The Deferred Event Model for
Hardware-Oriented Spiking Neural Networks

Alexander Rast*, Xin Jin, Mukaram Khan, and Steve Furber

School of Computer Science, University of Manchester
Manchester, UK M13 9PL
{rasta,khanm, jinxa}@cs.man.ac.uk
{steve.furber}@manchester.ac.uk
http://www.cs.manchester.ac.uk/apt

Abstract. Real-time modelling of large neural systems places critical
demands on the processing system’s dynamic model. With spiking neu-
ral networks it is convenient to abstract each spike to a point event. In
addition to the representational simplification, the event model confers
the ability to defer state updates, if the model does not propagate the ef-
fects of the current event instantaneously. Using the SpiNNaker dedicated
neural chip multiprocessor as an example system, we develop models for
neural dynamics and synaptic learning that delay actual updates until
the next input event while performing processing in background between
events, using the difference between “electronic time” and “neural time”
to achieve real-time performance. The model relaxes both local memory
and update scheduling requirements to levels realistic for the hardware.
The delayed-event model represents a useful way to recast the real-time
updating problem into a question of time to the next event.

1 Real-time neural networks: the update timing challenge

Accurately modelling the continuous-time behaviour of large neural networks in
real time presents a difficult computational choice: when to update the state?
Conventional sequential digital processing usually prohibits real-time updates
except on the largest, fastest computers, but dedicated parallel neural network
hardware needs some time model. Broadly, two different architectures have be-
come popular. One, the neuromorphic approach, e.g. [1], circumvents the state
update problem altogether by using continuous-time analogue circuitry - at the
price of hardwiring the model of computation into the system. The other, the
parallel neurocomputer approach, e.g. [2] retains general-purpose digital process-
ing but attempts to use a neural-specific, multiprocessor architecture - with some
loss of speed and accuracy of state update. An ideal approach would combine
the process abstraction capabilities of digital devices with the asynchronous-time
model of analogue devices. SpiNNaker, a chip using event-driven asynchronous
digital circuitry timed by its input rather than by an instruction clock, makes

* Corresponding author

this feasible for spiking neural networks having real axonal and synaptic delays,
by abstracting a spike to an event. During the time between events, it is in
effect “outside time”, and can perform necessary background processing with-
out affecting the model update. Having previously demonstrated a basic neural
implementation on SpiNNaker, here we present a general method to maintain
accurate temporal dynamics by deferring pending updates until the next input
event. The method realises a solution to the update scheduling problem that
suggests the possibility of practical large-scale, real-time neural simulation.

2 Deferred update dynamics

Real dynamic properties of neural networks allow us to relax the timing re-
quirements dramatically. Most models, whether using temporal [3] or rate cod-
ing [4], [5], assume that the spike timing irrespective of shape determines the
information coding. A typical active neuron fires at ~10-20 Hz up to a maximum
of ~100 Hz [6]. Only a small number of a given population of neurons, typically
~1-0.1%, will be active at any time, with 10% a reasonable upper limit. For a
“typical” neuron containing 5000 dendritic connections with 1% activity, spiking
at 10 Hz, we therefore expect an average input rate of 500 events (input spikes)
per second, requiring an update rate of only 2ms. A worst-case situation: 100k
inputs, 10% activity, 100 Hz firing rate, would require 1us update rate. These are
leisurely rates for typical digital processors running at hundreds of MHz. With
real neurons having axonal delays, usually of the order of 1-20 ms, if the proces-
sor can propagate the required updates following an event in less time than the
interval between events that affect a given output, it can use that time differ-
ence to defer the event processing until the occurrence of the next event. Simple
time-domain multiplexing [7] is an established approach, but in addition, the
processor can make use of the “dead space” to wait on contingent input events
that may likewise affect the output. By performing temporal reordering of input
events, it can ignore the fine-grained order of inputs. In Fig. 1, axons have finite
delays. The processor schedules the updates, and the neuron can respond to fur-
ther potential future input events with nonzero axonal delays, reordering them
as necessary so that the neuron exhibits the proper dynamic behaviour even with
nondeterministic input order. Delayed event processing thus allows more than
time multiplexing; it decouples the temporal dynamics of the processing system
from the temporal dynamics of the model.

3 Implementation of a neuron and synapse on SpilNNaker

3.1 The SpiNNaker hardware system

We have developed a universal spiking neural network chip multiprocessor, SpiN-
Naker (fig. 2), to support large scale real-time simulation [8]. 20 ARM968 proces-
sor cores with dedicated 64KB local memory implement neurons and their asso-
ciated dendrites. A large off-chip SDRAM memory device stores synaptic data,

= 2
.1 %
@ ® =z 3
o 2 © =
QS T [} o
a s ° o =
- 2 8 =
< g g <] 3
T O © = >
¢ £ g £ [
= O = o
k- S = < o ¢ g8
=% o < © E o =
n ¥ o £ (= n P
- - g [< =2 Ng
%) -5 - 8 Q . a
3 £ 2 o x Z 0
2 23 ¥ x - S
o P9 o ~ T 22
7~ -
e - gl 46dendri(<§ma”)
| -
| |
i i
Neuron Statei I '
Update - =
6ax0n =13 ms } }
8, on=10ms L
o
1 ps—r] .
A R E—
Update
1 pus—=»|
I, Activity Ld
| |
1 Acty LI
T T n »
! - (Processor) Time

Fig. 1. Deferred Event Processing. At top is a very simple network, with schematic
event spike trains at the bottom. The spike trains further show time before the current
event (dark regions), time to process the current event (medium regions), and time
when the processor can defer the processing (light regions). Neuron J2 receives inputs
from two other neurons I; and Iz with delays of 13 ms and 10 ms respectively. Suppose
that the processor performing the modelling can propagate the output in 1 ps. Neuron
I; fires first in the model, with I following close behind it after a 1 us delay. Thus the
corresponding events arrive at Jo after 1 ps and 2 us respectively. But because of the
real delays in the model, the processor will not actually need the input from neuron Iy
for another 12.999 ms. Thus at 1 us, it need do nothing with that input event other
than record it. In particular, it can wait for input Iz, and when that event occurs at 2
us, it can schedule its update event 9.999 ms into its future, with the update event for
input I; still 12.998 ms in the future.

made to appear “virtually local” to the processor using an optimised DMA con-
troller in concert with a 1Gb/s internal asynchronous Network on Chip (NoC) [9].
A configurable 6Gb/s per node global asynchronous packet-switching network,
using an on-board source-based associative router together with an event-driven
communications controller, implements axons and the associated connectivity
map [10]. Using the “address-event representation” (AER) format [11], SpiN-
Naker signalling abstracts the neural action potential into a single discrete point
event happening in zero time, a “spike”. An AER packet simply records the
source of the spike (and optionally an extra “payload” data field), to route it to
target neurons potentially distributed over a system of up to 64K chips. Both the
physical and temporal details of SpiNNaker hardware are invisible to the neu-
ral network model, allowing the device to be loaded and configured to support
virtually any model of dynamics with any topology [12].

RuCk
1Gbis. 26bs 4Gbls 8Gbis =
i

— e ——] = m—
—) —
=
Input - Output
— Packet |Rouing uput —>
Links Decode Engine Select = Link
— 7 >:§
a
—) 5> A —
R —
|:|'> Packet Router Ene
nnnnn
aaaaaa
Comms NoC Coinms NoC

(Input) (Output)

e

System NoC

[AXTSiave] [AXiSkve | [Axiskve] [AXisive |
System | | System
RAM ROM
Reset Test 10MHz
oPort 1RQ
1GB DDR SDRAM

Fig. 2. SpiNNaker design, showing router, processors, and internal NoC components

MemCl

3.2 Neuron

As a SpiNNaker case study, we have implemented the Izhikevich model [13] neu-
ron because it is simple, instruction-efficient, and exhibits most of the dynamic
properties of biological neurons. Since the ARM968 processor cores contain no
floating-point support, and studies [14], [15], [16] indicate that 16-bit precision
is adequate for most purposes, we represent all variables and parameters with
16-bit fixed-point variables. A 16-element array (fig. 3) represents input stimuli.
Each element, representing a time bin having model axonal delay from 1 ms to
16 ms, carries a stimulus. When a spike packet with a delay of §,, ms arrives

at t, ms, the processor increments the value in the t,+d,, ms time bin by the
connection weight of the input synapse, deferring the neural state update until
the global simulation time reaches t,,+d,, - the time when the input “actually”
arrives. During state update, we extract the accumulated stimulus for the cur-
rent time bin from the data structure of one neuron and pass it along with the
(static) parameters to the two Izhikevich equations, storing the new neural state
values back to the data structure. For each update, we test the value of the mem-
brane potential. If it reaches its reset value, the neuron fires and the processor
will issue a multicast packet including the processor ID and the neuron ID. The
processor maintains real-time accuracy as long as its neurons can be updated
before shifting to the next bin position - nominally 1 ms intervals in our model.

UActivation In

| De\ayl | Index | Weight

31 28 28 16 15)

Fig. 3. SpiNNaker Neuron Binned Input Array. Inputs arrive into the bin corresponding
to their respective delay. Output is computed from the bin pointed to by “Now”.

3.3 Synapse

For the synapse, we have used the exponential spike-timing dependent plasticity
(STDP) model [3]. Weight updates exploit the fact that the updated value will
not be required until the input event after the current one. Each source neuron
has an associated “row” in SDRAM containing a time stamp and target-indexed
weight entries only for those target neurons on the local processor with nonzero
weights (fig. 4), permitting a single table lookup per input event to retrieve the
synapse data. For the time stamp we have used a 64 ms two-phase time window
comparable to the ~ 50 ms experimentally observed STDP time window [17],
permitting 4 ms spike-time resolution within a 32K x 64ms coarse time period,
enough to capture about 35 minutes without time rollover. With the arrival of
an input, we update the time stamp and compute the previous weight update as
follows: Retrieve the synapse row. For each connected neuron, compare its local
coarse time stamp (postsynaptic spiking times) against the retrieved time stamp
(presynaptic activation times). If the coarse time stamp matches, perform the
weight update rule the model specifies, using the fine time stamp. (By coding the

weight update as the power-of-2 bit-position in the fine time stamp, the processor
can compute the update with a series of simple shift-and-add operations). If the
neuron fires, update its local time stamp. If the delayed input time is within a
synaptic window of the current time stamp, place a 1 in the stored (presynaptic)
time stamp at the bit position corresponding to the time offset. Write back the
updated synapses and time stamp to memory. The essential timing requirement
is that the update computation takes less time than the time between inputs on
the same synapse.

‘ 35 Mi | 64m
Data TCM| | 4ms+{ |« Toine \ SDRAM
P i | <] o [
Time Stamps | 31 5 0
| Timestamp l W, | W, | W, | Presynaptic
Time Stamps
* And Weights
[Delay [] Neuron ID [Weight |
3l 2826 15 0
Local Neuron Data Global Synaptic Memory

Fig. 4. Synapse Data Format. Each of the data words is 32 bits wide. Synapse rows
in global memory have multiple weights and a time stamp word. Weights contain a
16-bit weight field and a 16-bit parameter field. In our experiments we used 4 bits of
the parameter field to represent synaptic delays and 11 to index the target neuron.
Each row in SDRAM has one time stamp (time of last presynaptic event), and each
neuron in local memory a second (time of last postsynaptic spike). The time stamp
has 2 fields, a fine and coarse time stamp. The fine time stamp is bit-mapped into
16 equal time segments with resolution %, where [, is the total length of the time
window, containing a 1 if there was an input activation at that real-time point within
the interval. The coarse time stamp is an integer with a resolution of £, where ¢ is
a (small) power-of-2 constant representing a time phase within the window I,. The
model updates this time stamp if a transmission event tnew occurs at tpew —tiast > I—‘”,
where tjq5¢ is the current value of the coarse time step.

4 Application to system modelling

We have created a complete system-level simulation modelling multiple SpiN-
Naker chips using SystemC, and a cycle and ARM Instruction Set accurate
simulation using ARM SoC designer, to verify the design, support early appli-
cation development, and test the overall chip/system behaviour. We calibrated
cycle-accurate SystemC behaviour of modelled chip components against their
Verilog-based simulations used for chip fabrication. We performed case studies
to test the functionality of the chip, the routing fabric, and the system under
various scenarios. To verify the delayed-event model we implemented the Izhike-
vich [13] neural dynamic model using Xin Jin, et al.’s scheme [14] and successfully
tested a small population of neurons (fig. 5). We tested the physical delays of the
neurons in the population to determine the time margin a typical input would

have to complete its processing (fig. 5). According to our simulations the update
time for one neuron is about 240 ns. With 1000 neurons, this corresponds to
a total update time of 0.24 ms - comfortably within the worst-case 1 ms delay
margin even with nondeterministic arrival times. By delaying the state update,
we effectively compress these computations into the time immediately after an
update event, releasing the slack for further processes such as synaptic updating.

—
= =
é g 10
c [1
8 3"
g 06
bz 5}
< E
[
-100 ol I ||| | I|II | [
0 10 20 30 40 50 60 0 4 81216 2024 28 32 36 40 4448 52 5660 6468727680 84 8892 96
Time (ms) Neuron 1D

Fig. 5. Neuron spike traces (L) and delay margins (R). Traces are the output response
to delayed inputs. The bars show the time difference between the modelled axonal
delay and the hardware delay, measured from spike packet transmission time to packet
reception time. Worst-case delay margin is 1 ms. Mean delay margin is 7.93 ms.

5 Conclusions

We have developed a model capable of achieving biologically realistic real-time
performance on event-driven neural network hardware, with nondeterministic
signal timing. The deferred-update model permits not only real-time signal tim-
ing resolution but also more efficient processor utilisation, since each processor
can schedule its updates according to the model-time rather than the hardware-
time event sequence. SpiNNaker has three dimensions of configurability, letting
the user specify the topology, processing dynamics, and temporal dynamics ac-
cording to the needs of the model, rather than those of the hardware. Such a
“neuromimetic” system mitigates both against instant hardware obsolescence
and the need to make hard decisions about what neural models to experiment
with in view of the hardware available. It is, perhaps, therefore a more viable ar-
chitecture for future neural systems than approaches that impose hard physical
constraints. Our hope is that SpiNNaker might encourage dialogue between the
biological scientists and the computer scientists, to link phenomenological ob-
servations to behavioural models of computation. Such systems could promote a
two-way flow of learning, discovering on the one hand more about how the brain
functions and on the other new and alternative computing models.

Acknowledgements We would like to thank the Engineering and Physical Sci-
ences Research Council (EPSRC), Silistix, and ARM for support of this research.
S.B. Furber is the recipient of a Royal Society Wolfson Merit Award.

References

1.

o

10.

11.

12.

13.

14.

15.

16.

17.

Indiveri, G., Chicca, E., Douglas, R.: A VLSI Array of Low-Power Spiking Neurons
and Bistable Synapses With Spike-Timing Dependent Plasticity. IEEE Trans.
Neural Networks 17(1) (January 2006) 211-221

Mehrtash, N., Jung, D., Hellmich, H., Schénauer, T., Lu, V.T., Klar, H.: Synaptic
Plasticity in Spiking Neural Networks (SP?INN): a System Approach. IEEE Trans.
Neural Networks 14(5) (September 2003) 980-992

Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A Neuronal Learning
Rule for Sub-millisecond Temporal Coding. Nature 383(6595) (Sep. 1996) 76-78
Shadlen, M.N.,; Newsome, W.T.: The Variable Discharge of Cortical Neurons: Im-
plications for Connectivity, Computation, and Information Coding. J. Neuroscience
18(10) (May 1998) 3870-3896

Masuda, N., Aihara, K.: Duality of Rate Coding and Temporal Coding in Multi-
layered Feedfoward Networks. Neural Computation 15(1) (January 2003) 103—-125
Dayan, P., Abbott, L.: Theoretical Neuroscience. MIT Press, Cambridge (2001)
Goldberg, D., Cauwenberghs, G., Andreou, A.: Analog VLSI Spiking Neural Net-
work With Address Domain Probabilistic Synapses. In: Proc. 2001 Int’l Symp.
Circuits and Systems (ISCAS2001). (2001) 241-244

. Furber, S.B., Temple, S.: Neural Systems Engineering. J. Roy. Soc. Interface 4(13)

(April 2007) 193-206

Rast, A., Yang, S., Khan, M.M., Furber, S.: Virtual Synaptic Interconnect Using an
Asynchronous Network-on-Chip. In: Proc. 2008 Int’l Joint Conf. Neural Networks
(IJCNN2008). (2008) 27272734

Plana, L.A., Furber, S.B., Temple, S., Khan, M.M., Shi, Y., Wu, J., Yang, S.: A
GALS Infrastructure for a Massively Parallel Multiprocessor. IEEE Design & Test
of Computers 24(5) (Sep.-Oct. 2007) 454-463

Lazzaro, J., Wawrzynek, J., Mahowald, M., Silviotti, M., Gillespie, D.: Silicon
Auditory Processors as Computer Peripherals. IEEE Trans. Neural Networks 4(3)
(May 1993) 523-528

Khan, M.M., Lester, D., Plana, L., Rast, A., Jin, X., Painkras, E., Furber, S.: SpiN-
Naker: Mapping Neural Networks Onto a Massively-Parallel Chip Multiprocessor.
In: Proc. 2008 Int’l Joint Conf. Neural Networks (IJCNN2008). (2008) 28492856
Izhikevich, E.: Simple Model of Spiking Neurons. IEEE Trans. Neural Networks
14 (November 2003) 1569-1572

Jin, X., Furber, S., Woods, J.: Efficient Modelling of Spiking Neural Networks on
a Scalable Chip Multiprocessor. In: Proc. 2008 Int’l Joint Conf. Neural Networks
(IJCNN2008). (2008) 28122819

Wang, H.P., Chicca, E., Indiveri, G., Sejnowski, T.J.: Reliable Computation in
Noisy Backgrounds Using Real-Time Neuromorphic Hardware. In: Proc. 2007
IEEE Biomedical Circuits and Systems Conf. (BIOCAS2007). (2007) 71-74
Daud, T., Duong, T., Tran, M., Langenbacher, H., Thakoor, A.: High Resolution
Synaptic Weights and Hardware-in-the-Loop Learning. In: Proc. SPIE - Int’l Soc.
Optical Engineering. Volume 2424. (1995) 489-500

Markram, H., Tsodyks, P.: Redistribution of Synaptic Efficacy Between Neocortical
Pyramidal Neurons. Nature 382(6594) (August 1996) 807-810

