÿ�I:ý

ù _�ûN��ý�M1ý� �%7�+*���
`&ZS�,-(-��#�?�/	,*ÿ � (.(-,-�
�)\�MaX�,-(-#�*�,bJK��%7?�#�*�,L� � �
@
(L���+*�,-(.*�#���,�
 ;��	�dcfe>gWh�i:j�k�lLjFm.npopq�k�l1eQq�r�s�t�nCuLiwv�x�l�nCuLryl�

?�?\ýH_�z�BY{�|�D�z�
H�5��"�,-%y$H,.�;ú�B�z�}�ý

ù |	ûN��ýA�������Z
�~Sý�<;ýA��#�/	�	��þ9
�þ���ÿ'��ý5JK���uþ�����
�&:��,-%7���
��/)þY@
�,-��(L��,.�G,.(.����	�+ÿ�,-(-��#�?�/	,*ÿ+þY��(L���+*�,-(.*�#���,.�w]��+*��/þ��
�	��R�/	,
ÿ¦þY*uþ�%7,-%7���
��%7�
ÿ�#�/6,�
 ;��	���bi
q�m)u�u���o�k9��l�q2�yn���u�����n���cAk`�
k�t�j����)k�nCuLiLk`j�npo�q�k`j��Av�x�r5s�q�l�o�t9r�q�k�eQq�r�s�t�nCuLiwcAi
m)�9o�nCu
m-�
npt9i�uL
H?�?�ý�_�|��Y{�_Y}���
���þ��Qú-B�BF_�ý

ù }�ûN��ý`��������
`�Eý¦üA,*ÿ�ÿ���
�~Sý`<;ý���#�/	�	��þ9
<þ���ÿ!�TýHJK���uþ�����
�&2~O����@
R��uþ�%�$¦þ�/�þ���(-,8þ��¦ÿy�+*��O�6%7?¦þ�(.*O���N���	R��y?H,.�
I�����%Iþ���(-,1üA0
 �J
þ���()���+*�,-(.*�#���,-�-
 ;=�	�w�bi
q�m)u�u
��o�k9��l�q:�^n���u��)k�nCuLi)kHj�npo�q�kHj��`v�x�rN�
s�q�l�o�t9r�q�k'��o6�Y�d�AuLi��-q�i)r7j�k`mLudeQq�r�s`t9nCuLi�cAi
m)�9o�nCu
m.npt9i�uL

?�?\ý`|�E�DY{�|FE�B�
G�(þ��Rú�B�BF�
ý

ù ��ûLüEý(ü;þ�ÿ���þ������6�
����þ���
9��ý(ü5#�$��	��

þ���ÿ7�Tý9��������
O&:JK��þ��uþ�(.*�,.���+@
� þ�*��	������I �(þ�"-þEþ�?�?�/	�	(*þ�*��	�����8þ�*^*���,5$��9*�,-(-�
ÿ�,5/	,-"�,-/\þ���ÿIþY*
U�/+*
�uþF �~ � üAJ�@¡0
0a��þ�(L���6��,5JK�
ÿ�,A��,-"�,-/p
 ;��	���bi
q�m)u�u
��o�k9��l�q:�
�)k�nCuLi)kHj�npopq�kHj��ZeQq�k��-uLi�uLkHm)uAq�k�eQq�r�s�t�nCuLiK¢fuLl�o6��k�
F£�(.*���$H,L�
ú�B�B�B�ýK<>�Pþ�?�?H,*þY�*ý

ù �	ûLüEýXü3þ-ÿ��¦þ������	�
���¦þ���
���ýXü5#�$��	��
¤��ý�������� þ���ÿ4�Eý��5�+@
�rþ-�������6�
����þ���
f&:MaX�,-(-#�*��	���¥()��þY�uþ�(.*�,L���6�:*��	(-�y��IQ�:#��:*
@¡�	��@�*��	%7,
(-��%7?��	/6,L���-
 ;¦<>,.(L�\ý"ü5,-?\ý§<�ü�@2B�B�D�E
ú�|9
��}þ�$H���uþ�*����
�¨��I

?

JK��%7?�#�*�,.� � ��()���+*�,-(.*�#���,-ýOMO/6,.(.*
���	(*þ�/;þ���ÿ¥JK��%7?�#�*�,L��MQ��@
R��	��,-,.���	��R�S8,-?�þY�
�%7,-���
QU����	"F,L���
�	*C�§��I8<>,.X�þ��PþY* � #��:*��6�Z

ú�B�B�B
ý
��*
�?�[\�\�]^]^]�ý ,-(-,-ý #��,LX¦þ��Hý ,*ÿ�#`\�?����Y�:,.(.*��)\�,-(.,Y\�/	(*þ�\�?��)\�*
�)B�BFD�E
ú�E�ý ?��Hý

ù E*û7M1ý�ü5��*�,-�9$H,.��R�
N �ý8©K,-����,.*
*�
Lþ��¦ÿª��ý�M1ý� 9%7�	*��Z
1&:<��uþ�(-,
J�þ�()��,�[� �Z�Y]«�}þY*�,-��(L� � ?�?����-þ�()��*������	R���©�þ��¦ÿ�]���ÿ�*��
02���:*
��#�(.*��	���!¬�,.*�()���	��R�
 ;7�	���bi
q�m)u�u���o�k9��l=q:�8n���uf­���n����)k�nCuLi.�
kHj�npo�q�kHj���v�x�r�s�q�l)o�t�r®q�k!g�opm.i
q�j�i:m)�9o�nCu
m.npt9i�uL
GS8,-(,ú-B�B���ý

ù z�û� �ý���ý9~6þ�*�,./�
��9ý9MO"F,.���-
�þ���ÿy¯%ý��%ýF~6þ�*
*�
O&20C%7?����Y"9�	��R8*
�uþ�(.,
(*þ�(L��,�,.�G,-(.*��	"F,-��,-�
��]��+*��ª$��uþ���()��?�����%7��*��	���ëþ��¦ÿ3*
�uþ�(.,
?�þ�(L�9�	��R�
 ;=�	���^i:q�m)u)u
��o�k9��l°q2�An���u�­9±�n��7�)k�nCuLiLk`j�npo�q�k`j��Hv�x�rN�
s�q�l�o�t9r®q�k§eQq�r�s�t�nCuLi�cAi:m)�9o�nCu
m.npt9i�uL
Z��#���,,ú-B�B�z
ý

ù B�ûNSLýa�Eýa¬����	,-�¦ÿ�/+��
Q <ýO��ýO~6þY*�,-/p
Aþ���ÿ¤¯Lý>�%ý ~6þ�*
*�
f&:~O#�*
*��	��R
���,�¬ �	/6/wU����+�*���²������H[³S�����þ�%7�	(�£�?�*��	%7� � þ�*��	������I����
<��uþ�(-,dJ�þ�()��,����6(L����?�����(.,-�
�
�����-
 ;��6�´�^i:q�mLu�u
��o�k���ldq:��n���u
µ ��l�n>cfe>gw¶9�:·�·Q·¥�)k�nCuLi)kHj�npo�q�kHj��`v�x�r5s�q�l�o�t9r¸q�k7g�o�m.i:q�j�i.�
m)�9o�nCu
m.npt9i�uL
GS�,-(Lú�B�B�z
ý

�

Session 3

Object-Oriented Architectural Support

Applying Predication to Reduce the Cost of Virtual Function Calls

Chris Sadler and Sandeep K. S Gupta
Department of Computer Science

Colorado State University
Fort Collins, CO 80523�

sadler,gupta � @cs.colostate.edu

Rohit Bhatia
VLSI Technology Center (VTC)

Hewlett-Packard Company
3404 East Harmony Road

Fort Collins, CO 80528-9599
rxb@fc.hp.com

Abstract

The direct costs of virtual function calls in object-
oriented programs is a runtime overhead incurred by the
number of operations required to compute a target func-
tion address, and the time to perform these operations. We
present a technique that uses an HPL PlayDoh architectural
feature known as predication to reduce the direct costs of
virtual function calls. This technique is based on the possi-
bility that the same virtual function table will be shared be-
tween virtual function calls, and whereby exploits this pos-
sibility by interleaving the function calls for objects whose
type cannot be determined statically. With cost models we
show that predication will eliminate redundant loads of the
virtual function table from memory, and thereby reduce the
impacts of memory latency on the overall runtime perfor-
mance of virtual function calls.

1. The overhead of virtual function calls

The use of virtual function calls within object-oriented
(OO) languages has a direct cost of degrading the runtime
performance of programs. As opposed to static function
calls that can be resolved during compilation, a virtual func-
tion call is resolved during runtime if it cannot be statically
bound during compilation. Hence, it will incur a runtime
overhead to determine which function entry point to jump to.
A study performed by Driesen and Holzle showed that C++
programs spend a median of 5.2% of their execution time,
and 3.7% of their instructions in performing virtual func-
tion calls [1]. They go the additional step of saying that this
overhead is likely to increase moderately on future proces-
sors. We believe that this will not be the case if compilers
are enhanced to better utilize newer architectural features in
order to reduce the additional time and/or instruction over-
head. In this study, we present such a compiler optimization
that applies predication on interleaved virtual function calls

to eliminate unnecessary loading of virtual function tables
(VFT) for objects whose type cannot be determined stati-
cally. By eliminating redundant loads , this technique will
minimize the time spent accessing the memory system, and
will reduce potential stalls in the instruction stream. We can
show that the cost of applying this technique will be no more
than a single cycle if the predication is not successful. How-
ever, we believe this cost is worth the potential savings when
considering the nature of OO programs, and the savings that
can be obtained in light of the growing performance gap be-
tween processor and memory systems.

1.1. The mechanics of virtual function calls

In order to understand how the overhead of virtual func-
tion calls can be reduced, the mechanics of such a call should
be understood. Given in Figure 1(a) is an example of a
class hierarchy using single inheritance, and its use. The
object and VFT layouts for this example are shown in Fig-
ure 1(b), which are based on a standard layout as described
by Ellis and Stroustrup [2]. According to Srinivasan and
Sweeney [3], there are four steps required to perform a vir-
tual function call when implementing a standard VFT lay-
out. These are:

1. Load the VFT which contains the entry for the called
function (i.e. access the VFT via the vptr).

2. Access from the VFT the function entry point to branch
to (i.e. load the address of A::foo or B::fee).

3. Adjust the reference to the object through which the
function is being called, to refer to the sub-object that
contains the definition of the function which will be
called (i.e. load A-offset and add to obj1, or load B-
offset and add to obj2). This is known as a late cast.

4. Branch to the entry point of the function.

 public virtual foo();
 public virtual fee();

class A {

int x; };

int y; };
 public virtual fee();
class B : public A {

obj1->foo();
obj2->fee();

A *obj1 = new B;
A *obj2 = new B;
...other code....

Virtual Function Calls

vptr
int x
int y

obj1 vptr
int x
int y

obj2

A::foo() A-offset
B::fee() B-offset

Class B’s VFT

(b) The object and VFT layouts

Class Declarations

(a) Example class hierarchy and its use

Figure 1. In C++ syntax, an example use of
a single inheritance class hierarchy, and the
resulting object and VFT layouts based on a
standard implementation.

In a single inheritance hierarchy, an object has a sin-
gle VFT in which all virtual function address are stored,
thereby simplifying step 1 by accessing the VFT via the
vptr. Whereas, in a multiple inheritance hierarchy, an object
may have multiple VFTs with different virtual function ad-
dresses. Consequently, an extra step may be required known
as an early cast. In an early cast, the reference to the object
through which the function is being called is adjusted at run-
time to refer to a sub-object whose VFT contains an entry
for the called function. For either single or multiple inher-
itance, the late cast (i.e. step 3) is required only when the
compiler stores offsets in the VFT rather than ”thunk” code.
The difference being that the ”thunk” code handles the cast-
ing of the object to another object, and an offset provides a
relative position of an object’s definition within the object
layout [3].

The overhead incurred by the above steps becomes ap-
parent when translating the steps into the instructions that
will be execute in order to perform the virtual function call.
Given in Figure 2 is the low-level intermediate representa-
tion (LIR) and the data dependency graph for a virtual func-
tion call under the HPL PlayDoy (HPL-PD) architecture [4].
As can be seen from this Figure, the overhead of the virtual
function call can be attributed to the load operations that are
performed, and the dependencies between the load and the
ALU operations (nodes 1,4 and 5). In most architectures,
the memory loads will incur the largest overhead in com-
parison to the ALU operations, and will most likely stall the

instruction stream if other non-dependent operations cannot
be scheduled during the load.

 r3 = ld r2
 r4 = r3 + 12
 r5 = r3 +20
 r6 = ld r4

 intp1 = r2 + r6
 r8 = pbrr r7 1
 ret_addr = brl r8

 r7 = ld r5

;load the virtual function table (VFT)

;load the late cast offset

;perform the late cast
;prepare to branch
;branch to the function entry point

;calc the address of the function entry point
;calc the address for the late cast offset

;load the function entry point

r3 = ld r2

2
r4 = r3 + 12

3
r5 = r3 +20

4
r6 = ld r4 r7 = ld r5

5

6
intp1 = r2 + r6

7

8

1

ret_addr = brl r8

r8 = pbrr r7 1

(b) Data Dependency Graph

(a) Low-Level Intermediate Representation

Figure 2. The HPL-PD instructions for a virtual
function call, and the data dependency graph.

In contrast to a static function call, as shown in Figure 3,
the number of instructions to perform a virtual function call
is greater, and consequently the performance is lower. A re-
lationship can be established between the runtime perfor-

r3 = pbrr _$fn_foo__!DFv 1 ;prepare to branch to the function
intp1 = r2 ;set the this pointer

ret_addr = brl r3 ;branch to the static function address

Figure 3. The HPL-PD instructions for a static
function call.

mance of these function calls by expressing the runtime of
the virtual function call (���) in terms of the runtime of the
static function call (���). Ideally, ��� would be the same as� � , however due to the extra instructions and the dependen-
cies between these instructions, � � will be larger by some
delta. With this in mind, the relationship between � � and��� can be express as: �	��
��	
������

(1)

The value of ��� is a factor of the extra instructions that
are required for a virtual function call (���������), the number

of cycles to issue an instruction (CPI), and the clock rate of
the machine. Hence, ��� can be expressed as:� �
�� �"!�#$#&%��('&�&%)�+*-,/.1032547698

(2)

and equation 1 can be rewritten as:�	��
��	
��:� � !�#$# %��('&�5%)�+*-,/.1032;4<698
(3)

As for the CPI, this value can be expressed as the sum of
the ideal CPI and the number of pipeline stall cycles per in-
struction. In the case of the virtual function call, the data de-
pendencies between the load and ALU operations will be the
cause of the pipeline stalls, and can be categorized as Load
Stall Cycles and ALU Stall Cycles. For the purpose of this
study we do not consider the stalls associated to the branch
delay, and assume that the branch operation for a static func-
tion call will consume as many cycles as with a virtual func-
tion call. With this simplification of the CPI, we can express
it as:�('&�=
�� >78$4 *9�('&�?�A@ ,/4<>+B�694<*C*D�&ED.1*-8/FG�IH @"J B�694 *-*K�&E .1*C8LF� �"!�#$#

(4)

Since the clock rate of a machine is constant, the only
way to reduce the runtime overhead of virtual function
calls (� �) is to reduce the number of additional instruction
(��� �����) and/or reduce the cycles per instruction (CPI). We
propose a technique below that will do exactly this, by uti-
lizing an HPL-PD feature known as predication to eliminate
unnecessary loads of the VFT.

1.2. Applying predication to virtual function calls

A common practice within OO programs is to partition
functionality into small, re-usable functions, also known
as methods. Consequently, the average number of calls to
methods in OO programs is higher than the number of calls
to functions in procedural programs [5]. However, given
that these methods are called through a finite set of objects,
one would expect that a number of the methods are called
with like objects (i.e instances of the same class). If this
was the case, and the methods are virtual functions, then the
calls to these functions will use the same VFT, as is shown
in the example given in Figure 1(b). Therefore, if the com-
piler was able to interleave these calls, it could eliminate the
redundant loads of the same VFT for each subsequent call
after the initial call. This would reduce the number of load
stall cycles (i.e. reduce the CPI) and reduce the pressure on
the load/store units, which opens the opportunity to schedule
other memory bound instructions. The compiler optimiza-
tion presented in this study does exactly this by interleaving
multiple virtual function calls for objects whose type can-
not be determined statically, and applies predication to con-
ditionally load the VFT when needed.

Predication supports conditional execution of individual
operations based on boolean guards, which are implemented

as predicated register values [6]. By use of predication, the
compiler can transform a virtual function call so that cer-
tain operations (e.g. loading the VFT) are controlled by 1-bit
predicate registers. The 1-bit predicate registers are read by
the hardware during the instruction decode/register fetch cy-
cle, and forwarded onto the execute cycle. Depending on the
value of the qualifying predicate, the computed results of the
guarded instructions are either applied towards the proces-
sor state, or discarded. As an example, Figures 4 and 5 show
the predicated and non-predicated HPL-PD instructions, re-
spectively, for two interleaved virtual function calls. These
schedules are based on the example given in Figure 1(a), and
on the assumptions given in Table 1. Note that the stalls
shown in cycles S1 and S2 are due to structural hazards re-
sulting from a single load/store unit with a latency that is de-
pendent on the average memory access (AMA) time. Hence,
the length of these stalls is variable, and in the case of the
S2 stall, it may be eliminated if the memory latency is short
(e.g. a memory latency of 2 cycles).

Architecture 2-Way Issue VLIW
Integer ALU Units 2 units with a latency of 1 cycle
Load/Store Units 1 unit with a latency based on AMA time

Table 1. Assumptions applied to the sched-
ules given in Figures 4 and 5

load obj2’s VFT

calc. address for obj1’s
offset & function entry pt.

load obj1’s offset

load obj1’s VFT

r11 = r10 + 16

r6 = ld r4

** Structural hazard stall **

r12 = r10 + 24

r4 = r3 + 12 r5 = r3 + 20

r10 = ld r9

** Remaining instructions **

calc. address of obj2’s
offset & function entry pt.

4+S1+S2

5+S1+S2

S2

3+S1

2+S1

6+S1+S2

S1

1 r3 = ld r2

Cycle VLIW Instruction

** Structural hazard stall **

Figure 4. The schedule of non-predicated
HPL-PD instructions for the two virtual func-
tion calls shown in Figure 1(a).

As shown in the schedule where predication is used, if the
objects are of the same class type, then the redundant loading
of the VFT is eliminated at cycle 2+S1. This would avoid
the stall cycles at S2, and provide an opportunity to schedule
another memory bound instruction in its place (i.e. in the
S2 cycle). On the other hand, if the objects are of different
class types, then all loads are performed and the length of
the schedule is the same as when predication is not used.

In order to quantify the benefits of predication, we should
first determine the cost of loading all VFTs, as would nor-
mally occur. In a schedule without the use of predication,
the number of VLIW instructions required to load the VFTs

p1 = 1; p2 = 0 iff r2 = r9
p1 = 0; p2 = 1 iff r2 != r9

if p2 then r10 = ld r9
if p1 then r10 = r3

r11 = r10 + 16

r6 = ld r4

r4 = r3 + 12

4+S1+S2

5+S1+S2

S2

3+S1

2+S1

6+S1+S2

S1

1

Cycle VLIW Instruction

r3 = ld r2

(p2) r10 = ld r9

p1,p2 = cmpr(r2,r9)

(p1) r10 = r3

r5 = r3 + 20

r12 = r10 + 24

** Structural hazard stall **

** Remaining instructions **

 ** Potentially Eliminated Stalls **

Figure 5. The schedule of the predicated HPL-
PD instructions for the two virtual function
calls shown in Figure 1(a).

is MNPOCQ	RTS�U M5V , where V is the number of interleaved virtual
function calls, and N is the maximum number of load oper-
ations allowed per VLIW instruction. Each VLIW instruc-
tion will complete the loading of the VFTs in the time period
for which it takes to locate the VFTs within the memory hi-
erarchy (i.e. the average memory access cycles). This is a
factor of the hit cycles, miss rate and miss penalty at each
level in the memory hierarchy. For simplicity, we will refer
to this as the AMA cycles, which is a based on the average
memory access time as shown by Hennessy and Patterson
[7]. Hence, the average number of cycles required to load
the VFTs can be expressed as:H;W<X3Y @ ,L4 >5�&ED.1*-8/F;
 Z[]_^a`9b]c Zed %�H&fgHI.hED.1*-8/F

(5)

and the AMA cycles for a 3-level memory hierarchy with an
L1 and L2 cache and main memory, is:H&fgH:.hE .i*-8/F�
�j \ 6k�&ED.1*-8/FLlkmG�nf \ F$FG2547698/lkmo% ` j \ 6p�&E .1*C8LFLlrqo�f \ F$FG2547698/lrq�%�j \ 6	�&ED.1*-8/FLs�t�u-v3s�wyx&zi{1| d

By use of predication, the number of operations to load
the VFTs is reduced by the cardinality of the set of virtual
function calls (S) that use the same object type as the first
virtual function call. In other words, once the first VFT is
loaded, each subsequent function call using the same VFT
can eliminate its load operation. Since the first virtual func-
tion call will load the VFT into the L1 cache, each eliminated
load from the subsequent virtual function calls will reduce
the overhead by the number of cycles required to access the
L1 cache, assuming a nonblocking cache using a simple hit-
under-one-miss scheme. We can express the number of cy-
cles to load the VFTs with use of predication as an extension
to Equation 5:H;W7X?Y @ ,/4 >k�&E .i*-8/F<} \ 69~�'&��8L> \ .1476 \ , ^
�� Z���� B �[]_^�`�b]c Z=d/� *

H&fgHP.hED.1*-8/F
(6)

Given in the schedule shown in Figure 5, where the num-
ber of interleaved virtual function calls is 2, and the assumed

latencies and miss rates for the different levels in the mem-
ory hierarchy are as given in Table 2, the average load cycles
with predication is:H;W<X3Y @ ,L4 >&�&ED.1*-8/F�} \ 69~�'&��8L> \ .1476 \ , ^
���� ��� B �[�_^�`) c � d�� %` � �n�DY � % `9� ���DY) � %o�7� d�d

Level Latency Miss Rate
L1 Cache 2 20%
L2 Cache 7 12%
Main Memory 35

Table 2. Example latencies and miss rates

In the case where the virtual functions are called with dif-
ferent types of objects, the set of virtual function calls (S) is
empty. Whereas, if called with like objects then S is � obj2-� fee � . The average load cycles required between these two
cases is 8.48 and 4.24 respectively. Since in some cases the
load cycles can be masked by overlapping non-dependent
instructions with the loads, the reduction of load cycles by
use of predication cannot be translated into a speedup for
the virtual function call. However, when the load cycles
cannot be fully masked, then the enhanced speedup result-
ing from the use of predication is approximately the ratio�o�/�D�$�a�$�<�G�;�<�y�-� ��� O �� K�$¡D�r¢o£L�i� O �h�/� O � Q�o�/� �/�a�$�<�G�;�<�y�-� � O �� +¢o£/�1� O �h��� O � Q . One would expect that
as the the number of interleaved virtual function calls using
like objects increases, so will the enhanced speedup.

What is missing from the average load cycles with pred-
ication is the cost of performing the predication (i.e. setting
the predicate registers and evaluating the predicated instruc-
tions). Given an architecture that would allow a maximum
of N loads in a single cycle, where N

�
1, the use of predi-

cation would replace N - 1 loads with compare-to-predicate
operations (CMPR). Since the CMPR operation has a la-
tency of 1 cycle, which is traditionally less than the latency
of the replaced load operations, the impact of using predica-
tion thus far is a reduction in cycles. The N - 1 replaced loads
then become predicated loads, which can be scheduled in the
cycle following the initial load. If any of these predicated
loads are executed, then they would complete execution one
cycle after the initial load, based on an average memory ac-
cess time. Thus, the cost of using predicated loads when
the object types do differ can be a single cycle. However,
as shown in the schedule from Figure 5, the cost is 0 cycles
when the load operation is not replaced but is merely pred-
icated (i.e. N = 1), and the predicated load and assignment
operations can be scheduled on the same cycle.

The other case to consider is when the objects are the
same type, and the assignment of the VFT must be per-
formed. This assignment cannot take place until the initial
load has completed. In an architecture that allows N load op-
erations in a single VLIW instruction, one can safely assume
will also support N assignment operations in a single VLIW

instruction. Consequently, if all N - 1 predicated assignment
operations were to be executed, they could be scheduled in
the same cycle and would complete in a single cycle (as-
suming a latency of 1 for ALU operations). Interestingly
enough, if there exists a mix of virtual function calls that do
and do not use the same object types, the predicated assign-
ment operations can be scheduled on the last execution cycle
of the predicated load operations since these operations are
independent of each other. Hence, we can safely say that the
cost of using predication in virtual function calls will cost
one cycle in the worst case, thereby modifying Equation 6
to be:H;W7X?Y @ ,/4<> �&E .1*C8LFi} \ 69~r'&��8L> \ .1476 \ , ^
¤� Zg��� B �[�_^�`�b�c Z=d/� %/H+fgH5.hED.1*-8/FL�)

(7)

In terms of Equation 3, predication reduces the number of
load cycles which can potentially reduce the number of load
stall cycles. The load stall cycles are used to compute the
CPI, as shown in Equation 4. On the other hand, the instruc-
tion count which is also used to compute the CPI, increases
due to the additional compare-to-predicate and assignment
instructions. However, the predicated instructions (i.e. the
VFT load and assignment) may or may not be committed to
the processor state. This can impact the CPI. Thus, to ac-
curately reflect the CPI on architectures that support pred-
ication, a raw CPI and a useful CPI should be considered.
The raw CPI reflects all instructions, regardless of if they
are predicated. Whereas, the useful CPI reflects only those
predicated instructions that are committed. As for this study,
we consider only the raw CPI which is an upper bound to the
actual CPI. With this in mind, we can express � � with pred-
ication as: �k�I} \ 69~5¥3��8$> \ .i476 \ , ^
��k
¦��§ ` � � !�#i# � � d %

` �('&� �©¨ * _[]_^ 47698L>5Ba694<*-*K�&E .i*-8/F` � � !�#$# � � d d �)hª %)�+*-,/.1032547698
2 Other techniques

This application of predication towards virtual function
calls is not limited to single inheritance hierarchies, as our
example depicts. In fact, this concept can be further ex-
tended with multiple inheritance hierarchies to reduce the
cost of the early cast. For instance, if two virtual functions
are contained in the same VFT, and the objects with which
these functions are called are siblings in the class hierarchy
(i.e. they inherit from the same base classes), then both the
early cast and the loading of the VFT can be eliminated for
one of the calls.

Another application of predication to reduce the over-
head of virtual function calls is to use it in conjunction with
runtime class tests, or also known as I-Call If Conversion
[8]. This would convert the virtual function calls into static
function calls, and reduce the branch mispredicts that are
generally seen with this type of conversion.

3 Summary

To minimize the runtime overhead associated to virtual
function calls, one must either reduce the number of opera-
tions required to perform a call, or reduce the CPI for the
call. With a basic understanding of the mechanics of vir-
tual function calls, one can see why they incur this overhead,
and how this overhead might be reduced in light of newer
architectural features. Predication is one such feature that
could be used to conditionally eliminate loading the same
VFT for multiple virtual function calls. By eliminating re-
dundant load operations, we can minimize the time spent ac-
cessing the memory system and reduce potential stalls in the
instruction stream. If the load operations cannot be reduced,
then the cost of using predication, in the worst case, is a sin-
gle cycle. We believe this cost is worth the potential savings
when considering the nature of OO programs, and the sav-
ings that can be obtained in light of the growing performance
gap between the processor and memory systems.

References

[1] K. Driesen and U. Holzle. The direct cost of virtual
function calls in C++. In Proceedings of the Conference
on Object-Oriented Programming Systems Languages
and Applications (OOPSLA ’96), October 1996.

[2] M. A. Ellis and B. Stroustrup. The Annotated C++ Ref-
erence Manual. Addison-Wesley, 1990.

[3] H. Srinivasan and P. Sweeney. Evaluating virtual dis-
patch mechanisms for C++. Technical report, IBM Re-
search Division, Jan 1996.

[4] V. Kathail, M. Schlansker, and B. Ramakrishna Rau.
HPL PlayDoh architecture specification: Version 1.0.
Technical report, Hewlett-Packard Computer Systems
Laboratory, HPL-93-80, Feb 1994.

[5] B. Calder, D. Grunwald, and B. Zorn. Quantifying be-
havioral differences between C and C++ programs. In
Journal of Programming Languages, 2:4, 1994.

[6] P. Y. Hsu and E. S. Davidson. Highly concurrent scalar
processing. In Proceedings of the 13th International
Symposium on Computer Architecture, pages 386–395,
June 1986.

[7] J. L. Hennessy and D. A. Patterson. Computer Archi-
tecture: A Quantitative Approach. 2nd Edition, Morgan
Kaufmann, San Francisco, CA, 1996.

[8] B. Calder and D. Grunwald. Reducing indirect func-
tion call overhead in C++ programs. In ACM Princi-
ples and Practices of Programming Languages, Port-
land Oregon, 1994.

Hardware Support for Profiling Java Programs

hanishn@itsc.uah.edu cohen@ece.uah.edu

Abstract

Assuming the Java version of a program provides good
performance, many programmers are interested in using
Java as a replacement for many traditional programming
languages because of the portability of Java and the
extensive runtime libraries. However, in many cases the
performance of the Java code requires improvement
before it is acceptable. Profiling provides an effective
means of identifying the sections of code that consume the
most processing time and are the best candidates for
optimization.

A prototype low-overhead, time-based profiling system
has been developed for the Kaffe Java Virtual Machine’s
(JVM) Just-In-Time (JIT) i386 translator using the
high-resolution timestamp register of the Intel Pentium
processor. Experience with this approach suggests that a
‘‘virtual time’’ register would be a useful addition to the
processor to simplify measuring the performance of
multithreaded programs. Direct user control of the
performance monitoring hardware would reduce the cost
of measuring multiple performance metrics on a
per-method basis.

1. Introduction

2. Instrumentation Architecture

3. Results

Table 1: Comparison Two Method of Measuring
Benchmark Runtime.

Table 2: Comparison of coverage of JVM runtime
by profiler.

Table 3: Top 20 times for HelloWorldApp.

Table 4: Volano measurements.

4. Conclusion

Acknowledgments

Bibliography

Adaptive optimization for Self:
Reconciling High Performance with Exploratory
Programming

Proceedings of the 29th International
Symposium on Microarchitecture

Architecture Optimization Manual

THE JAVA HOTSPOTTM PERFORMANCE
ENGINE ARCHITECTURE

Proc. 24th ACM
Symposium on Principles of Programming
Languages

Kaffe

Session 4

Microarchitectures for Java

VLSI Architecture Using Lightweight Threads (VAULT) -
Choosing the Instruction Set Architecture
I Watson, G Wright, A El-Mahdy
University of Manchester, UK.

watson@cs.man.ac.uk, gwright@cs.man.ac.uk, aelmahdy@cs.man.ac.uk
ll-

to
lso
be
ue.
e
in-
-
if

ce
rly
a-
e
-
as
de
ur.
PU
is
e-

er-
to

re
so
ex-
Abstract

The VAULT project is concerned with the design of a
‘multi-processor on a chip’ aimed specifically at multi-
threaded Java implementation. It has wide ranging aims
that require research in a variety of hardware and software
areas. The project is still in its early stages and most of the
work is still to do. This paper provides an overview of the
project as envisaged currently and then examines some of
the initial work in detail. In order to perform a comprehen-
sive evaluation of the VAULT approach, it was thought nec-
essary to perform detailed instruction level simulation. A
single CPU structure therefore needed to be defined to form
the basic building block of the system and hence the simula-
tor. One of the first decisions needed was the basic Instruc-
tion Set Architecture of the CPU. The reasons behind the
choice are examined using results obtained by detailed in-
strumentation of the Java Virtual Machine and the running
of a variety of Java benchmarks.

1.Introduction

The VAULT project has two distinct but closely con-
nected aims: firstly to explore the potential of future VLSI
to produce a ‘multi-processor on a chip’ and secondly to
provide support for high performance Java based systems of
the future.

The combination of these two issues is neither accidental
nor arbitrary. The case for considering single chip multi-
threaded and/or multi-processor structures to utilize future
VLSI technology is well known. However, most proposals
in this area have either been extensions of current super-sca-
lar designs or integrated versions of conventional multi-
processors [1]. Concentration on the Java environment al-
lows us to consider new approaches which can optimize the
software performance, while at the same time benefit from
the natural multi-threaded structure, to produce high per-
formance, low power hardware.

The environment is significantly different from that re-
quired to support serial or parallel C or FORTRAN based
code for which current processors are optimized. The most
obvious differences are:-

• Execution by dynamic compilation of bytecode.
• Object oriented code with heavy use of method ca

ing, dynamic binding, object access (via indirec-
tions) and garbage collection.

• Dynamic linking and loading of objects.
• Program level multi-threading.
• Particular importance of multi-media applications.

It is believed that hardware structures can be tailored
these needs with a resulting performance increase. It is a
important to note that many such systems will need to
portable and hence power dissipation is a significant iss

It is assumed that compatibility with previous hardwar
is not necessary (this is probably essential to permit the
vestigation of novel ‘on-chip’ mechanisms). Dynamic bina
ry translation can be used to run ‘legacy’ software
necessary.

This paper outlines the overall features of the VAULT
architecture, which are aimed at realizing high performan
for the Java environment. However, the project is at an ea
stage and much of the detail is still being explored. The m
jor detail of the work described here is concerned with th
selection of an Instruction Set Architecture (ISA). A selec
tion of programs from the JavaSPEC [2] benchmarks h
been used to analyse the various ways in which byteco
can be executed and the resulting overheads which occ
This analysis suggests that a register windows based C
would provide optimum performance. Assuming that th
approach is followed, the final section describes a more d
tailed analysis of the benchmark execution in order to asc
tain the numbers of registers and windows necessary
achieve that performance.

2.Project Principles

The following are the principles and features which a
guiding our research. This is currently in an early stage
that the detail of some of these issues has not yet been
plored.

1. Parallelism through multiple simple CPUs rather than
exploiting ILP etc.

t

for
of
a
s a

en-
l

ing

e-
re

ere

e
ce
ll
t
e-

ic
m
ti-
ues
o
ack
of
ed-
p-
ar

of
a

nal
th-
se
f
oc-
elt
m-
r-
a

• Natural exploitation of threaded parallelism - poten-
tially higher performance than the alternative of time
sliced execution on super-scalar CPU as thread
count increases.

• Complexity/performance ratio per CPU lower lead-
ing to more efficient silicon use.

• Power/performance ratio per CPU lower - particu-
larly important for portable computing.

• Simple processors imply significantly reduced
design effort.

2. Processor structure optimized for support of (dynami-
cally) compiled Java and multiple thread support.

• Register windows structure for efficient support of
frequent subroutine (method) calls.

• Multiple register set ‘heap’ with hardware assisted
allocation and spilling to allow frequent thread
switching within a CPU.

• Caching structure tailored to object accessing and
dynamic binding.

3. Inter processor communication at register and cache
level via special bus structures.

• On-chip communication will enable specialized
communication paths to be implemented at high
speed.

• Support for very lightweight thread creation. Use of
dynamic thread creation. Use for ‘real’ parallelism
(loops etc.) within Java level threads for higher par-
allel performance (e.g. for multi-media computa-
tions).

• Support for dynamic load balancing. Rapid
exchange of load information and rapid task creation
minimize ‘feedback system instability’.

• Ability to query remote caches a significant aid to
task placement.

4. Processor support for multi-media applications.

• Multi-dimensional cache structures.
• Multi-media processor functions?

5. Dynamic compilation (for parallelism).

• Dynamic compilation for optimal use of single proc-
essor structure (Hot Spot etc.)[3].

• Decisions on size of parallel tasks best left until run-
time.

• Decisions about how to divide (e.g. data sets) bes
left until run time.

• Data representations can be altered dynamically?
(e.g. tree structured arrays)

There have been a number of architectures proposed
the efficient execution of object-oriented languages, most
them aimed at Smalltalk. The SOAR [4] processor had
register windows structure but these were not organized a
freely allocated heap like VAULT. Most of the other SOAR
features such as tagged data are not applicable in a Java
vironment. The Mushroom [5] project examined nove
memory mechanisms for object accessing and cach
which may be relevant to VAULT.

We have (very) recently become aware of some of the d
tails of the Sun MAJC architecture [6]. This appears to sha
many of its higher level aims with VAULT. The major dif-
ferences appear to be at the individual processor level wh
they propose the use of multiple function units and a VLIW
ISA.

3.Choosing the VAULT CPU ISA

It is tempting to think that the correct way to approach th
design of hardware to execute Java efficiently is to produ
a stack based CPU. This might either implement the fu
functionality of the Java Virtual Machine in hardware or a
least provide a simple stack based ISA into which the byt
codes can readily be translated.

It was felt that the first of these options was against bas
RISC philosophy and was thus unlikely to lead to optimu
performance. The picoJava [7] project has already inves
gated the second approach. It uses stack caching techniq
coupled with hardware supported instruction folding t
overcome some of the inherent disadvantages of a st
based ISA concerned with the movement and duplication
operands. Such a processor is particularly suited to emb
ded applications where it requires minimal software su
port. A number of other projects have also studied simil
hardware techniques.[8][9]

We were not convinced that, if one assumed the use
sophisticated JIT or dynamic compilation techniques,
stack based structure would outperform a more conventio
register based ISA. However, due to the heavy use of me
od calling in many Java applications, we thought that the u
of register windows might be beneficial. Although it is, o
course, possible to study Java implementations on real pr
essors which exhibit the various design alternatives we f
that there was a need to perform an evaluation using a co
mon methodology. We therefore studied a number of diffe
ent ISAs together with appropriate software support using
variety of Java benchmarks.

al
tal

in
ls.
i-

r
_4

e
th-
ller
ro-
he
ng

is
lls
ns.
%
)
a-
In order to produce a useful comparison, it was necessary
to postulate some simple cases which represented distinct
points in the design space. We chose to compare the follow-
ing models of execution:-

• Bytecode- A direct execution of Java bytecode
assuming no optimization.

• Folding_2 - Java bytecode execution assuming the
folding optimizations used in the picoJava-1 processor
(up to two instructions are folded).

• Folding_3 - Extends the Folding_2 model to consider 3
instruction folding

• Folding_4 - Java bytecode execution assuming the
folding optimizations used in the picoJava-2 processor
(up to four instructions are folded).

• Reg- A simple register based ISA together with a ‘state
of the art’ register allocation algorithm. We chose to
base this on the techniques described for the Cacao
compiler [10] as these seemed to represent an efficient
but simple mechanism.

• Regwin- A register windows based ISA again using the
Cacao algorithm.

We have implemented these models and added them to
the Sun JDK JavaVM through which the JavaSPEC bench-
mark programs are analyzed. (The _227_mtrt program was
omitted as it is a multithreaded program and we are con-
cerned here with simple single thread characteristics.)

The nature of the benchmarks is described briefly in Ta-
ble 1.

The results are summarized in Figures 1 and 2. Figure 1
shows the dynamic bytecode execution frequencies for var-
ious bytecode classes; constant loads (const), local variables
load/store (local), array load/store (array), stack operations
(stack), arithmetic/logic (ALU), conditional/unconditional
branches (branch), field load/store (field), method invoca-
tion (invoke) and other (ow). The results assume the Byte-

code execution model. The high occurrence of const, loc
and stack operations, contributing around 50% of the to
instruction count, is responsible for the stack overhead.

Figure 1. Dynamic instruction mix.

Figure 2 shows the number of instructions executed
each benchmark program for the six execution mode
Folding_2 reduced the number of instructions by a max
mum of 17% (for _209_db) and a minimum of 6% (fo
_202_jess); the average is 12%. Folding_3 and Folding
contribute another 3% at most with average of 1%.

Reg worked better than the folding models for four of th
programs; reductions ranged from 26% to 44%. For the o
er two programs (_202_jess, _213_javac) there is a sma
reduction of 14%. As can be seen from Figure 1, these p
grams have nearly double (2, and 1.7 respectively) t
number of method calls of the other programs, increasi
the relative call overhead.

Figure 2. Relative instruction counts

Regwin was able to outperform all other models. Th
was expected observing, from Figure 1, that method ca
account between 1% and 5% of the executed instructio
Regwin reduced the number of instructions by at least 40
for five programs. The remaining program (_228_jack
showed only a 29% reduction. This is attributed to the rel

Table 1: Benchmark Programs

Program Description

_201_compress Lempel-Ziv compression

_202_jess Java Expert Shell System

_209_db Database functions

_213_javac JDK 1.02 Compiler

_222_mpegaudio Decompress MPEG-3 audio

_228_jack Java version of yacc

0%

10%

20%

30%

40%

50%

60%

co
ns

t
loc

al
ar

ra
y

sta
ck

ALU

br
an

ch fie
ld

inv
ok

e ow

P
er

ce
nt

ag
e

of
 in

st
ru

ct
io

ns

_201_compress _202_jess _209_db

_213_javac _222_mpegaudio _228_jack

0

0.2

0.4

0.6

0.8

1

1.2

_2
01

_c
om

pr
es

s

_2
02

_je
ss

_2
09

_d
b

_2
13

_ja
va

c

_2
22

_m
pe

ga
ud

io

_2
28

_ja
ck

N
or

m
al

iz
ed

 in
st

ru
ct

io
n

co
un

t

Bytecode Folding_2 Folding_3 Folding_4 Reg RegWin

ed
4
rk
y-
ut-

i-
to
ite
e

-
s
x-
d

all
v-
th.
ks
ics
it
of

e-
ade.
he
-

of
tively frequent stack (at least 8%) and infrequent local and
ALU operations. This suggests less sharing of local values
and hence the benefit of using registers is decreased.

We have not considered the effects of ‘in-lining’ in our
study. This would undoubtedly narrow the gap between the
Reg and Regwin results for some applications. However,
there are limits to which in-lining techniques can be used for
deeply nested programs and it is inapplicable in the general
cases of both recursion and dynamic binding. It can be ar-
gued that most of the JavaSPEC benchmarks are not repre-
sentative of programs written using the full Object Oriented
style where the above issues will be of increased relevance.
We therefore believe that achieving optimum performance
on real method calls is important and hence our approach is
justified.

4.Register and Window Usage

The previous analysis assumed an unlimited supply of
registers and register windows. We re-instrumented the Sun
JDK JavaVM to count the number of local variables ac-
cessed. Figure 3 shows the accumulated percentage of local
variable usage assuming that all local variables are mapped
into registers.

Figure 3. Cumulative percentage of register usage

The x-axis shows the number of registers required on a
base 2 logarithmic scale (i.e., number of bits required to en-
code a local variable). The most register hungry application
(_222_mpegaudio) has a ‘knee’ at 13 registers covering
91% of variable accesses. The next significant ‘knee’ is at
30 registers where several applications achieve 95% usage.
This indicates that the decision is between 16 and 32 regis-
ters although a more detailed study of dynamic register us-
age in the presence of dynamic register allocation
algorithms is required before a final decision is reached.

In order to determine the number of register windows, it

is necessary to study the method call depth. We extend
our instrumentation to provide this information. Figure
shows the call depth distribution for the various benchma
programs. The x-axis is the actual call depth, while the
axis is the percentage of total instructions which get exec
ed at that depth. The absolute value of the call depth is of m
nor importance, in fact the offset of 13 in Figure 4 is due
a set of ‘wrapper’ methods around the benchmark su
which are executed initially. These will, of course, requir
register window allocation and register ‘spills’ if the win-
dow total is exceeded but this will only occur once. The im
portant characteristic is the width of the profile. Program
such as _209_db with a very narrow profile indicate that e
ecution takes place with very shallow nesting while a broa
profile like _202_jess indicates deep nesting.

Figure 4. Call depth distribution

Flynn [11] suggests that a useful measure of the c
depth of programs is the relative call depth defined as the a
erage of absolute differences from the average call dep
Table 2 shows the relative call depth for the benchmar
used.This clearly distinguishes the different characterist
which are apparent from the graphical profile. However,
does not give an accurate figure for the actual number
windows needed.

A more accurate estimate of the register window requir
ments is necessary before design decisions can be m
Our instrumentation was yet further extended to study t
way in which the provision of windows affected the execu
tion.

We simulated the benchmarks with varying numbers

0

20

40

60

80

100

120

0 2 4 6 8 10

re g no (log base 2)

A
cc

u
m

u
la

tiv
e

 p
e

rc
e

n
ta

g
e

_201_compress _202_jess _209_db

_213_javac _222_mpegaudio _228_jack

Table 2. Relative Call Depth

Benchmark 201 202 209 213 222 228

Relative
Call Depth

0.16 5.88 0.54 7.40 1.70 5.67

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

Call depth

_201_compress _202_jess _209_db

_213_javac _222_mpegaudio _228_jack

d

er
od
ev-

ign
on-

a
e
e-
the
ex-
er
-

i-

ion

-

-

-

-

ct-
d-
ri-
r

.
el
windows and measured the miss ratio, defined as the ratio of
the number of window accesses resulting in window over-
flow or underflow to the total number of windows accesses.
A window access takes place twice per method call, once on
entry and once on exit. The results are shown in Figure 5.

As expected from the relative call depth figures, two of
the benchmarks have a requirement for only a small number
of windows and, for them, two might suffice. However, to
achieve a low miss ratio (less than 0.02) for all benchmarks,
eight register windows appear to be necessary. To empha-
size, at this level over 98% of all method calls would not re-
quire register spilling.

From these experiments, it is believed that we have deter-
mined that a configuration of eight register windows each
containing 16 or 32 visible registers would be sufficient to
achieve good performance.

Figure 5. Window miss ratios

It is thought that the this configuration is of acceptable
complexity for the processor design being considered.

5.Conclusions

This paper presents an overview of the VAULT project
followed by the detail of the choice of an ISA.

The design issues are outlined together with possible so-
lutions currently being investigated. The most important
features of VAULT are thought to be:-

• Simple CPU structure with optimized support for Java
like languages.

• On-chip multi-processor structure with fast thread
synchronization facilities.

• Support for multi-media processing.

Initial results concerning the ISA design are presented
which have demonstrated that an ISA using register win-
dows results in a dramatic reduction of the stack overhead,
far better than can be achieved by folding techniques. The

register windows structure is important for reducing metho
call overheads.

We have verified by detailed simulation that the numb
of registers and register windows required to achieve go
performance is modest and therefore consistent with the l
el of hardware complexity envisaged.

The work done so far has enabled us to narrow the des
space to a level where we are able to embark on the c
struction of an instruction level simulator for a VAULT
CPU. This work, together with compilation routes from Jav
bytecode (and C) is almost complete. Using this, we will b
able to perform a very accurate verification of the design d
cisions presented above and make any adjustments to
CPU structure which are necessary. The next stage is to
tend the simulation to the multi-processor structure in ord
that we can start to study the full potential of the VAULT ap
proach.

6.References

[1] Doug Burger and James R. Goodman. Billion-transistor Arch
tectures.IEEE Computer, 30(9):46-49, September 1997.

[2] SPEC JVM98 Benchmarks, Standard Performance Evaluat
Corporation. http://www.spec.org/osg/jvm98.

[3].David Griswold. The Java HotSpot Virtual Machine Architec
ture. White paper, Sun Microsystems, March 1998. http://
java.sun.com/products/hotspot/whitepaper.html.

[4] David M. Ungar. The Design and Evaluation of a High Per
formance Smalltalk System.ACM Distinguished Dissertation.
MIT Press, Cambridge, Massachusetts, 1987.

[5] I.W. Williams, M.I. Wolczko and T.P. Hopkins. Dynamic
Grouping in an Object Oriented Virtual Memory Hierarchy.Pro-
ceedings ECOOP 1987 pages 87-96.

[6] Introduction to the MAJC Architecture.Sun Microsystems,Au-
gust 1999. http://www.sun.com/microelectronics/MAJC/docu
mentation/majcintro.html

[7] Harlan McGhan and Mike O’Connor. PicoJava: A Direct Exe
cution Engine for Java Bytecode.IEEE Computer, 30(9):79-85,
September 1997.

[8] N. Vijaykrishnan, N. Ranganathan, and R. Gadekarla. Obje
Oriented Architectural Support for a Java Processor. In E. Jul, e
itor, Proceedings of the 12th European Conference on Object-O
ented Programming,number 1445 in Lecture Notes in Compute
Science, pages 330-354. Springer, July 1998.

[9] Patriot Scientific Corporation.PSC1000 Microprocessor.
http://www.ptsc.com/psc1000/index.html.

[10] Andreas Krall. Efficient JavaVM Just-In-Time Compilation
In Proceedings of the 1998 International Conference on Parall
Architectures and Compilation Techniques, Paris, France, October
1998.

[11] Michael J. Flynn.Computer Architecture: Pipelined and Par-
allel Processor Design. Jones and Bartlett, Boston, 1995.

0

0.1

0.2

0.3

0.4

0.5

2 4 8 16

Number of windows

M
is

s
ra

tio

_201_compress _202_jess _209_db

_213_javac _222_mpegaudio _228_jack

A Two Step Approach in the Development of a Java Silicon Machine (JSM)
for Small Embedded Systems

H. Ploog · R. Kraudelt · N. Bannow · T. Rachui · F. Golatowski · D. Timmermann
Department of Electrical Engineering and Information Technology

University of Rostock, Germany
E-mail : hp@e-technik.uni-rostock.de

Abstract

 In current solutions a Java Virtual Machine executes
Java byte code by interpretation or dynamic compilation.
To increase the execution performance we propose our
experiences in the development of a processor
architecture that can directly execute JavaCard 2.0
compliant byte code.

1. Introduction

JAVA has been developed for desktop and internet
based systems but there are several implementations in the
embedded area where specific Java advantages can be
reused, so the idea behind JAVA and its benefits is
successively transported into the embedded system-
industry. In this paper we focus on static embedded
systems in which is no need for dynamic class loading
during runtime (e.g. car radio, cola machine, smart card).
But the user of such systems also has the possibility to
choose from a set of different applications.

To execute Java byte code on a platform there are at
least 3 possibilities which are different in terms of
execution speed:

• Interpreted execution
The byte code is interpreted by software.

• Compiled execution
In an additional step the Java byte code is
compiled to a specific processor architecture so
that there is no runtime overhead for inter-
pretation. It is also possible to compile the byte
code just in time (JIT), the so called dynamic
compilation-technique.

• Direct execution (JSM)
Java byte code can directly be executed by a real
Java processor.

By real Java processor we consider a processor not
only optimized for executing JAVA-code but capable of
executing Java-code without a software implemented Java
Virtual Machine.

In the last few years the importance of SUN’s Java-
technology raised up and it becomes a topic on many
university and commercial research programs but only a
small number of projects dealing with the development of
a Java Silicon Machine (JSM) are known.

Many of the existing chips [7],[8] remap the Java byte
code to a new (reduced) instruction set to speed up the
performance. Glossner et al. described a system which is
based on the same idea but they also used a
multithreading architecture [3]. Another theoretical
description of a Java processor architecture can be found
in [6]. At the University of Zurich an ongoing project is
called JAMA [4]. It seems that this processor will be
designed for direct execution of JAVA byte code.

To our knowledge by now only three existing (real)
Java processors are known: picoJAVA-I [12], microJava
(picoJAVA-II) and JEM-1[13] . The latter one is designed
by Rockwell Collins Inc. and the former one by SUN
itself. Since microJava is based on the intellectual
property module PicoJava-II one anticipates an increasing
number of custom Java processors.

In this paper we describe our experiences in the
development of a JSM for small embedded systems like
smart cards.

The project is split into two parts. The first part is a
software-based Java Virtual Machine suitable for 8051-
processor like systems for architecture exploration, and
part two is the JSM itself. The second part is still under
development since this is currently a work in progress.

2. Differences between Java and Java for
smart cards

A smart card is a single-chip computer based on an 8-
bit microcontroller. The two most commonly used chips
are Motorola’s 6805 and Intel’s 8051. These systems

contain three different types of memory: RAM, EEPROM
and ROM. The RAM is only used to store intermediate
results during calculation. The EEPROM holds private
cardholder values such as a private encryption key or a
bank account number. The ROM is used to store the
program that runs on the smart card. Smart cards are
connected via five pins to the smart card reader. So these
systems are “on” only if they are inserted into a reader.

The size of the die is constrained to 25 mm2. Therefore
memory space is hard limited. In average, those systems
contain 4 to 20 Kbytes of ROM, 0.1 to 1 Kbytes of RAM
and up to 10 Kbytes of EEPROM.

Clock frequency is typically about 3.57 to 5 MHz and
an external clock has to be supplied. Smart cards can be
seen as special cases of embedded systems.

SUN proposed a specification for the usage of Java on
smart cards [11]. Because of the limited memory on smart
cards, SUN had to remove some memory-consuming op-
codes and features, like

• string manipulation,
• floating point arithmetic and
• threads.

Neither the types char, float, double and long nor
operations on those types are supported. Smart cards also
do not support arrays with more than one dimension.
Object usage is limited as there is no <clinit>-method.

Besides these obvious modifications there are other
restrictions resulting from the behavior of a smart card.
Java Card systems are not able to load classes
dynamically. All classes used are masked into the ROM
of the card during manufacturing. Installing through a
secure installation process after the card has been
delivered to the smart card producer is possible too.
Programs executing on the card may only refer to classes
which already exist on the card as there is no way to
download classes during the normal execution of
application code. For more details see [11].

Due to the lack of memory space on smart cards the
JVM has to be split into two parts, one for offline
preparation as loading, resolving, and linking all classfiles
and the other one for online execution of the Java byte
code as shown in Figure 1.

Java Virtual Machine

converterClassfiles

card terminal

Applet
Image

(CAP-file)

PC smart card

Java Chip

OS / JCRE

Figure 1. Separation of the Java Virtual Machine into two
parts

During preparation the applets are converted to an
applet images which can be directly executed on the smart
card.

In conventional JVMs the byte code is verified before
it is executed. In the smart card area the Byte-Code–
Verifier is part of the offline block due to its time and area
consumption. Therefore, a downloaded applet is not
verified during runtime. To avoid illegal operating applets
each applet is signed with a digital signature (CAP-file) so
the card itself can determine whether the applet belongs to
an environment it trusts or not.

But even a signature is no guarantee that an applet is
always working correctly [10]. Unfortunately, there is no
way to protect the card against transitive Trojan Horses
but currently no such attacks are known. More details on
Java Cards can be found in [16], [17] and [18].

3. Simulation-model based on 8051

The first step in the development process was to build
a software version of a Java Virtual Machine according to
SUN's JavaCard Specification 2.0, which is suitable for
implementation on 8051-processor systems [5]. It is a
cleanroom implementation and was used to understand the
basic behavior of the JVM.

Since the goal was a Java processor some techniques
which are used for describing hardware systems were used
to implement the Java Virtual Machine. E.g., the
execution engine of the JVM has one big “switch-case”-
construct. It is figured out that such a switch-case-
construct is not very well suited for a small footprint
implementation. The next step was to identify groups of
opcodes so that function calls like ALU(opcode, A, B) or
stackOp(opcode, value) can be used. Thereby we were
able to encapsulate those function-blocks.

The advantage is due to the fact that the simulation
model now looks similar to a structural description of a
JSM so that the HW-designer just has to make minor
modifications only.

On the other hand the disadvantage is that function
calls result in a small software overhead.

To avoid nondeterministic and time-consuming
searches in classes, methods, or fields in the constant pool
it is recommended to have direct access to these
structures. This can only be achieved if the addresses of
all accessible objects are known in advance. Since
resolved applets contain each class they need, each
relative location is fixed. But instead of storing an
absolute address an applet-relative address is stored. In
this way applets can be moved inside the persistent
memory (relocatible applets) for the cost of an additional
adder.

Firmware or device specific software is located in the
application programming interface (API). On smart cards

the API-functionality is located in ROM and the applets
are stored in EEPROM. To select an API or applet-
method, the highest bit in the available address space is
used as a selector (see Figure 2). This bit must be set by
the converter while linking the class-files. The base
address of the current active applet is stored in an applet
base register. Native methods for direct hardware access
are also located inside the API. These methods are
necessary since different applets must be able to read
data, e.g. a bank account number, or they have to
increment the number of tries made to activate the smart
card.

The implementation requires about 14 Kbytes of ROM
on a 8051-system including the cost for the additional
modularity of about 3 Kbytes. Since this is a simulation
model we have not optimized the source code for the
specified architecture.

0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0

Applet API

applet or API?

base address base address

+0 0

base relative address to applet-image:

selector Applet (=0) or API (=1)

absolute address
to applet-image

Figure 2. Access to applet-image or API

4. Moving from software to hardware

A Java Card–system is more then just a Java processor.
Moreover, the virtual machine is part of the Java Card
runtime environment (JCRE). The API, the executive (for
handling different applets), and the native methods also
belong to the JCRE.

Because of security reasons Java does not offer any
byte code for direct hardware access.

To access IO using a Java Virtual Machine on standard
or dedicated processor architectures, an API-function is
called. Inside this function the Java-environment is left to
access IO with the underlying processors IO-opcode, e.g.
mov port_adr, #val (see Figure 3).

JVM

standard processor & peripherals

C / Assembler

API

OS

JAVA

Hardware

Figure 3. IO-access with JAVA

By using a Java processor there is no environment
which could be left. To overcome the IO-access problem
in Java the instruction set will be expanded. This is
possible since two opcodes ($FE, $FF) in the opcode
space are reserved for custom usage.

Due to a missing standard these solutions are
proprietary. On PicoJava-II about 33% of the
implemented opcodes can not be found in the Java
specification.

Obviously, these new (hidden) opcodes can not be
generated using an ordinary Java-compiler. Accessing
these opcodes becomes somewhat difficult because a
processor specific compiler has to be used.

Moreover, applets compiled in such a way are no
longer interchangeable and one of the major benefits of
Java gets lost.

As soon as implementation details become public
knowledge, it should not be too hard to write malicious
code, i.e. Trojan horses. This can not be accepted in the
smart card area (revealing PIN's and POS's).

It can be shown [9] that only two additional opcodes
are necessary: IO-Read and IO-Write.

In the proposed JSM the address of the opcode is
traced to avoid illegal IO-access. Since application-
applets are stored in reprogrammable memory the
JavaCard–runtime-environment (JCRE) is located in
ROM or in a different EEPROM. Therefore, it is possible
to trace the address of the opcodes to-be-executed and a
very small online-checker easily can allow or prohibit the
execution of the opcode and may generate an exception in
case of a fault [2].

Although IO-access is required in different native
functions we only implemented IO-Read and IO-Write.
Therefore we have no hardwired native functions and the
functionality is realized by software inside the JCRE.

5. Java Silicon Machine

In Figure 4 the basic concept for the JSM is shown.
Parts of it are already implemented using VHDL. For
multi-applet cards one additional opcode has to be
implemented: set_applet. It is used for selecting one of
the applets and loads the applet base register with the
corresponding start address of the chosen applet.

We have to adopt parts of the JSM to the new
JavaCard specification 2.1, since the format of the
downloadable applet is now specified and it is of great
impact for some parts of the JSM.

The JSM is fully controlled by microcode. Therefore
many changes may result in some ’software’-updates [1].
To get maximum independence between the submodules
the state machines are just loosely coupled. Once these
state machines are started, they run automatically until the
end of the requested operation and feed back the result.
The internal behavior of one state machine is completely
hidden to its connected state machines.

To speed up the proposed architecture it is important to
know about the dynamic probability of opcodes in a given
applet. In [6] some values are given but they are based on
benchmarks for complete JVM/JSM’s. In the smart card
area the situation is different So we are currently
analyzing different applets to get the percentage
distribution based on the dynamic instruction count. After
the linking process the constant pool just contains
constants of type integer. Those constants can only be
addressed using the ldc or ldc_w opcode. So the index
into the constant pool can easily be replaced with the
constant itself. Consequently, we do not need a constant
pool which results in some speed-up and less memory
usage. Benchmarking different architectures is difficult,

since execution speed depends on the compiler and
coding style of an applet. We benchmarked the Dallas
iButton by measuring the time to call methods and
compared the results with first theoretical values of our
architecture.

We assume that the iButton is a software
implementation since implementation details are not
published. The underlying processor itself is driven by an
unstabilized ring oscillator operating over a range of 10 to
20 MHz [15]. Therefore the clock frequency of a iButton
is not constant. The comparison shows speed up of 100
against the iButton (clocking the JSM @ 3.5MHz).

Techniques like caching promise some speed up but
for the cost of additional hardware [6]. Since die size is
limited we do not benefit from the usage of these speed-
up techniques.

6. Conclusion and future work

We presented some of our experiences in the
development of a JSM for small embedded systems like
smart cards. We separate the development process into
two parts. The experiences resulting from implementing
the JVM on a 8051-system directed us to the proposed
JSM-architecture. We described some problems and
presented solutions for a JSM in the smart card area. It is
planned to complete the architecture until the end of the
year ´99. For functional verification an APTIX-system
explorer M3PC containing four XCV1000-4 will be used.

Stack

can

must

ALU MMU

Control Unit

CONSTANTS

MUX

MUX

32

32

323232

32

8

Micro-
sequencer

ROM

RAM

EEPROM

8

MMU
(Stack)

RAM

32

8

32

IO
Unit

StackALU

MMU

Control Unit

CONSTANTS

MUX
(CONSTANTS)

MUX
(DATAPATH)

Micro-
sequencer

MMU
(Stack)

IO
Unit

state IO Unit
function IO-Unit function MMU

state MMU

state ALU
function ALU function stack

state stack

function MMU (stack)

state MMU (stack)

Figure 4. Datapath and control-path of the JSM

7. References

[1] N. Bannow, “Concept of a Java-Processor,”
Technical Report, University of Rostock, Jan. 1999

[2] F. Golatowski, H. Ploog, R. Kraudelt, O. Hagendorf,
and D. Timmermann, “Java Virtual Machines für
ressourcenkritische eingebettete Systeme und Smart-
Cards,” accepted for presentation at JIT’99, Frankfurt,
Germany, Sep. 99

[3] C. J. Glossner, and S. Vassiliadis, “The Delft-Java
Engine: An Introduction,“ Euro-Par 97, Conf. Proc.,
p.766-770, August 1997, Passau, Germany.

[4] http://www.tik.ee.ethz.ch/~jama/

[5] R. Kraudelt, „Entwicklung und Implementierung einer
JAVA virtuellen Maschine (JVM) für den Einsatz in
besonders ressourcenkritischen Systemen (Smartcards),“
diploma thesis, University of Rostock, 1999

[6] Vijaykrishnan Narayanan, “Issues in the design of a
JAVA processor architecture,” PhD-thesis, University of
South Florida, 1998

[7] Eric Nguyen, “JAVATM-Based Devices from
Mitsubishi”, Java One, 1996, slides at:
http://java.sun.com/javaone/javaone96/pres/Mitsu.pdf

[8] Patriot Scientific, Java Processor PSC1000

[9] H. Ploog, T. Rachui, and D. Timmermann, “Design
Issues in the development of a JAVA-processor for small
embedded applications,” ACM/SIGDA International
Symposium on Field Programmable Gate Arrays,
FPGA´99, Monterey, Feb 21-23

[10] J. Posegga, and H. Vogt, “Byte Code Verification for
Java Smart cards based on Model Checking,“ 5th

European Symposium on Research in Computer Security
(ESORICS), Springer Verlag, 1998

[11] JavaCard 2.0 Language Subset and Virtual Machine
Specification, http://www.javasoft.com/products/javacard,
Sun Microsystems, Inc., 1997

[12] M. O'Connor and M. Tremblay, “picoJava-I: The
Java virtual machine in hardware,” IEEE Micro, March-
April 1997, pp. 45-47

[13] Rockwell, http://www.techweb.com/wire/news/1997
/ 09/922java.html

[14] Dallas Semiconductor, http://www.ibutton.com

[15] Stephen M. Curry, “An introduction to the Java
Ring,” http://www.javaworld.com/javaworld/jw-04-
1998/jw-04-javadev.html

[16] Guthery G. B., Java card: Internet computing on a
small card, Jan-Feb 1997, IEEE Internet Computing, pp/
57-59.

[17] Michael Montgomery, “Get a jumpstart on the Java
Card”, http://www.javaworld.com/javaworld/jw-02-
1998/jw-02-javadev.html , 1998

[18] Zhiqun Chen , “Understanding Java Card 2.0,“
http://www.javaworld.com/javaworld/jw-03-1998/jw-03-
javadev.html, 1998

1. This research was supported through a grant from the National
Sciences and Engineering Research Council of Canada (NSERC) to the
second author.

Abstract

Java has emerged to dominate the network-programming
world. This imposes certain requirements on its virtual
machine instruction set architecture and on any
processor design that intends to support Java. The
purpose of this study is to carry out a behavioral analysis
of the different aspects of Java instruction set
architecture. This will help in extracting the hardware
requirements for executing Java bytecodes.
Recommendations for architectural requirements for Java
processors will be made throughout this study.

1. Introduction

Java was introduced to deal with heterogeneous networks,
which require building software that is platform-
independent [1,2]. This means that a compiled software
shipped around the network needs to be able to run on
any CPU it lands on (which is formulated as “write once,
execute anywhere.”) In addition, designed to be a modern
high-level language, Java includes all modern features
li ke modularity and object-orientation. To achieve all
these goals, Java targets an intermediate virtual platform,
instead of direct execution on the host CPU [3,4,5,6]. All
we need to execute cross-platform programs on the
Internet is to port this virtual layer to the CPU/OS
combination we want to run Java on. But, this comes at a
high price. The special features supported by Java have a
tremendous impact on the overall system performance
and impose certain requirements on the Java system [7].

A number of schemas have been proposed to improve
Java performance as a tool for programming on the web
and networking in general [8,9,10,11,12,13,14]. Some of
the promising directions incorporate hardware solutions.
Building microprocessors for Java or simply modifying
other general-purpose processors to boost Java are among
these hardware options [15,16,17,18,19,20,21,22,23,24].

Designing hardware for Java requires an extensive
working knowledge about its virtual machine

organization and functionality. Java virtual machine
(JVM) instruction set architecture (ISA) defines
categories of operations that manipulate several data
types, reached through a well -defined set of addressing
modes [25,26,27,28,29]. JVM specification defines the
instruction encoding mechanism required to package this
information into the bytecode stream. It also includes
detail s about the different modules required for
processing these bytecodes. At runtime, the JVM
implementation and the execution environment affect the
instruction execution performance. This is manifested
directly in the wall-clock time needed to perform a certain
task and indirectly in the different overheads associated
with executing the job (e.g., memory management) [30].

The goal of this research is to conduct a comprehensive
behavioral analysis of the Java virtual machine instruction
set architecture [31,32]. Observing the Java instruction set
architecture while it is executing Java benchmarks wil l
reveal a lot about the details of the Java environment.
This will be reflected in the form of suggestions for the
actual hardware improvements and additions to boost the
performance of Java. Revised encoding formats and
devised hardware organizations (including a certain level
of paralleli sm, pipelining, caching, functionality, ... etc.)
with insights about the internal detail s of Java wil l lead to
better performance. Our rationale for conducting such a
study is based on the simple observation that modern
programs spend 80-90% of their time accessing only 10-
20% of the instruction set architecture [33]. To be most
effective, optimization efforts should focus on just the 10-
20% part that reall y matters to the execution speed.

ISA study is of great importance for every attempt to
devise a certain arrangement to boost Java performance.
The results collected here affect the way of encoding Java
instructions into a binary representation for execution by
any CPU supporting Java. It also affects the internal
processor datapath design for any architecture that targets
Java. It is worth noting that although JVM ISA shares
many general aspects with traditional microprocessors, it
has its distinguishing features. This stems from the fact
that it is an intermediate layer for a high-level language.

Quantitative Analysis for Java Microprocessor Architectural Requirements:

Instruction Set Design1

M. Watheq EL-Kharashi Fayez ElGuibaly Kin F. Li

Department of Electrical and Computer Engineering, University of Victoria

P. O. Box 3055, Victoria, BC, Canada, V8W 3P6
{watheq, fayez, kinli} @ engr.UVic.CA

For example, the branch prediction model of the
underlying hardware affects the overall Java performance,
which is the case of all modern microprocessors. On the
other hand, JVM-supporting hardware wil l be unique in
the way its stack model handles method invocations.

To undertake these objectives, a Java interpreter was
instrumented to produce a Java trace. Pendragon
Software's CaffeineMark 3.0 was selected as the
benchmark as it is computationally interesting and
exercises various JVM aspects [34]. It is a synthetic
benchmark that runs 9 tests to measure Java performance.
The machine used in the evaluation is an UltraSPARC
I/140 running at 143 MHz with 64 Mbytes memory. The
OS is Solaris 2.6. Based on the data gathered, general
requirements for Java processors are drawn. In doing this
study, we followed the methodology used by Patterson
and Hennessy in studying the instruction set design [33].

This paper is organized as follows: Section 2 analyzes
access patterns for data types. Addressing modes are
studied in Section 3. Section 4 is concerned with the
different instruction encoding aspects.

2. Access patterns for data types

Here we study the access patterns for different data types.
Data types that are heavily used need more attention in
case of designing certain hardware architecture to support
Java [30]. This information wil l prove useful when
decisions are made about storage allocation.

2.1. Single-type operations

Figure 1. Distribution of data accesses by type.

Figure 1 shows the distribution of data accesses by type.
(“Generic” refers to operations that have no data type
associated with them.) From this figure we see that
integer data types dominate the typed operations,
followed by the reference ones. Architectural support for
Java object-orientation therefore needs to give privileges
to integer and reference data types in hardware. Also from
this figure, we see that 32-bit data types are used the
most. This will have an impact on the size of the register
file and CPU datapaths. Furthermore, a superscalar design
may want to provide multiple functional units that
process integer and reference data types. From the ALU
point of view all integer operations need eff icient support.

2.2. Type conversion operations

JVM has a set of instructions that converts data of a
certain type to another. This is necessary for a strongly
typed language li ke Java. Figure 2 shows that the
conversion from integer dominates all type conversion
operations (especiall y to character.) This information
combined with the results from the previous subsection
implies that integer conversion operations are the most
used. For better Java performance, the ALU design needs
to perform this conversion in one clock cycle or less.

Figure 2. Frequency of type conversion instructions.

3. Addressing modes

This Section is concerned with the use of the JVM
addressing modes. The traditional concept of addressing
modes, as used in general-purpose processors, is not
exactly applicable to JVM, which uses a stack-based
intermediate language. This, together with the object-
orientation approach, is reflected in the combination of
traditional and non-traditional addressing modes [30].

0% 20% 40% 60% 80%

double

long

float

int

In
pu

t t
yp

e

Percentage of the resultant type

double

long

float

int

char

byte

27.97%

17.03%

0.25%

2.59%

0.42%

1.31%

0.36%

1.93%

47.27%

0.83%

0% 10% 20% 30% 40% 50%

generic

void

returnA ddress

reference

duplex

double

long

float

int

char

short

byte

D
at

a
ty

pe
s

Percentage of access

The result of addressing mode usage patterns is shown in
Figure 3. Local variable access dominates all other
modes. Also, of importance are the immediate access and
the quick reference. (The “Quick Reference” item
summarizes the quick bytecode optimization.) Hardcoded
addressing modes (in which the operand value is encoded
in the instruction itself) occupy more than one third of the
total addressing modes used. We conclude here, that Java
processors need to support at least immediate, local
variable, quick referencing, and stack addressing modes.

Figure 3: Usage of memory addressing modes.

4. Instruction encoding

JVM specifications require Java bytecodes to be provided
as a stream of bytes grouped in variable-length
instructions. However, it hardly mentions a general
instruction format for the adopted instruction [1]. This
irregular format might stand against the generality and
efficiency of hardware execution of Java bytecodes.

This section quantitatively analyzes the different fields
that constitute JVM instructions. We aim at determining
the optimum number of bits required for encoding these
fields. The analysis presented here should not be
considered contradicting the JVM specification that tells
exactly the size of each instruction field. Architectures
that provide support for Java might select to have a native
instruction format that is different from the JVM one in
the addressing modes, data types, etc. This approach wil l
help attaining generality and eff iciency.

4.1. Immediates

As a stack machine, JVM does not rely a lot on
immediates for ALU operations. Immediates in JVM are
either pushed on the stack or used as an offset for a
control flow or table switching instruction and could have

a length of up to 32 bits. As shown in Figure 4,
immediates used in CaffeineMark are up to 18 bits in
length with an average of 4 bits (standard deviation of
2.07 bits.) The peak occurs at 3 bits. Three bits are
enough to cover more than 50% of immediate usage and
5 bits can cover more than 75%. Based on the statistics
shown in Figure 4 we suggest using 8 bits to encode
immediates values in JVM instructions, which will cover
98% of the cases. Situations that wil l require more bits
can be handled by the compiler using a special wide
format.

Figure 4: Distribution of number of bits in immediates.

4.2. Array indices

Figure 5: Number of bits representing an array index.

Java technology carries array information down the
hierarchy to the JVM. At runtime, the index required to
access an array is popped from the operand stack.
Although the index can be up to 32 bits, Figure 5 shows
that CaffeineMark does not require more than 13 bits to

0.13%

0.10%

46.34%
22.20%

13.37%

7.37%

10.50%

0% 10% 20% 30% 40% 50%

Quick Reference

Object Reference

Array Indexed

Constant Pool Indexed

Stack

Local Variable

Immediate

A
dd

re
ss

in
g

m
od

e

Frequency of the addressing mode usage

Non-Hardcoded

Hardcoded

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0 2 4 6 8 10 12 14 16 18

Number of bits needed for an immediate value

P
er

ce
nt

ag
e

of
 Im

m
ed

ia
te

 V
al

ue
 U

sa
ge

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 2 4 6 8 10 12 14

Number of bits needed for an array index

P
er

ce
nt

ag
e

of
 a

rr
ay

 in
de

x
us

ag
e

access arrays (with an average and standard deviation of 3
and 2.79, respectively.) For instruction encoding, we see
that 3-bit index size covers more than 50% of the array
accesses and 5 bits cover more than 80%. The graph
shows an interesting pattern: the maximum occurs at 0
then follows a decaying behavior with a sudden drop after
6 indicating that about 90% of the array accesses take
place in the first 64 element. This could give useful
guidelines in data caching—the first few elements (up to
the 64th) of an array should be cached. This could also
have an impact on Java processor’s cache organization,
such as block size, replacing strategies, etc.

4.3. Constant pool indices

JVM constant pool is a collection of all the symbolic data
needed by a class to reference fields, classes, interfaces,
and methods. A constant pool index size is either up to 16
bits, or 32 bits if it is in a wide format. From Figure 6, we
see that 16 bits cover almost all constant pool accesses
(the average is 8 and the standard deviation is 2.9.)

Figure 6: Number of bits for a constant pool index.

4.4. Local variable indices

As mentioned before, instead of specifying a set of
general-purpose registers, JVM adopted the concept of
referencing local variables. As Figure 7 shows, Java
methods typicall y require up to 16 local variables (with
an average of 2 and standard deviation of 1.31), though
the specifications allow referencing up to 255, or 65535
in case of wide instructions. The graph also shows nearly
no preference in accessing these variables. In designing
hardware support for Java, this graph suggests allocating
the local variables on-chip. In this case, general-purpose
register file can be configured to work as a reservoir for
local variables, allowing Java programs to run faster.

Figure 7: Number of bits for a local variable index.

4.5. Branching distances

Java bytecodes only deli ver the offset in branches and
JVM converts it internall y to the corresponding absolute
address. As Figure 8 (dots) shows, CaffeineMark requires
a target offset width of less than 10 bits (with an average
of 4 and standard deviation of 1.49), though up to 16 bits
are allowed. In the design of an instruction format, 8 bits
appear enough to cover more than 98% of the offset
distances. Furthermore, if a branch target buffer (BTB) is
used for branch speculation, a size of 512 bytecodes (256
forward and backward) is suff icient. Figure 8 (triangles)
also shows statistics of absolute jump-to address.
Although this information depends on the run time
environment, it does indicate a typical behavior.

Figure 8: Number of bits for an address.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0 1 2 3 4

Number of bits needed for a local variable index

P
er

ce
nt

ag
e

of
 c

la
ss

 p
oo

l i
nd

ex

0%

5%

10%

15%

20%

25%

30%

0 4 8 12 16 20 24 28 32

Number of bits needed for a class pool index

P
er

ce
nt

ag
e

of
 c

la
ss

 p
oo

l i
nd

ex

0%

10%

20%

30%

40%

50%

60%

70%

0 5 10 15 20 25

Number of bits needed for branching distance

P
er

ce
nt

ag
e

of
 b

ra
nc

hi
ng

 d
is

ta
nc

e

Target Offset

Jump-to A ddress

5. Conclusions

In this work we conducted a behavioral analysis of Java
virtual machine instruction set architecture. In the light of
the results collected from each part, we drew conclusions
about the general architectural requirements for designing
microprocessors that support Java. Our study clearly
shows that the advanced features of Java are its weakest
points in terms of performance. Hardware support is
required to increase the eff iciency of Java.

Acknowledgement

The authors would li ke to acknowledge Sun for the Java
development kit license. In addition, we would like to
thank Kenneth Kent from the Department of Computer
Science, University of Victoria, Canada for his support
while compiling the Java development kit.

References
[1] J. B. Gosling, B. Joy, and G. Steele, The Java Language

specification, The Java Series, Addison-Wesley, Reading,
MA, 1996.

[2] J. Gosling and H. McGilton, “The Java Language
Environment, A White Paper,” Sun Microsystems,
Mountain View, CA, October 1995.

[3] J. Gosling, “Java Intermediate Bytecodes,” ACM
SIGPLAN Notices, January 1995, pp. 11-118.

[4] M. Lentczner, “Java's Virtual World,” Microprocessor
Report, March 25, 1996, 8-11,17.

[5] T. Lindholm and F. Yellin, The Java Virtual Machine
Specification, The Java Series, Addison-Wesley, Reading,
MA, 1997.

[6] J. Meyer and T. Downing, Java Virtual Machine, O'Reilly
and Associates, Inc, Sebastopol, CA, 1997.

[7] P. Wayner, “How to Soup Up Java: Part II,” Byte, May
1998, pp. 76-80.

[8] B. Case, “ Implementing the Java Virtual World,”
Microprocessor Report, March 25, 1996, pp. 12-17.

[9] P. Halfhill, “How to Soup Up Java: Part I,” Byte, May
1998, pp. 60-74.

[10] C.-H A Hsieh, W.-M. W. Hwu, and M. Conte “Compiler
and Architecture Support for Java,” a Tutorial presented
in the ASPLOS-VII Conference, Boston, October 1-5,
1996.

[11] C.-H A. Hsieh, M. T. Conte, T. L. Johnson, J. C.
Gyllenhall, and W.-M W. Hwu, “Optimizing NET
Compilers for Improved Java Performance,” IEEE
Computer, June 1997, pp. 67-75.

[12] C.-H A. Hsieh, J. C. Gyllenhall, and W.-m. W. Hwu,
“Java Bytecode to Native Code Translation: The Caffeine
Prototype and Preliminary Results,” Proc.of the 29th

Annual International Symp. on Microarchitectures
(MICRO-29), IEEE Computer Society Press, Los
Alamitos, CS, December 2-4, 1996, pp. 90-97.

[13] H. McGhan and. J. M. O’Connor, “picoJava: A Direct
Execution Engine for Java Bytecode,” IEEE Computer,
October 1998, pp. 22-30.

[14] J. M. O'Connor and M. Tremblay, “picoJava-I: The Java
Virtual Machine in Hardware,” IEEE Micro, March/April
1997, pp. 45-53

[15] B. Case, “Java Virtual Machine Should Stay Virtual,”
Microprocessor Report, April 15, 1996, pp. 14-15.

[16] B. Case, “Java Performance Advancing Rapidly,”
Microprocessor Report, May 27, 1996, pp. 17-19.

[17] M. Watheq El-Kharashi and F. ElGuibaly, “Java
Microprocessors: Computer Architecture Impli cations,”
Proceedings of the PACRIM’97, Victoria, BC, Canada,
August 20-22, 1997, pp. 277-280.

[18] R. Grehan, “JavaSoft’ s Embedded Specification Overdue,
but Many Tool Vendors aren’t Waiting,” Computer
Design April 1998, pp. 14-18.

[19] Patriot Scientific Corporation, PSC1000 Microprocessor
home page, http://www.ptsc.com/psc1000/

[20] M. Tremblay and J. M. O'Connor, “picoJava: A
Hardware Implementation of the Java Virtual Machine,”
Hotchips Presentation, 1996.

[21] T. Turley, “MicroJava Pushes Bytecode Performance,”
Microprocessor Report, October 28, 1997, pp. 28-31.

[22] T. Turley, “Most Significant Bits,” Microprocessor
Report, August 4, 1997, pp. 4-5, 9.

[23] T. Turley, “Sun Reveals First Java Processor Core,”
Microprocessor Report, November 17, 1996, pp. 9-12.

[24] P. Wayner, “Sun Gambles on Java Chips,” Byte,
November 1996, pp. 79-88.

[25] Sun Microelectronics, “Sun Blazes Another Trail –
Introducing the microJava 701 microprocessor,” Press
Releases, October 1997.

[26] Sun Microelectronics, “The Burgeoning Market for Java
Processors. Inside The Networked Future: The
Unprecedented Opportunity for Java Systems,” white
paper 96-043, October 1996.

[27] Sun Microelectronics, “Sun Microelectronics' picoJava-I
Posts Outstanding Performance,” white paper 0015-01,
October, 1996.

[28] Sun Microelectronics, “picoJava-I Microprocessor Core
Architecture,” white paper 0014-01, October, 1996.

[29] A. Tanenbaum and J. Goodman, Structured Computer
Organization, Fourth Edition, Prentice Hall , Englewood
Cli ffs, NJ, 1999.

[30] B. Venners, Inside the Java Virtual Machine, McGraw-
Hill, NY, 1998.

[31] M. Watheq El-Kharashi, F. ElGuibaly, and K. F. Li,
“Hardware Adaptations for Java: A Design Space
Approach,” Technical Report ECE-99-1, Department of
Electrical and Computer Engineering, University of
Victoria, January 25, 1999.

[32] M. Watheq El-Kharashi, F. ElGuibaly, and K. F. Li,
“Architectural Requirements for Java Processors: A
Quantitative Analysis,” Technical Report ECE-98-5,
Department of Electrical and Computer Engineering,
University of Victoria, November 9, 1998.

[33] D. A. Patterson and J. L. Hennessy, Computer
Architecture A Quantitative Approach, second edition,
Morgan Kaufmann Publishers, Inc. San Francisco, CA,
USA, 1996.

[34] Pendragon Software, CaffeineMark Benchmark Home
Page http://www.pendragon-software.com/pendragon/cm3

	sylvie.pdf
	A Case for Using Active Memory to Support Garbage ...
	Sylvia Dieckmann and Urs Hölzle
	University of California, Santa Barbara {sylvie,ur...
	Abstract
	Most modern programming languages require efficien...
	To date, Active Memory has been studied only with ...
	1. Motivation
	2. Active Memory
	2.1�� ARAM
	Figure�1.�� ARAM Architecture

	2.2�� Programming Model

	3. Why GC is Likely to Profit From Active Memory
	4. References
	[1] A. Acharya, M. Uysal, and J. Saltz. Active Dis...
	[2] R. Barua, W. Lee, S. Amarasinghe, and A. Agarw...
	[3] N. Bowman, N. Cardwell, C. Kozyrakis, C. Romer...
	[4] D. Burger, J. Goodman, and A. Kagi. Quantifyin...
	[5] B. Calder, C. Krintz, S. John, and T. Austin. ...
	[6] J. Carter et al. Impulse: Building a smarter m...
	[7] T. Endo, K. Taura, and A. Yonezawa. A scalable...
	[8] M. Gonçalves. Cache Performance of Programs wi...
	[9] M. Gonçalves and A. Appel. Cache performance o...
	[10] R. Jones and R. Lins. Garbage Collection: Alg...
	[11] T. Kamada, S. Matsuoka, and A. Yonezawa. Effi...
	[12] K. Keeton, D. Patterson, and J. Hellerstein. ...
	[13] C. Kozyrakis and D. Patterson. A new directio...
	[14] C. Kozyrakis at al. Scalable processors in th...
	[15] S. Nettles and J. O’Toole. Real-time replicat...
	[16] M. Oskin, F. Chong, and T. Sherwood. Active P...
	[17] D. Patterson et al. A case for intelligent RA...
	[18] D. Patterson et al. Intelligent RAM (IRAM): T...
	[19] D. Patterson and J. Hennessy. Computer Organi...
	[20] M. Reinhold. Cache performance of garbage-col...
	[21] K. Taura and A. Yonezawa. An efficient garbag...
	[22] M. Uysal, A. Acharya, and J. Saltz. An evalua...
	[23] E. Waingold, M. Taylor, D. Srikrishna, V. Sar...
	[24] W. Wulf and S. McKee. Hitting the memory wall...
	[25] B. Zorn. The effect of garbage collection in ...

	watson.pdf
	VLSI Architecture Using Lightweight Threads (VAULT) - Choosing the Instruction Set Architecture
	1. Introduction
	2. Project Principles
	1. Parallelism through multiple simple CPUs rather than exploiting ILP etc.
	2. Processor structure optimized for support of (dynamically) compiled Java and multiple thread s...
	3. Inter processor communication at register and cache level via special bus structures.
	4. Processor support for multi-media applications.
	5. Dynamic compilation (for parallelism).

	3. Choosing the VAULT CPU ISA
	Table 1: Benchmark Programs

	Figure 1. Dynamic instruction mix.
	Figure 2. Relative instruction counts
	4. Register and Window Usage

	Figure 3. Cumulative percentage of register usage
	Figure 4. Call depth distribution
	Table 2. Relative Call Depth
	Figure 5. Window miss ratios
	5. Conclusions
	6. References

