
O. A. Petlin and S. B. Furber are with the Department of Computer Science, University of Manchester (UK)
C. Farnsworth is with Cogency Technology UK, Bruntwood Hall, Cheadle (UK)

DESIGN FOR TESTABILITY OF AN ASYNCHRONOUS ADDER

O. A. Petlin, C. Farnsworth, S. B. Furber

1. Introduction

Modern technological processes for producing VLSI circuits have created an opportunity to exploit the advan-
tages of asynchronous circuits. Compared to their synchronous counterparts, asynchronous circuits have the
potential for lower power consumption, offer greater design flexibility, exhibit average rather than worst-case
performance and have no problem with clock skew [Lav93, Hauck95]. Asynchronous circuits can be divided
into three major groups depending on the delay model assumption chosen: delay-insensitive, speed-independ-
ent and bounded-delay circuits [Lav93, Birt95, Brzo95]. In delay-insensitive circuits, gate and wire delays are
unconstrained but finite. Speed-independent circuits also operate correctly regardless of their gate delays, but
signal transmissions along their wires are assumed to be instantaneous. All delays within bounded-delay asyn-
chronous circuits are constrained. Data in asynchronous circuits can be represented using either dual-rail or sin-
gle-rail data encoding techniques. In the dual-rail data representation each bit of data is encoded using two
wires. In four-phase dual-rail encoding, a high logic level on the ‘one’ or ‘zero’ wire and a low logic level on
the corresponding ‘zero’ or ‘one’ wire indicates the transmission of a one or a zero respectively. If both data
wires are set to zero data is not valid. The state ‘11’ is illegal. In the single-rail encoding a bit of data is repre-
sented by the logic level on one wire.

Most asynchronous circuits communicate using signalling protocols which use ‘request’ and ‘acknowledge’
signals. There are two basic signalling protocols which use two-phase or four-phase signalling. According to
the two-phase protocol every transition on a control wire indicates an event. In the four-phase signalling proto-
col, both the request and acknowledge signals must return to zero before the next handshake procedure between
the sender and the receiver starts. The data must be valid before a request is sent to the receiver. An asynchro-
nous circuit with single-rail data encoding requires that the request signal is generated when the data is stable
on the outputs of the sender and remains stable until the acknowledge signal is generated. This is called the
bundled data constraint [Suth89, Birt95]. Using the bundled-data approach, the AMULET group in the Depart-
ment of Computer Science at the University of Manchester has designed the AMULET1 microprocessor, an
asynchronous implementation of the ARM6 RISC microprocessor [Furb94, Birt95]. The AMULET1 chip fab-
ricated by GEC Plessey Semiconductors Limited demonstrates the practical feasibility of designing complex
asynchronous VLSI circuits. However, the testability issues of asynchronous VLSI circuits must also be
addressed before their commercial potential can be realised.

A fault model is used to describe the behaviour of a faulty digital circuit. The stuck-at fault model describes a
faulty circuit at the gate level and is widely used to describe fabrication faults in a circuit [MClus86, Russ89].
According to this model, a faulty wire is stuck at one or stuck at zero if it is permanently connected to the power
supply voltage (Vdd) or ground (Vss) respectively. A stuck-at fault on a path in the circuit prevents any signal
transitions along it. As a result, stuck-at faults in delay-insensitive circuits where all transitions are acknowl-
edged cause the faulty circuit to halt [Dav90, Hulg94]. This situation is easy to identify by the absence of activ-
ity on the outputs of the circuit when it operates normally; this is called the self-diagnostic property. Speed-
independent circuits exhibit the self-diagnostic property only for stuck-at output faults [Haz92].

Several design-for-testability techniques for asynchronous circuits have already been reported. A test strategy
for stuck-at faults in handshake circuits has been described [Ron93], in which it was shown that handshake cir-
cuits can be tested in linear time. This work has been extended by adapting a partial scan test technique for test-

Table 1: Truth table for the full adder

Inputs Outputs
A B Cin Sum Cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Table 2: Truth table for the
full adder carry output

Inputs Output
A B Cout
0 0 0
0 1 Cin
1 0 Cin
1 1 1

ing an asynchronous digital compact cassette (DCC) error corrector decoder [Ron94]. Unfortunately, the
reported results were obtained for testing dual-rail data paths which are relative easy to test. A scan design tech-
nique has been suggested by Wey et al. to design asynchronous finite state machines for testability [Wey93].
Several reports have addressed the testing of micropipelines [Khoc94, Pet95]. These techniques allow the test
complexity of asynchronous sequential circuits to be reduced to just testing their combinational logic. However,
the reported results did not address the testability issues of asynchronous circuits with data dependent control.

In this paper we investigate the testability properties of an asynchronous adder with data dependent control.
The rest of the paper is organised as follows: Section 2 discusses the design of the AMULET1 asynchronous
adder; the testability issues of a single-rail asynchronous adder are considered in Section 3; Section 4 and 5
address different aspects of the design and test of an asynchronous adder designed using dual-rail and hybrid
data encoding; a case study of an asynchronous comparator is described in Section 6; and, finally, Section 7
concludes the paper.

2. The AMULET1 asynchronous adder

An asynchronous ALU is a major element in the AMULET1 microprocessor. It has been shown that about 80%
of the operations performed by the ALU require different forms of addition [Gars93]. The correct performance
of the adder as the ‘busiest’ part of the asynchronous ALU is therefore important for the correct functioning of
the AMULET1 design as a whole.

Three input bits are used to implement a one-bit addition: two data bits and onecarry-in bit which is effectively
thecarry-out signal from the previous stage of the multi-bit adder. The complete truth table of a 1-bit full adder
is shown in Table 1. The performance of the multi-bit adder depends on the propagation speed of thecarry sig-
nal through its stages. Table 2 illustrates the truth table for the carry output of the 1-bit full adder. According to

F

T

MX1

F

T

MX2

A
B

Cin

Cout

nCVin

nCVout
nStart

Sum
A
B

Cin

nCVin

nStart

Cout

nCVout

Sum

Figure 1 : Single-rail implementation of an asynchronous 1-bit full adder: a) using multiplexers; b) using
logic gates

hs

G1

G2inv

a) b)

Data part

Control

this table thecarry-out signal can be predicted in half of the possible input combinations. This allows the cor-
rectcarry-out signal to be generated without waiting until acarry-in signal is produced by the previous stage
of the adder. This technique has been used in the implementation of the AMULET1 adder [Gars93]. In the
AMULET1 asynchronous adder, addition results are ready when all thecarry-out signals are ready. The carry
chain of the adder is implemented using dual-rail data encoding where the readiness of thecarry-out signal is
identified by a transition on one of its two data wires. Since thecarry-out signal of the AMULET1 adder is data
dependent and data values which cause long carry propagation paths are relatively rare the adder itself exhibits
average rather than worst case performance [Gars93].

3. A single-rail asynchronous adder

Figure 1a shows the implementation of a single-rail asynchronous 1-bit full adder using multiplexers. The
adder design consists of distinct data and control parts. The data path of the adder produces an addition result
on itsSum output and generates acarry-out signal on itsCout output. Note that thecarry-out function is imple-
mented according to Table 2. The control part of the adder is designed to indicate when acarry output is ready
to be read by the environment. When the data is ready on inputsA andB a start signal is generated on the
nStart input which is active low. If the values on theA andB inputs are equal thestart signal is passed to the
carry-valid output of the adder. If not, an active lowcarry-valid-in signal is transmitted from thenCVin input
through the OR gate and multiplexerMX2 to thenCVout output. The control part of the adder follows the four-
phase signalling protocol. Figure 1b illustrates the gate level representation of this asynchronous 1-bit adder
with single-rail data encoding. This adder performs in the same manner as described above.

The design of an asynchronous single-rail 8-bit adder is shown in Figure 2. In this design all the 1-bit full
adders are connected together in a chain where thecarry output and thecarry-valid output of the previous 1-bit
adder are connected to thecarry input and thecarry-valid input of the following 1-bit adder respectively. The
carry-valid output of the adder (Ack) is produced on the inverted output of the 8-input symmetric C-element,
the inputs of which are connected to the correspondingnCVout outputs of the 1-bit adders. Thecarry-out signal
of the last 1-bit adder is used as thecarry output of the 8-bit adder. The globalstart signal is connected to all of
the 1-bit adders. The first adder (Ads0) does not have astart input since itscarry-valid input is connected to the
global start signal. Thestart signal from thenCVin input of adderAds0 is delayed for enough time for the
carry-out signal to be stable before it is passed directly to thenCVout output.

A request for addition is sent by the environment on theReq input of the adder. When the data is ready on theA
andB inputs two acknowledge signals are generated on inputsAckA andAckB of the two-input symmetric C-
element. When the output of the C-element is set high an active lowstart signal is transmitted to the corre-
sponding inputs of all the 1-bit adders. A rising event on theAck output of the 8-input C-element acknowledges
the completion of the addition. Once the results are read the request signal is returned to zero on theReq input.
As a result, acknowledge signals on inputsAckA andAckB are set to zero. The two-input C-element is reset and
the globalstart signal goes high. The handshake procedure is completed when the acknowledge signal on out-
put Ack of the adder is reset.

Figure 2 : Asynchronous 8-bit adder with single-rail data encoding

A

B
Sum

nCVin nCVout

Cin Cout

A

B
Sum

nCVin nCVout

nStart

Cin Cout

A

B
Sum

nCVin nCVout

nStart

Cin Cout

A

B
Sum

nCVin nCVout

nStart

Cin Cout

A0

B0

C
AckA
AckB

Req

Ack
ReqA

ReqB

A1 B1 A2 B2 A7 B7

S0 S1 S2 S7

Cout

Ads0 Ads1 Ads2 Ads7

3

Cin

C

Note that a control signal which fires when thecarry-in signal (Cin) is ready can be implemented separately
(for instance, using extra signalsAckC andReqC), or theCin signal can be transmitted together with one of the
operands (A or B) as demonstrated in Figure 2. The choice between these techniques depends on the particular
environment in which the adder operates. Hereafter, thecarry-in signal for the adder is assumed to be transmit-
ted together with one of the operands.

3.1 Testing of the single-rail asynchronous adder

In this section, the single stuck-at fault model including stuck-at input and stuck-at output faults is considered
[Russ89]. In order to test the adder shown in Figure 2 a set of test patterns must be applied to its inputs. The test
results are observed on the outputs of the adder. It is assumed that the inputs of the asynchronous adder are con-
trollable and its outputs are observable by the environment. The detection of stuck-at faults in the data part of
each 1-bit adder in the adder design shown in Figure 2 is trivial since its data inputs and outputs are controlla-
ble and observable during the test. Stuck-at faults in the control part of the adder can be divided into three dis-
tinct classes:

1. Stuck-at faults which are detectable by logic testing. For instance, stuck-at-0 or stuck-at-1 faults on the
nCVout outputs are easy to detect since they violate the handshake communication protocol between the
adder and its environment.

2. Stuck-at faults which can cause a premature firing on outputAck. A stuck-at-1 fault on the output of NAND
gateG1i (i=1, 2, ... , 7) (in Figure 1b) does not change the logic function of the control part of the adder but
causes a premature firing on the output of gateG2i whenhsi=1. This fault may or may not cause the envi-
ronment to latch wrong data from the outputs of the adder depending on how fast or slow the environment
performs.

3. Stuck-at faults which can cause delayed firings on the control output of the adder. These faults do not
change the logic function of the control part of the adder but reduce its performance. For instance, a stuck-
at-1 fault on inputhsi (i=1, 2, ... , 7) ofG1i causes a delayed response from the adder.

Let us consider the Boolean function of outputnCVout1:

(1)

It is easy to show that , wherei=2, 3, ... , 7.

Thus, the control part of the adder has logic redundancy. Redundant logic elements are necessary to ensure the
proper timing function of the control part of the adder. This makes some of its stuck-at faults impossible to
detect by logic testing. A fault analysis of the control part of the adder has been carried out with the help of
automatic test generation tools designed at Virginia Polytechnic Institute [LeeTR93]. As a result, 27 redundant
stuck-at faults have been identified. The fault coverage of the tests generated for detecting faults in the control
part of the adder is 53%.

3.2 Design for testability of the single-rail asynchronous adder

In order to make the asynchronous adder shown in Figure 2 testable, the logic redundancy of its control part
must be removed during the test. Figure 3 shows the design of a testable 1-bit adder. It operates in two modes:
normal operation mode and test mode. The mode of the adder is changed by the Boolean signalTst which is
high in test mode and low in normal operation mode. InputTst and the output of the XOR gate (G3) are con-
nected to the inputs of the asymmetric C-element. The output of the asymmetric C-element controls the NAND
gate (G2) which can operate either as an NAND gate or as an inverter depending on the value of its control sig-
nal. A CMOS implementation of gateG2 is illustrated in Figure 4. If the operation mode inputOm is low the
gate acts as a two-input NAND gate. IfOm is high, inputIn2 of the gate is blocked and it operates as an
inverter of inputIn1.

nCVout1 nStart hs1⋅ nStart⋅ nStart hs1⋅ nStart+ nStart= = =

nCVouti nStart hsi⋅ nStart+ nStart= =

In order to set the adder to test mode signalTst and outputshsi of XOR gatesG3i (i=1, 2,..., 7) are set to high. In
test mode the control part of the adder is identical to an AND gate with outputnCVout7 as shown in Figure 5.
Stuck-at faults in such a circuit can be detected easily by a standard set of (n+1) tests for ann-input AND gate:
one ‘all ones’ test andn ‘running zero’ tests. For the circuit illustrated in Figure 5 n=7. Note that signalnStart is
an active low signal which must be returned to one after the application of each test vector. Moreover, the appli-
cation of 7 ‘running zero’ tests detects whether or not all gatesG2 of the control part perform as inverters.

To detect stuck-at faults on thenStarti→Ack path (i=1, 2,...,n) in the control part of thei-th 1-bit adder, the fol-
lowing test algorithm can be used:

1. i=1.
2. Tst=0; hsi=0; hsj=1 (for all j ≠ i).
3. Tst=1. GateG2i performs as a NAND gate whereas gatesG2j (j ≠ i) perform as inverters (see Figures 3 and

4).
4. SignalnStart is set to low and then to high.
5. If Ack has been changed twice, pathnStarti→Ack is fault free, then go to step 6 else go to step 9.
6. i=i+1.
7. If i > n then go to step 8 else go to step 2.
8. The circuit is fault free. Go to step 10.
9. The circuit is faulty. Go to step 10.
10.End.

In summary, the logic testing of the asynchronous adder illustrated in Figure 2, which contains the testable 1-bit
adders shown in Figure 3, is difficult due to the test complexity of its control part. For instance, 8 test vectors
are required to test the data path of the adder whereas the number of tests required to test its data dependent
control part is almost twice this number.

A
B

Cin

nCVin

nStart

Cout

nCVout

Sum

Figure 3 : Testable asynchronous 1-bit full adder with single-rail data encoding

Tst

G2

hs
G1

C +

G3

Figure 4 : Transistor level implementation
of the NAND/INV gate

In1

In2

Om
Out

Figure 5 : Control part of the single-rail 8-
bit adder in test mode.

hs1

hs2

hs7

nCVout1

nCVout2

nStart
delay

Ack
C

nCVout7

4. Dual-rail implementation of an asynchronous adder

A dual-rail implementation of an asynchronous 1-bit adder is shown in Figure 6a. It contains a single-rail to
dual-rail data conversion block (SDC), dual-rail and single-rail XOR gates and a dual-rail multiplexer. The sin-
gle-rail conversion block modifies the single-rail data from inputsA andB into the dual-rail data format. A gate
level implementation of the conversion block is shown in Figure 6b. When signalnStart is high the outputs of
the conversion block are kept low. If the data is ready to be transmitted to the adder signalnStart is set low and
the single-rail data from inputsA andB is converted into the dual-rail format. Designs of the dual-rail multi-
plexer and XOR gate are illustrated in Figures 6c and 6d respectively. The use of symmetric C-elements in the
design of the XOR gate ensures its delay-insensitivity which, in turn, simplifies its testing. It is easy to show
that a stuck-at fault on the inputs of the symmetric C-element is equivalent to the corresponding stuck-at fault
on its output. The single-rail result (Sum) of addition is produced by XORing signalsCin[1] andhs[1].

An example of the dual-rail implementation of an asynchronous 8-bit adder is shown in Figure 7. The inputs
and outputs of the adder are single-rail encoded. When a single-rail data is ready on inputsA, B and Cin
acknowledge signalsAckA andAckB are set high. As a result, signalnStart goes low and addition is started.
The output data is ready if the dual-rail carry outputs (Cout[1] andCout[0]) of all the 1-bit adders are different

Figure 6 : Implementations of a) a dual-rail asynchronous 1-bit full adder; b) a conversion element
between single-rail and dual-rail data encoding; c) a dual-rail multiplexer; d) a dual-rail XOR gate.

SDCA

B

A[1:0]
B[1:0]

nStart

A
B

nStart

hs[1:0]

hs[1]
Cin[1] Sum

Cin[1:0]

Cout[1:0]

A[1]

A[0]
B[1]
B[0]

hs[1]

hs[0]

hs[1]

hs[0]

Cin[1]

Cin[0]

A[1]

A[0]

Cout[1]

Cout[0]

A

B

nStart

A[1]

A[0]

B[1]

B[0]

a) b)

c) d)

F

T

MXD

XorD

C

C

C

C

Figure 7 : Dual-rail implementation of an asynchronous 8-bit adder

A
B Sum

nStart

Cin0

nStart

A0 B0

C
AckA
AckB

A1 B1 A7 B7

S0 S1 S7
Add0 Add1

SDCC

C
[1

:0
]

nStart

A
B Sum

Ack

Cout

Cin

3

Cin1
Cout0
Cout1

Cin0
Cin1

Cout0
Cout1

nStart

Add7
A
B Sum

Cin0
Cin1

Cout0
Cout1

C
Req

ReqA

ReqB

which is indicated by a rising transition on outputAck. The actualcarry output is taken from outputCout7[1]
of the last 1-bit adder. After latching the outputs of the adder the environment returns request signalReq to
zero. Acknowledge signals go low and signalnStart is set high. As a consequence, all the outputs of the adder
are set to zero. A fault analysis of the dual-rail implementation of the 8-bit adder shown in Figure 7 was carried
out usingSIMIC design verification tools developed by Genashor Corporation [Sim94, Ashki94]. The results
show that the dual-rail adder is fully testable for its stuck-at faults after the application of 29 test vectors during
normal operation mode.

5. Hybrid implementation of an asynchronous adder

In this section a hybrid implementation of an asynchronous adder is discussed. The design is called ‘hybrid’
because, firstly, some of the blocks of the adder perform using dual-rail input data and, secondly, the hybrid
adder has a control part similar to that of the single-rail adder. The implementation of a hybrid 1-bit full adder
is illustrated in Figure 8. It converts the single-rail data from inputsA andB using the conversion block which
is controlled by the active lowstart signal (nStart). Outpuths[1] of the dual-rail XOR gate (XorD) controls the
single-rail multiplexer (MX) which connects thecarry input of the adder or outputA[1] of the conversion block
to its output. The control part of the adder uses both outputs of the dual-rail XOR gate to generate acarry-valid
signal which is active high. Whenhs[0]=1, i.e., inputsA andB are equal, outputCVout of the adder goes high
indicating the completion of the addition. When input bitsA andB are differenths[1]=1 and the symmetric C-
element is primed (see Figure 8). The output of the C-element is set to high when inputCVin goes high. As a
result, a rising event is generated on theCVout output of the adder.

The design of the hybrid adder is similar to that of the single-rail adder shown in Figure 2. When the data is
ready on the inputs of the adder signalnStart is set to zero and the input data is converted to the dual-rail for-
mat. The completion of the addition is indicated by a rising event on outputAck of the multi-input symmetric
C-element. When thenStart signal is returned to one the data and control outputs of the adder are reset. In
order to return thecarry-valid output of the hybrid asynchronous adder to zero all the C-elements in the control
paths of the 1-bit adders must be reset (see Figure 8). If allhsi[1] (i=0, 1, ... , 7) were set to high the C-elements
in the control part of the adder are returned to zero sequentially starting from the first 1-bit adder. This is the
worst case performance of the hybrid adder. A fault analysis of the hybrid 8-bit adder shows that the detection
of its stuck-at faults requires the application of 33 test vectors during normal operation mode.

6. A case study of an asynchronous comparator

In this section the design of an asynchronous 8-bit comparator is considered. The comparator is used as a com-
parison block for a pair of 8-bit input vectors in an asynchronous block sorter [Berk93, Farn95]. Figure 9 illus-
trates the design of the asynchronous comparator. It contains an asynchronous 7-bit adder to perform
subtraction of the data from inputsA andB (A=A[7:1], B=B[7:1]) as follows

. (2)

Thecarry input of the adder is generated by ORing the least significant bits of 8-bit operandsA and . If Cout
is low thenA is greater or equal toB otherwiseA is less thanB. Note that the 7-bit adder of the comparator does

Figure 8 : Hybrid implementation of an asynchronous 1-bit full adder

SDCA

B

A[1:0]
B[1:0]

nStart

A
B

nStart
hs[0]

hs[1]

Sum

Cin

Cout
F

T

MX

CVin

CVout

XorD

A[1]

C

Cout A B Cin+ +⇐

B

not produce the results of subtraction. The comparator shown in Figure 9 performs in a similar way as was
described in previous sections for a multi-bit asynchronous adder.

The 8-bit comparator was designed and implemented using a 1µm double metal CMOS process with the help
of Cadence CAD tools. Several versions of the comparator with different implementations of its 7-bit adder
have been simulated usingSIMIC verification tools. Simulation results are shown in Table 3. The single-rail
adder without testability features is taken as a base for estimating the relative characteristics of the other adder
designs since it requires the minimal silicon area and demonstrates the highest performance. The performance
of each version of the comparator was calculated in normal operation mode by applying an identical set of 128
tests generated by a pseudo-random pattern generator.

According to the simulation results shown in Table 3 the comparator with the dual-rail adder demonstrates the
largest area overhead (138%) compared to the comparator which uses the single-rail adder without testability
features. The comparator with the hybrid adder shows the lowest performance which is close to that of the
dual-rail comparator. The comparator with the testable single-rail adder demonstrates the minimal area over-
head and performance degradation but requires a special test mode. The use of the hybrid adder in the compa-
rator brings a compromise between area overhead, performance degradation and testability providing for the
detection of all its stuck-at faults in normal operation mode. However, it is 30% slower and its implementation
is almost twice as large as the comparator which uses the single-rail adder without testability features.

7. Conclusions

Different designs of an asynchronous adder and their testability properties have been investigated in this paper.
The single-rail implementation of an asynchronous adder is least complex in terms of number of gates, and is
fast, but it demonstrates low stuck-at fault testability due to the logic redundancy in its control part. The logic
testing of a single-rail asynchronous adder requires a special test mode to be implemented in order to remove
its logic redundancy. As a consequence, stuck-at faults which have not been detected in normal operation mode
can be identified in test mode. The dual-rail and hybrid implementations of the asynchronous adder are fully
testable for stuck-at faults in normal operation mode but they require more area and exhibit lower performance.
The dual-rail implementation of an asynchronous adder is faster than the hybrid adder but requires more silicon
area. The dual-rail and hybrid adders can be used in asynchronous VLSI designs where performance and area
overhead are not critical but testability in normal operation mode is important. The testable single-rail version

a. AO is the area overhead
b. PD is the performance degradation

Table 3: Simulation results of the comparator using different adder designs

Adder design of the compa-
rator

Area, Performance,
ns/test

AOa,
%

PDb,
%

No. extra
pins

Single-
rail adder

untestable 3.85 24.15 - - -

testable 4.60 24.55 19 2 1

Dual-rail adder 9.17 30.48 138 26 0

Hybrid adder 7.40 31.50 92 30 0

Figure 9 : Asynchronous 8-bit comparator

C
AckA
AckB

Req
ReqA

ReqB

Ack

Cout

3

Asynchronous 7-bit adder

A B
Cout

CVout
Cin

nStart

77

7

A[0]
B[0]

A[7:1]

B[7:1]

inv[7:1]

10
2–

mm
2×

of the adder can be used in asynchronous VLSI circuits which can be tested in both normal operation mode and
test mode.

References

[Ashki94] A. Ashkinazy, D. Edwards, C. Farnsworth, G. Gendel, S. Sikand, “Tools for validating asyn-
chronous digital circuits”, Proc. Int. Symp. on Advanced Research in Asynchronous Circuits
and Systems (Async94), Nov. 1994, pp. 12-21.

[Berk93] Kees van Berkel, “Handshake circuits. An asynchronous architecture for VLSI programming,”
Int. Series on Parallel Computation 5, Cambridge University Press, 1993.

[Birt95] G. Birtwistle, A. Davis (Eds), “Asynchronous digital circuit design”, Springer, 1995.
[Brzo95] J. A. Brzozowski, C-J. H. Seger, “Asynchronous circuits”, Springer-Verlag New York, Inc.,

1995.
[Dav90] I. David, R. Ginosar, M. Yoeli, “Self-timed is self-diagnostic", TR-UT-84112, Department of

Computer Science, University of Utah, Salt Lake City, UT, USA, 1990.
[Farn95] C. Farnsworth, D. A. Edwards, Jianwei Liu, S. S. Sikand, “A hybrid asynchronous system

design environment”, Proc. 2nd Working Conf. on Asynchronous Design Methodologies,
South Bank University, May 30-31, 1995, pp. 91-98.

[Furb94] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, J. V. Woods, “AMULET1: A micropipelined
ARM”, Proc. IEEE Computer Conf., March 1994.

[Gars93] J. D. Garside, “A CMOS VLSI implementation of an asynchronous ALU”, IFIP WG 10.5
Working Conference on Asynchronous Design Methodologies, Editors S. Furber, M. Edwards,
Manchester, 1993.

[Hauck95] S. Hauck, “Asynchronous design methodologies: An overview”, Proc. IEEE, Vol. 83, No. 1,
Jan. 1995, pp. 69-93.

[Haz92] P. Hazewindus, “Testing delay-insensitive circuits”, Ph.D. thesis, Caltech-CS-TR-92-14, Cali-
fornia Institute of Technology, 1992.

[Hulg94] H. Hulgaard, S. M. Burns, G. Borriello, “Testing asynchronous circuits: A survey”, TR-FR-35,
Department of Computer Science, University of Washington, Seattle, WA, USA, 1994.

[Khoc94] A. Khoche, E. Brunvand, “Testing micropipelines”, Proc. Int. Symposium on Advanced
Research in Asynchronous Circuits and Systems (Async94), Utah, Nov. 1994, pp. 239-246.

[Lav93] L. Lavagno, A. Sangiovanni-Vincentelli, “Algorithms for synthesis and testing of asynchro-
nous circuits”, Kluwer Academic Publishers, 1993.

[LeeTR93] H. K. Lee and D. S. Ha, “On the generation of test patterns for combinational circuits”, Techni-
cal Report No. 12_93, Dept. of Electrical Eng., Virginia Polytechnic Institute and State Univer-
sity, 1993.

[MClus86] E. J. McCluskey, “Logic design principles: with emphasis on testable semicustom circuits”,
Prentice/Hall International Inc., 1986.

[Pet95] O. A. Petlin, S. B. Furber, “Scan testing of micropipelines”, Proc. 13th IEEE VLSI Test Sym-
posium, Princeton, New Jersey, USA, May 1995, pp. 296-301.

[Ron93] M. Roncken, R. Saeijs, “Linear test times for delay-insensitive circuits: a compilation strat-
egy”, IFIP WG 10.5 Working Conference on Asynchronous Design Methodologies, Editors S.
Furber, M. Edwards, Manchester, 1993, pp. 13-27.

[Ron94] M. Roncken, “Partial scan test for asynchronous circuits illustrated on a DCC error corrector”,
Proc. Int. Symp. on Advanced Research in Asynchronous Circuits and Systems (Async94),
Nov. 1994, pp. 247-256.

[Russ89] G. Russell, I. L. Sayers, “Advanced simulation and test methodologies for VLSI design”, Van
Nostrand Reinhold (International), 1989.

[Sim94] “SIMIC: design verification tool”, User's Guide, Genashor Corporation, N.J., 1994.
[Suth89] I. E. Sutherland, “Micropipelines”, Communications of the ACM, Vol. 32, no. 6, pp. 720-738,

June 1989.
[Wey93] Chin-Long Wey, Ming-Der Shieh, D. Fisher, “ASCLScan: a scan design for asynchronous

sequential logic circuits”, Proc. IEEE Int. Conf. on Computer-Aided Design, 1993, pp. 159-
162.

