
THE FIRST 50 YEARS in the history of com-

puting have seen spectacular improvements in

the capabilities of machines. The first computer

to run a program stored in its own memory, the

Manchester University’s 1948 Baby machine, as

shown in Figure 1, occupied a medium-sized

room, used 3.5 kW of electrical power, and exe-

cuted 700 instructions per second.

The latest machine designed at the

University of Manchester, the Amulet3i asyn-

chronous subsystem on the Draco chip, shown

in Figure 2, occupies 25 mm2 of silicon, con-

sumes 132 mW, and executes up to 100 million

instructions per second. The improvement in

the power-efficiency of machines over this 50

year period may be measured by comparing

the energy per instruction from Baby to Draco,

and the result is a staggering factor of over 3 bil-

lion. Few technologies have seen improve-

ments of this order over half a century, and the

technology continues to improve.

Asynchronous design
The use of clock signals dominates modern

microelectronic design. Clock-based design

methodologies have enabled great progress in

design tools and designer productivity. However,

for the reasons we will outline later, clocks are

disadvantageous for power-efficient design.

Amulet microprocessors do not use clocks.

Instead they are based upon asynchronous

(self-timed) design techniques where local

handshakes control the data flow. There is no

global synchronization of activity on the chip,

and there is no activity at all unless there is use-

ful work to be carried out.

An alternative to fully asynchronous design

is globally asynchronous, locally synchronous

(GALS) design, where a system is composed

from several clocked modules that communi-

cate using asynchronous interconnections. This

enables a more conventional design flow and

gives some of the advantages of fully asyn-

chronous design. Here, though, we are con-

cerned with fully asynchronous operation.

Power-efficient design
Dynamic power dominates the power char-

acteristics of a well-designed CMOS circuit, and

it is proportional to the switching frequency,

switched capacitance, and the square of the

supply voltage. The switching frequency is usu-

ally viewed as the product of the clock fre-

Power Management in the
Amulet Microprocessors

Microprocessor Power Management

42

Amulet microprocessors are asynchronous

(clockless) implementations of the ARM 32-bit

RISC architecture. Their asynchronous control

framework has positive benefits for low-power

applications because it reduces activity to the

minimum required to perform a task, whereas a

clock inevitably incurs wasteful activity.

Steve B. Furber

Aristides Efthymiou

Jim D. Garside

David W. Lloyd

Mike J.G. Lewis

Steve Temple
University of Manchester

0740-7475/01/$10.00 © 2001 IEEE IEEE Design & Test of Computers

quency and a measure of circuit activity—the

proportion of the switched capacitance that

changes state in each clock cycle.

In many applications, system power is not the

most important issue; rather, the total energy

required to perform a particular function is what’s

important. With this in mind, we look at various

strategies aimed at improving energy-efficiency.

■ Reducing the supply voltage. This is the most

effective means of improving the energy-effi-

ciency of a digital CMOS IC; the dynamic

energy per transition is (roughly) propor-

tional to the square of the voltage. The down

side is that propagation times increase as the

voltage falls, so throughput suffers.

To address this problem, some design-

ers—notably Transmeta with their Long Run

technology1—use dynamic voltage scaling

to provide just enough performance at any

time. This technique is even easier to apply

to asynchronous circuits. There is no need

to sequence changes in the clock frequency

and supply voltage; voltage changes are

accommodated automatically.

■ Reducing the capacitance. By far the greatest

improvements in power efficiency have result-

ed from changes in the underlying process

technology, mainly the reduction in switched

capacitance due to smaller feature sizes.

■ Reducing the clock frequency. Reducing the

rate at which instructions are processed will

reduce the power consumption commen-

surately. However, this will not change the

energy per instruction unless the design

exploits the reduced performance to use a

lower supply voltage.

■ Reducing activity. The principal approach

to power reduction that is under the circuit

designer’s control is the suppression of

unnecessary circuit activity.

Clocked circuits suffer from constant activi-

ty in the clock distribution network and con-

nected circuits. At maximum throughput little

is wasted, but most circuits have variable loads.

Energy-efficient clocked circuits employ clock

gating to reduce the waste in inactive subsys-

tems. Such circuits use clock scaling when the

whole system is lightly loaded. However, both

mechanisms have an energy cost and require

sophisticated management.

Asynchronous circuits, on the other hand,

only generate the minimum activity required.

They require no sophisticated power manage-

ment or clock-gating strategy. They do incur a

control overhead that has a power cost: Local

handshake control circuits are more complex

than clock buffers. However, the power cost of

these circuits is much lower than that of a clock

distribution network.

43March–April 2001

Figure 1. Manchester University’s 1948 Baby machine.

Figure 2. Draco chip. Manufactured in 2000,

this chip uses an Amulet3i subsystem and

achieves 3 billion times the power

efficiency of Baby.

The Amulet microprocessors
The Amulet group at the University of

Manchester has spent a decade investigating how

to exploit the benefits of asynchronous design in

practice through the development of asynchro-

nous implementations of the ARM 32-bit RISC

(reduced instruction set computer) architecture.2

Amulet2e
Amulet2e is a self-timed controller designed

for power-sensitive embedded applications.

Amulet2e’s key features are a self-timed ARM-

compatible microprocessor core (Amulet2), 4-

Kbyte on-chip memory, flexible memory

interface, and several control functions. Its

organization is illustrated in Figure 3.

Memory subsystem
The memory system has 4 Kbytes of RAM

that can be memory mapped or used as a

cache.3 It is a composition of four identical 1-

Kbyte blocks, each having an associated 64-

entry tag content addressable memory (CAM).

Line fetch is performed with the addressed

word first and is nonblocking. This scheme

allows hit-under-miss, because the line fetch is

a separate, asynchronous task.4

Cache power-efficiency
The cache is a highly associative CAM-RAM

structure with a pipeline stage between the two

memories. A high degree of associativity is ben-

eficial in a small cache, but unfortunately CAM

is power hungry.

To reduce power consumption, CAM acti-

vation is suppressed for sequential accesses

that lie in the same cache line as their prede-

cessors. This confers the added advantage of

reducing the CAM stage cycle time for some

cycles. The true advantage in an asynchronous

environment is that these variable-length cycles

can be exploited.

Speeding up only one pipeline stage doesn’t

benefit throughput. To exploit sequential qual-

ities in the AMULET2e cache, the RAM look-up

is also optimized by suppressing the RAM

precharge unless the subsequent cycle is not

sequential. With the RAM still in read mode the

data for a sequential access is available more

rapidly, which matches the faster CAM bypass

cycle. An unnecessary precharge/discharge

cycle is also averted, which also saves consid-

erable power in the RAM block.

Branch prediction
Clearly, fetching instructions that are not exe-

cuted decreases both performance and power-

efficiency. The major reason for erroneous

speculation is that code is punctuated by branch

instructions, many of which are taken after

Microprocessor Power Management

44 IEEE Design & Test of Computers

Chip
selects

DRAM
control

Address

Data

Delay

F
un

ne
l a

nd
 m

em
or

y
co

nt
ro

l

Line fill

Data RAM

Data in

Tag
CAM

Pipeline
latches

Address
decode

Control
registers

Amulets2
core

Area enables

Address

Data out

Figure 3. AMULET2e internal organization. CAM = content addressable memory. DRAM =

dynamic RAM. RAM = random access memory.

instructions that follow have been prefetched.

Prefetching only executed instructions by using

some form of branch prediction saves power.

Branch prediction schemes vary from crude

to highly sophisticated. In pure performance

terms, the more sophisticated methods are bet-

ter because they produce more accurate pre-

dictions. This may not be the case from an

energy-efficiency viewpoint because the pre-

dictors themselves can consume considerable

power.

Amulet2 uses a relatively simple branch pre-

dictor, a branch target buffer (BTB), which is

shown in Figure 4. This branch predictor rec-

ognizes previously encountered branch source

addresses and assumes that they jump to the

same place again. Despite its relative simplici-

ty, this predictor can halve the number of wast-

ed instruction prefetches. With about 15

branches in every 100 useful instructions—and

surmising a prefetch depth of two (Amulet2’s

prefetch depth is nondeterministic)—this rep-

resents an improvement from 120/100 to

110/100 in the ratio of fetched to useful instruc-

tions. It yields approximately a 10% speedup

and saves a similar amount of power, less the

overhead required to perform the prediction.

The BTB operates with a CAM-RAM structure,

caching previously taken branches. The CAM

tries to associate each outgoing fetch address

with a branch and, when it finds one, substitutes

the previous target address. This means that a

CAM cycle is performed for every instruction

fetch, and even a small CAM is quite power hun-

gry. The power used here can be almost as great

as that saved by preventing wasted instruction

fetches. However, it is possible to greatly reduce

the CAM power by exploiting the highly sequen-

tial nature of instruction addresses.

The BTB CAM is asymmetrically split into

sets of address bits; the lower four form one set

and the upper 26 another, as shown in Figure

5. (Instructions are word aligned so only 30 of

the 32 address bits are used.) The upper com-

parison is only performed when needed, which

is comparatively rare. At other times, it is sup-

pressed and the previous result used. This

mechanism cuts the BTB’s power needs by

around 70%, and it can truly claim to give sig-

nificant power as well as performance benefits.

Halt
Very few microprocessors—whether they

are in PCs, laptops, or embedded controllers—

work at full capacity all the time. Instead, a typ-

ical work pattern may have intense activity

followed by idle periods.

A clocked system has a continuously running

clock that must meet performance targets in peri-

ods of high demand. Clocking it rapidly when

idle wastes power. Instead, either the clock fre-

quency should decrease when the processor is

idle or some form of sleep mode is needed.

45March–April 2001

Hit

PC

Branch
target

From execution pipeline

Multiplexer

To memory

Multiplexer

Incrementer
Branch

target buffer

Figure 4. Branch target buffer organization.

Hit

CAM (high)

CAM (low)

Hit or miss?

RAM

PC

B
uf

fe
r

(h
ig

h)
B

uf
fe

r
(lo

w
)

Frequently
not invoked

Target address

Figure 5. Branch target buffer structure. CAM = content addressable

memory. RAM = random access memory.

Reducing the clock frequency saves energy

but requires control, usually using software that

is relatively slow and incurs its own energy cost.

Furthermore, it takes time to bring the clock

back to full speed when work arrives.

Putting the processor into a sleep mode is

more efficient. In this mode, it is normal to stop

the clock until an interrupt occurs. A crystal

oscillator or a phase-locked loop (PLL) supplies

the clock. Stopping the clock means either

stopping the oscillator or gating its output. The

first choice is low power but imposes a signifi-

cant latency penalty when the oscillator

restarts. The second option leaves a small but

significant residual power drain.

In an asynchronous environment, the choic-

es are simpler. Any part of the system that can

run will do so; any part waiting for input or out-

put will be halted. The only two speeds avail-

able are therefore full ahead and stopped, the

full-ahead speed dictated by the prevailing con-

ditions of voltage, temperature, and so on.

Because a self-timed system relies on all

processes cooperating to exchange data, it is

very easy to cause the whole system to stop. For

example, artificially inserting a check into any

point in an asynchronous pipeline will cause

downstream stages to drain and starve. Those

upstream will back up and halt. When the sys-

tem halts, dynamic power consumption—the

dominant factor in many CMOS processes—-

drops to nothing.

The Amulet2 microprocessor,5 while imple-

menting the ARM instruction set (which has no

specific halt or sleep instructions) does pre-

cisely this. It detects an instruction—a branch

back to itself (which would normally define an

endless loop)—and uses this to suspend exe-

cution. Processing halts in one pipeline stage—

and therefore the whole processor—purely

through this local action.

The only method of escape from such an

endless loop is an interrupt, so Amulet2 allows

the assertion of an interrupt input to cause exe-

cution to resume. Naturally, the full processing

speed is restored immediately.

Amulet2e test results
Amulet2e, shown in Figure 6, has been fab-

ricated and successfully runs standard ARM

code. It was produced on a 0.5-µm, three-metal-

layer process. It uses 454,000 transistors (93,000

of which are in the processor core) on a die

that is 6.4 mm square. In the fastest available

configuration, the device delivers 42 Dhrystone

2.1 MIPS (million instructions per second) with

a power consumption of about 150 mW in the

core logic—which includes the processor core

and cache memory, but excludes the I/O

pads—running at 3.3 V. This is faster than the

older ARM 710 but slower than the ARM 810,

which was fabricated at about the same time.

It represents a power-efficiency of 280 MIPS/W,

which is as good as either of the clocked CPUs.

BTB and cache power-save
measurements

Two benchmark programs were used to

measure the performance and power-efficien-

cy benefits of the architectural features:

■ Dhrystone 2.1 is widely used to evaluate

embedded cores, but it has very unusual

branching characteristics compared to any

real programs used during the BTB’s archi-

Microprocessor Power Management

46 IEEE Design & Test of Computers

Figure 6. AMULET2e die plot.

tectural evaluation. (The BTB was not opti-

mized for Dhrystone.)

■ A set of sorting routines that combine inser-

tion sort, shell-sort, and quick-sort algo-

rithms. We ran these benchmarks on a

randomized data set to generate alternative

results. This program has very tight looping

behavior.

Table 1 summarizes the results of these tests.

The base case is the processor running from

cache with the BTB and the CAM bypass dis-

abled. Table 1 shows the improvement in per-

formance and power-efficiency delivered by

enabling each feature in turn. It also records the

total effect when all features are enabled.

The cache CAM bypass mechanism delivers

about a 5% performance improvement and 15%

power-efficiency improvment on both bench-

mark programs. This is a useful contribution

from a simple circuit addition.

The BTB gives a modest 5% performance

improvement on Dhrystone and a dramatic

22% on the sort benchmark. Real programs

should fall somewhere between these two. The

BTB power-save feature makes little difference

to the Dhrystone performance but improves its

power-efficiency by 3%. In all cases where we

observed the BTB to have a negative impact on

power-efficiency, the power-save feature has

cancelled the loss and converted it into a

power-efficiency gain.

Halt measurements
The Halt feature’s effect is different in princi-

ple from the cache CAM bypass and the BTB

power save, because it has no impact on power

consumption when the processor is running. It

only comes into play when the processor is idle.

To judge the halt’s effectiveness, we can

observe the current consumed by the proces-

sor core logic when idling with halt disabled.

This current is around 50 mA if the idle loop is

in the cache. With halt enabled, this current

decreases to around 1 mA on the test card

when centisecond timer interrupts are being

handled. It becomes about 1 µA (leakage cur-

rent) when interrupts are disabled. Table 2

summarizes these results.

Amulet3i
Amulet3i is a processor subsystem based on

the Amulet3 core. It was designed for system-

on-chip applications, the first of which is Draco,

shown in Figure 2. A telecommunications con-

troller, Draco was fabricated in a 0.35-µm, three-

metal-layer CMOS process. Amulet3i retains

many of the power-saving features of Amulet2e;

it also incorporates several additional features.

Amulet3 BTB
The Amulet3 BTB is similar to that of

Amulet2, though it has only 16 entries instead

of 20. A new feature further reduces the system

power consumption. In Amulet2, the branch

instruction is fetched to determine its condition

47March–April 2001

Table 1. Amulet2e results.

Feature Dhrystone 2.1 Sort

Performance Power efficiency Performance Power efficiency

(percentage (percentage (percentage (percentage

change change change change

in MIPS) in MIPS/W) in MIPS) in MIPS/W)

BTB on +5 +0 +22 +15

BTB power–save +5 +3 +25 +22

CAM bypass +6 +15 +5 +14

All on +11 +18 +32 +35

Table 2. Amulet2e core idle currents.

Idle condition IDD (mA)

Halt disabled 50

Halt enabled; centisecond timer interrupts 1

Halt enabled; interrupts disabled 0.001

code and whether to save a return address. In

contrast, Amulet3 stores the condition and

return information in the BTB RAM along with

the target address, so the branch need not be

fetched from memory.

Branches form about 15% of instructions,

and the BTB captures many of these. This rep-

resents a saving of around 10% in instruction

fetch cycles. The suppressed cycles are internal

to the processor and faster than external access-

es, a fact exploited by the processor’s asyn-

chronous pipeline.

The effect of the BTB and its power-save

feature (which is similar to that in Amulet2e),

are shown in Table 3. Although we used the

same test programs as we used for Amulet2e,

the results are not directly comparable

because Amulet3i has no cache, and the pro-

grams were run from external memory. The

power-save feature has minimal effect on over-

all performance but does improve power effi-

ciency substantially.

Counterflow pipeline color
Despite the BTB, unpredicted branches still

occur, and it is then necessary to discard any

speculatively fetched instructions. The default

mechanism is to allow the pipeline to keep

flowing up to the instruction commit point

and invalidate instructions there. The commit

point is in the execution stage. This is after the

instruction decoder, which spawns many

internal operations, including several register

reads and commits to writing back results. So

operations must continue until the instruction

can be discarded cleanly. Abandoning

prefetched instructions before they are decod-

ed saves a lot of power, but requires informa-

tion only available further down the pipeline.

All Amulet processors manage the problem

of discarding unwanted instructions by color-

ing. Each section of code is prefetched with a

known color that is matched to a color in the

execution unit. When a branch is taken, this

color is changed, and mismatching instructions

are discarded until the new stream arrives.

Because only one branch is outstanding at any

time, two colors suffice and coloring requires

only a single color bit. The problem of early dis-

carding reduces to that of propagating the color

bit, which originates in the execution unit, to

the instruction decoder.

The decode and execution stages are adja-

cent in the pipeline and they synchronize with

each other to communicate. Normally, this

communication is one way, however it is pos-

sible to use the synchronization to pass infor-

mation in both directions at once. In this way,

the color can reach the instruction decoder

and be used to prevent the further flow of

unwanted instructions.

This is not an ideal solution. Counterflow

data leapfrog one instruction as they cross the

pipeline stage interface, so an instruction

always leaks through. However, it does prevent

another one or two instructions from entering

the processor’s power-hungry parts.

This mechanism becomes more significant

when running 16-bit Thumb code. Thumb

instructions are fetched as 32-bit pairs, which

significantly increases the effective instruction

prefetch depth. The penalty for erroneous

prefetch is also increased, but the counterflow

color mechanism removes much of the power

overhead.

In testing this feature, we ran the Dhrystone

benchmark in Thumb code from on-chip RAM.

Enabling the counterflow color mechanism

Microprocessor Power Management

48 IEEE Design & Test of Computers

Table 3. AMULET3i BTB test results.

Feature Dhrystone 2.1 Sort

Performance Power efficiency Performance Power efficiency

(percentage (percentage (percentage (percentage

change change change change

in MIPS) in MIPS/W) in MIPS) in MIPS/W)

BTB on +5.8 +3.7 +21.5 +13.9

BTB power save +6.0 +6.3 +21.5 +19.7

improved performance by 3.9%

and power efficiency by 8.6%.

With ARM code, the figures were

0.5% and 0.6%.

Amulet3 halt
A halting mechanism very simi-

lar to that used in Amulet2 is

employed in Amulet3. A branch

instruction that loops to itself is

detected, and the processor stops.

Experiments suggest that it is equally effective at

reducing current drain to very low levels in

Amulet3. This is difficult to show in practice,

because of other circuits’ current draw on Draco.

Amulet3i on-chip memory
Amulet3i does not have a cache, although it

does contain 8 Kbytes of memory-mapped

RAM. This RAM employs some speed/

power optimization techniques, but these are

different from those in Amulet2e’s cache.

The RAM is implemented as eight inter-

leaved 1-Kbyte blocks, minimizing access con-

flicts from the separate instruction and data

buses. Instead of exploiting sequential access,

each block of RAM has a block buffer, essen-

tially a single line of cache that holds the last-

read RAM line (four words). This has its own

tag that recognizes not only sequential access-

es but also repeat accesses to this line.

Furthermore, there are separate block buffers

for instruction and data accesses, resulting in a

32-word instruction cache and a 32-word data

cache. Hits avert power-hungry RAM accesses;

they are also faster, a characteristic the asyn-

chronous environment readily exploits.

Interestingly, the buffers grew out of anoth-

er power-saving feature. To reduce the power

requirement of a RAM read, a self-timed mech-

anism delays sense amplifiers’ activation until

after the amplifiers’ (differential) inputs are

expected to have diverged. Enforcing this delay

ensures outputs will switch quickly. When the

sense amplifiers switch, they are immediately

deactivated with their outputs latched until the

processor can consume the data. These latch-

es, being already present, adapt into the block

buffers at very little cost and provide consider-

able benefit. When running real code, they can

comfortably intercept more than half of the

instruction fetches and a considerable propor-

tion of data operations.

Dynamic Pipeline Power Management
As functional units in a data path evaluate their

inputs, they output glitches, causing unwanted

switching activity. The power wasted can

become significant if the glitches are allowed to

propagate to subsequent pipeline stages.

For maximum throughput, the latches in an

asynchronous pipeline should operate in nor-

mally open mode, allowing data to pass down

the pipeline as quickly as possible. Unfortu-

nately, glitches will also propagate down the

pipeline, wasting power. Using normally

closed pipeline latches can block the transi-

tions. This reduces wasted power, but increas-

es the cycle time by the time taken to open the

data latches.

Ideally, normally open or normally closed

mode would be selected according to compu-

tational demand. Latch controllers have been

designed that switch operating mode in

response to a control signal.6 This capability

facilitates a variety of dynamic power manage-

ment schemes selecting speed or economy

mode as appropriate. Amulet3i provides soft-

ware control for the operating mode.

To illustrate the operating mode’s influence

on asynchronous pipeline power consumption,

we obtained the results shown in Table 4 for a

32 × 32-bit multiplier data path consisting of five

pipeline stages. The first four stages generate

the partial products and calculate the partial

sum and partial carry; a final adder stage

resolves the carries. We used Synopsys’ EPIC

Powermill to analyze the relative energy con-

sumptions of the circuits.

49March–April 2001

Table 4. Energy per operation against pipeline occupancy for latch operating modes.

No. of Normally open, Normally closed, Decrease in

instructions energy per energy per energy per

in pipeline operation (nJ) operation (nJ) operation (percentage)

1 2.47 1.95 21

2 2.06 1.96 5

3 2.0 1.96 2

4 2.0 1.96 2

Crucially, the size of the power saving is

determined by pipeline occupancy. At maxi-

mum throughput, the pipeline is full and the

energy per operation only decreases by 2%

when running in normally closed mode. In con-

trast, when running with only a single input

value at a time, the difference in energy per

operation increases to 21% (and is even greater

if the inputs are skewed).

Future power management
strategies

Work is still underway to improve the power

efficiency of Amulet3 systems, now with con-

tactless smartcard applications in mind. Here

the available power is very limited and varies

according to the card’s distance from the base

station. Dynamic power management tech-

niques are therefore of great importance.

Dynamic pipeline depth control
An unpipelined processor version consumes

less power than a pipelined version, but

pipelining delivers considerable performance

improvement with modest power-efficiency

losses.7 Pipelining implies speculation as oper-

ations are issued before the previous instruc-

tion has committed. Speculative operations

affect the power consumption in two ways: the

overall processor activity at a given time is

increased, so the power consumed is higher,

and in some cases the speculation is wrong, so

the energy spent in these operations is wasted.

The energy wasted through incorrect spec-

ulation clearly leads to a trade-off between the

accuracy of predicting the program flow, the

energy this prediction requires, and the energy

that the operations need.

The increase in overall power consumption

is an issue when the power budget available for

the processor is restricted, as in a contactless

smartcard. One approach is to slow the proces-

sor down, which will happen automatically if

the supply voltage is reduced. However, below

a certain voltage, CMOS circuits do not operate

correctly and further power reductions may still

be necessary. In asynchronous circuits this

could be achieved by switching additional

delays into control circuits. A better approach

is to slow the processor indirectly by disabling

speculation, for example by dynamically reduc-

ing the processor pipeline depth.

There are many ways to do this. One method

is to have a circular token buffer with as many

places as the processor has pipeline stages. The

total number of tokens present in the token

buffer regulates the effective pipeline depth of

the processor. This can be controlled dynami-

cally by power management hardware or by

software.8

A less general approach is to join pipeline

stages dynamically when specific instructions

pass through them. For example, following

most compare instructions there is a condi-

tional instruction (usually a branch) that uses

the comparison’s results. The decode stage can

stall the pipeline upstream until the compari-

son is finished, so that fewer instructions are

fetched (potentially wrongly) from memory.

With a lower branch penalty, branch prediction

can be disabled, thus saving more energy.

A similar approach has been proposed for

synchronous superscalar processors operating

at a much coarser level.9 In this approach, the

number of uncommitted branches that are fol-

lowed is restricted if their predictions are not

trusted.

SEVERAL POWER MANAGEMENT techniques

have been introduced as the Amulet processor

series has developed. Some of these are

straightforward circuit improvements; some are

architectural design features that exploit the

device’s asynchronous nature. Others would be

equally applicable in the synchronous world.

Some techniques allow trading off power

efficiency against performance. A normally

open pipeline is faster but less power-efficient

than a normally closed pipeline. Our results

show that the power savings are large when the

pipeline is lightly loaded but small when the

pipeline is busy. Other techniques improve

both performance and power efficiency. It

might have been expected that branch predic-

tion would enhance performance but cost

power. It turns out that the reduction in wasted

instruction prefetches more than offsets the

power cost of prediction (at least with our pre-

diction scheme), so there is a win all round.

Microprocessor Power Management

50 IEEE Design & Test of Computers

The Amulet2e cache sequential optimization

and the Amulet3 RAM line buffers and color

counterflow system likewise yield improve-

ments in both performance and power-effi-

ciency. Removing unnecessary activity often

saves both power and time.

By far the most significant power saving

technique employed on Amulet2e and

Amulet3 is the ability to halt and restart all

processor activity without other penalties.

Energy can be conserved across very short idle

periods without any power management over-

heads—the operating system merely executes

a halt as its idle task. While the Amulet designs

are not the fastest processors available, they are

very good at doing nothing!

For further information on asynchronous tech-

nology and the Amulet microprocessors, visit the

Amulet Web site at http://www.cs.man.ac.uk/

amulet/. ■

References
1. T.R. Halfhill, “Transmeta Breaks x86 Low-Power

Barrier,” Microprocessor Report, Feb. 2000.

2. S.B. Furber, ARM System-on-Chip Architecture,

Addison Wesley Longman, London, 2000. pp.

105-150.

3. J.D. Garside, S. Temple, and R. Mehra, “The

AMULET2e Cache System,” Proc. Async 96,

Aizu-Wakamatsu, IEEE Computer Society Press,

Los Alamitos, CA, 1996, pp. 208–217.

4. R. Mehra, and J.D. Garside, “A Cache Line Fill

Circuit for a Micropipelined Asynchronous Micro-

processor,” TCCA Newsletter, IEEE Computer

Society Press, Los Alamitos, Calif., Oct. 1995.

5. S.B. Furber et al., “AMULET2e: An Asynchronous

Embedded Controller,” Proc. IEEE, IEEE Press,

Piscataway, N.J., 1999, pp. 243–256.

6. M. Lewis, J.D. Garside, and L. Brackenbury,

“Reconfigurable Latch Controllers for Low Power

Asynchronous Circuits,” Proc. Async 99, IEEE

Computer Society Press, Los Alamitos, CA, 1999,

pp. 27–35

7. R. Gonzalez and M. Horowitz, “Energy Dissipation

in General Purpose Processors,” Proc. Int’l Symp.

on Low Power Electronics, IEEE CS Press, Los

Alamitos, Calif., 1995, pp. 12–13.

8. L. Benini, A. Bogliolo, and G. De Micheli, “A Sur-

vey of Design Techniques for System-Level

Dynamic Power Management,” IEEE Trans. Very

Large-Scale Integration Systems, vol. 8, no. 3,

Jun. 2000, pp. 299–316.

9. S. Manne, A. Klauser, and D. Grunwald, “Pipeline

Gating: Speculation Control for Energy

Reduction,” Proc. 25th Int’l Symp. Computer

Architecture, ACM, New York, 1998, pp. 132-141.

Steve B. Furber is the ICL
chair of computer engineer-
ing at the University of
Manchester. His research
interests include micro-
processor design (he was a

principal designer of the ARM 32-bit RISC micro-
processor) and asynchronous logic. Furber has
a BA in mathematics and PhD in aerodynamics
from the University of Cambridge, England. He
is a Fellow of the Royal Academy of Engineering,
a Fellow of the British Computer Society, a Char-
tered Engineer, and a member of the IEEE.

Aristides Efthymiou is a
PhD student at the University
of Manchester. His research
interests are in the area of
low-power circuit design and
processor architecture. He

received a BSc and MSc degree in computer sci-
ence from the University of Crete, Greece.

Jim D. Garside has
worked on hardware systems
using Inmos Transputers for
investigation into parallel com-
puter architectures and as a
programmer on air traffic con-

trol systems. He is now a lecturer in the Depart-
ment of Computer Science at the University of
Manchester. His research interests include asyn-
chronous logic systems, especially in the design
of the AMULET series of asynchronous micro-
processors. Garside has a BSc in physics from the
University of Manchester and a PhD in computer
science from the same institution.

51March–April 2001

David W. Lloyd is the
Amulet Research Fellow at
the University of Manchester,
where he has worked on the
Amulet3 core. His research
interests range from archi-

tectural design for asynchronous systems to
high-performance dynamic circuits. Lloyd has a
BSc in physical electronics from Newcastle-
upon-Tyne Polytechnic and a PhD in electrical
and electronic engineering from the University of
Nottingham.

Mike J.G. Lewis is a
researcher with the Amulet
Group, and has recently
received his PhD on the
application of asynchronous
techniques to low-power dig-

ital signal processing. He has a MEng degree in
electronic engineering from the University of
Cambridge. He is a student member of the IEEE.

Steve Temple is a
Research Fellow in the
Department of Computer Sci-
ence at the University of
Manchester. His research
interests include micro-

processor system design and asynchronous
logic. He has a BA in computer science from the
University of Cambridge, UK, and a PhD for
research into local area networks from the Uni-
versity of Cambridge Computer Laboratory.

Direct questions and comments about this
article to Steve Furber at sfurber@cs.man.ac.uk.

Microprocessor Power Management

52

computer.org/internet/

IEEE Internet Computing
reports emerging tools,
technologies, and
applications implemented
through the Internet to
support a worldwide
computing environment.

In 2001, we’ll look at
• Embedded systems
• Virtual markets
• Internet engineering for

medical applications
• Distributed data storage
• Web server scaling
• Personalization

... and more!

