The Design of a Low Power Asynchronous Multiplier

Yijun Liu, Steve Furber
The Advanced Processor Technologies Group
The Department of Computer Science
The University of Manchester
Manchester M13 9PL, UK

{yijun.liu,sfurbery@cs.man.ac.uk

ABSTRACT

In this paper we investigate the statistics of multiplier oper-
ands and identify two characteristics of their distribution
that have important consequences for the design of low power
multipliers: most inputs are positive, and most inputs have
a small number of significant bits. These characteristics are
exploited in the design of a multiplier that employs three
techniques to minimize power consumption: asynchronous
control, a radix-2 algorithm, and split registers. The power
savings resulting from the use of these techniques are 55%,
23% and 12% respectively when compared to a synchronous
multiplier using a radix-4 modified Booth’s algorithm with
unified registers. The results are derived from HSPICE sim-
ulations using input vectors from benchmark programs. A
high-level software model is also used to compare the num-
bers of transitions in the various models.

Categories and Subject Descriptors

B.2 [Arithmetic and Logic Structures]: General; B.6
[Logic Design]: Design Styles—Combinational logic; B.7
[Integrated Circuits]: Types and Design Styles—Algo-
rithms implemented in hardware

General Terms
Algorithms, Design

Keywords

Asynchronous logic, low power, multiplier, Booth’s algo-
rithm, benchmark

1. INTRODUCTION

With the development of deep sub-micron CMOS tech-
nologies and the increase in complexity of VLSI chips, the
market for portable applications, digital signal processors
and ASIC implementations has focused significant effort on
the design of low-power systems. Power consumption has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISLPED’ 04, August 9-11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008 ...$5.00.

emerged as an important design parameter in VLSI design
and is given comparable weight to or, for some applica-
tions, more weight than performance and silicon area con-
siderations. Low-power circuits have many advantages over
those that do not employ power-saving strategies. Firstly,
for portable applications such as personal communications,
personal multimedia players and personal digital assistants,
low-power circuits allow the use of lighter batteries and/or
prolong the battery life. Secondly, low-power techniques de-
crease the costs of cooling and packaging. Thirdly, circuit
reliability deteriorates with increased heat dissipation, so
low-power techniques can improve the robustness of CMOS
circuits.

As an essential logic component in microprocessors and
digital signal processing systems a multiplier significantly
contributes to the overall system power consumption. In this
paper we present a multiplier that uses several novel tech-
niques to minimize its power consumption. The multiplier
was developed for the next generation of Amulet micropro-
cessor which will extend the series of asynchronous ARM-
compatible microprocessors from the University of Manch-
ester [1]. However, the techniques employed are more widely
applicable.

Dynamic power dissipation is the dominant factor in the
total power consumption of a CMOS circuit and typically
contributes over 80% of the total system power [2]. Dynamic
power dissipation results from the charging and discharging
of the wire and transistor capacitive loads. The dynamic
power dissipation of a CMOS circuit is described by the
following equation [3]:

1
Piynamic = 3 % CLxVigx Nxf (1)

Where (', is the total capacitance in the circuit, Vg is
the supply voltage, N is the weighted mean number of tran-
sitions per node per clock cycle and f is the clock frequency.
Consequently, reduced power can be achieved by decreasing
one or more of these four factors. The supply voltage of a
CMOS circuit is decided by the characteristics of the CMOS
technology used to fabricate the circuit, so we will ignore
techniques based on reducing V4. Reducing the clock fre-
quency reduces power and performance in proportion, so has
no impact on power-efficiency. The two other techniques,
which will be discussed in this paper, are:

e Minimize the physical capacitance;
e Minimize the switching activity.

The remainder of the paper is organized as follows: in

Section 2 four benchmark programs are used to investigate
the statistics of multiplier input vectors. Section 3 presents
the pipelined iterative architecture of the new multiplier.
Section 4 compares the power dissipations of Booth’s and
radix-2 multipliers and presents a sign-changing algorithm.
Section 5 describes the asynchronous control circuit of the
new multiplier. Section 6 solves the problem of large regis-
ters by splitting the registers into several smaller segments.
Section 7 compares the experimental results from four dif-
ferent multipliers. Section 8 concludes and summarizes the
low power techniques used in the new multiplier.

2. INPUT VECTOR CHARACTERISTICS

Most published work on power efficient multipliers uses
randomly-generated vectors to test the power dissipation of
the designs (for example [4] and [5]). However, in practice
multiplier operands are far from random, so these results
are not representative of the performance with typical data.
The best way to test the power consumption of a multiplier
is to base the test operands on real applications. As this is
difficult to do during the design period an alternative is to
use benchmark vectors [6].

In order to investigate the statistics of typical multiplier
operands we employ four benchmark programs. These are:
go (an internationally-ranked go-playing program), ijpeg (a
standard JPEG image compression/decompression program)
compress (a file compression program) and vortex (an object-
oriented database). We took a total of 33 million multipli-
cation vectors from these four benchmarks and found that
the distribution of inputs was unbalanced in two respects:

e The distribution of positive and negative operands is
highly imbalanced. Table 1 shows the statistical re-
sults. As we can see from the table, the great majority
of inputs are positive.

Table 1: Positive vs negative operand distributions

Benchmark go ijpeg | compress | vortex
% positive 87.6% | 97.8% 100% 100%
% negative 12.4% | 2.2% 0% 0%

e The ‘Significant Bit Count’ (SBC) is the number of
least-significant bits at the bottom of a binary number
ignoring all of the most-significant bits which consti-
tute a series of ‘1’s or ‘0’s. These most-significant bits
represent only the sign of the number in 2’s comple-
ment format. For example: the SBC of 0x00006380
is 15 and the SBC of -5 (OxFFFFFFB) is 3. Figure
1 shows the statistics of the SBC distributions for the
benchmark programs. As we can see, the SBC distri-
bution is not balanced. Most inputs have a low SBC
of between 0 and 16 bits.

These two imbalances in the operand distributions are
very important for the design of a low-power multiplier. In
the following sections we will introduce a low-power multi-
plier designed to exploit these unbalanced distributions.

3. MULTIPLIER ARCHITECTURE

Many different kinds of multipliers have been proposed
with very different hardware requirements, throughput and

)

IS
a

IS
S

—— ijpeg
—— go

W
]

—-5- compress
—o— vortex

N N W
=] @ <]

Percentage occurence

=
a

104

Significant bit count

Figure 1: SBC distributions for the benchmarks

power dissipation. These include: serial multipliers, sequen-
tial multipliers, array multipliers and tree multipliers [7].
Serial multipliers and sequential multipliers are rarely used
in today’s high-performance CMOS circuits because of their
poor throughput, although they are quite power-efficient.
Array multipliers and tree multipliers are two of the most
popular kinds of multiplier. The basic principles of array
and tree multipliers are:

e Generate partial products;

e Add all the partial products together through several
rows of carry-save adder (CSAs) using, for example, 3-
2 (full) adders or 4-2 adders [8], finally obtaining one
partial sum and one partial carry;

e Send the partial sum and partial carry to a multi-bit
carry-propagate adder to get the final result.

Array multipliers and tree multipliers are fast but expen-
sive in terms of hardware and power consumption. Itera-
tive structures [8] allow a trade-off between performance and
hardware requirement. Pipelining is usually used in itera-
tive systems to improve their performance. The multiplier
we propose here, using a pipelined iterative architecture, is
illustrated in Figure 2. The design uses a 2-stage pipeline:
the first stage is an 8-2 adder tree; the second stage is a 4-2
tree and a 62 x 2-bit shift register containing the partial sum
and carry which it feeds back to the 4-2 adder tree. In this
multiplier both first and second adder trees are efficiently
reused in every cycle through an iterative algorithm. With
a 40 x 2-bit pipelined register row, these two CSA rows op-
erate in parallel, thus improving the multiplier’s throughput
by a factor of two. The multiplier calculates 8 partial prod-
ucts in one cycle and completes a 32 x 32-bit multiplication
in 4 cycles.

4. RADIX-2 ALGORITHM

High-radix algorithms are often used to speed up mul-
tipliers by reducing the number of partial products. The
most commonly-used high-radix algorithm is the modified
Booth’s algorithm [11]. The modified Booth’s algorithm
scans the multiplier two bits (instead of one) at a time,
so reducing the number of partial products by a factor of
two. It has been suggested that Booth’s tree multipliers are

Partial products

ERRRERE

8-2 adder tree

v 1

Pipeline || Pipeline
registerl || register2

‘ Y + +

4-2 adder tree I

y

Iterative || Iterative Result
registerl || register2 [~ register

\'\\ Shift/register

Figure 2: A pipelined iterative architecture

less-power efficient than non-Booth tree multipliers [4][5].
However, no explanation was given for this conclusion.

Why is the Booth’s algorithm not power-efficient even
though it reduces the number of partial products and CSAs?
We have identified one reason as follows: With the modified
Booth’s algorithm, partial products have a 50% probability
to be —1x or —2x the multiplicand. These inverting oper-
ations introduce many transitions into the adder tree. For
example, if the multiplicand M D is 1, —M D and —2 x M D
switch all of the bits up to the most-significant bit, causing
32 transitions in each operation. Based on the statistics pre-
sented in Section 2, we know that most operands are small
positive numbers. Booth’s algorithm causes a lot of switch-
ing activity even for a small multiplication such as 1 x 1, so
it is not a good algorithm for use in low-power multipliers.

A second reason for questioning its use is that, because of
the long wires and high fan-in required in their implementa-
tion, the Booth’s encoder and partial-product generator con-
sume a lot of power themselves and generate glitches which
propagate through the whole multiplier. Race-free encoding
schemes have been proposed to ameliorate this problem [9].

Consequently we consider that Booth’s algorithm should
not be used in a low-power multiplier. Although the Booth’s
encoder and partial-product generator reduce the number
of partial products by a factor of 2, the same result can be
achieved by adding another row of 4-2 adders to the adder
tree. As shown in Figure 3, two Booth’s select MUXes can
be replaced by a 4-2 adder and four AND gates (or 2-1
MUXes).

‘/Multiplicand\s ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
LTTTTTTT LTTTTTT

T 1 .., oo SN
% MUX H MUX H MUX H MUX = Wires ‘ 4-2 adder ‘ 4-2 adder
| A B A i B R R |

‘ 4-2 adder 4-2 adder ‘

vy vy

Figure 3: Two kinds of 8-2 adder trees

We can compare the speed and area requirements of these
two circuits. Let us take the race-free encoding [9] as
an example. A race-free partial-product generator requires
24 transistors. A compact 4-2 adder using double pass-
transistor logic (DTL) requires 44 transistors [10]. The 2-1
MUX requires 3 transistors. It appears that the non-Booth’s
circuit is slightly bigger than the race-free encoding circuit
(44 + 3 x 4 > 24 x 2). However, the race-free encoding cir-
cuit has four control wires — NEG, x1, x2, Z — spreading
through the whole partial product generator. If we take the
wires into account, the non-Booth’s circuit is smaller than
the race-free encoding circuit. Even if we compare the non-
Booth’s circuit with a small Booth’s encoding circuit [9], the
non-Booth’s circuit incurs less than 5% hardware overhead.
In our investigations the non-Booth’s encoding circuit was
18% faster than the Booth’s encoding circuit because the
long control wires put heavy loads on their drivers and make
the Booth’s encoding circuit slow. The regular structure of
the non-Booth’s encoding reduces the possibility of glitches
which is good for power-efficiency. We also found that the
race-free encoding scheme is only race-free in an ideal situ-
ation. Because of the high fan-in, it is hard in practice to
ensure that signals arrive at the same time.

We developed a software model to compare the switching
activities of non-Booth’s and Booth’s tree multipliers. We
used the model to calculate the numbers of transitions in
4-2 adders with 10000 positive input numbers of different
SBCs. The results are shown in Table 2.

Table 2: Numbers of transitions in Booth’s
and non-Booth’s multipliers

SBC 8 16 24 32
Non-Booth’s | 140978 | 634928 | 1362437 | 2221972
Booth’s 490987 | 1243814 | 1874260 | 2511356
Ratio 1/350 | 1/1.96 | 1/1.38 | 1/1.13

We can see from Table 2 that, even for random operands,
non-Booth’s multipliers are somewhat more power-efficient
than Booth’s multipliers. However, with inputs having a
small SBC non-Booth’s multipliers are significantly better.

4.1 Sign-changing Algorithm

The results in Table 2 are based on the assumption of
positive inputs. Although most inputs are positive for the
four benchmark programs introduced in Section 2, some ap-
plications may have a higher incidence of negative numbers.
The low-power advantage of non-Booth’s multipliers will be
more convincing if the power-efficiency can be maintained
for negative inputs. To achieve this goal we need an algo-
rithm which can change both multiplicands and multipliers
to positive if they are negative. We propose a sign-changing
algorithm to achieve this objective.

The sign-changing algorithm for 32-bit multipliers is based
on the following functions:

axb=axb+a+b+1 (2)
axb=axb+b—1 (3)
axb=axb4+a—1 (4)

We can test the sign of an input by checking its most
significant bits (bit 31). If both multiplicand and multiplier

are negative we use Equation (2): invert both multiplicand
and multiplier and send them to a non-Booth’s multiplier.
For array or tree multipliers, we need another row of 4-2
adders to add @ and b. We then get the partial sum and the
partial carry. We use a carry-propagate adder to add the
partial sum and carry with a carry in of 1.

If only one of the operands is negative we use Equa-
tion (3) or (4): we invert the negative operand and send
it and the positive operand to a non-Booth’s multiplier.
We use the additional row of 4-2 adders to add the pos-
itive operand and OxFFFFFFFF (the least significant 32
bits of ‘-1’). However, we are left with the problem of adding
0xFFFFFFFF00000000 (the most significant 32 bits of -1’).
We could, of course, have a long 4-2 adder row consisting
64 adders to do this, but this would need a lot of hardware
and consume a lot of power. Instead, we distribute the 1s
in OxFFFFFFFF00000000 across the significant bits of the
32 partial products. Figure 4 illustrates the principle.

X X X X
X X X X 1X XXX
X X X X 1X XXX
—
X X X X 1X XXX

+11110000 T 1xxxXx

Figure 4: Distributing the higher-order 1s

Using the sign-changing algorithm, the non-Booth’s multi-
plier retains its low-power advantage for negative operands.
However, we need another row of 4-2 adders to add the two
extra numbers. Fortunately, for our pipelined iterative ar-
chitecture we can avoid this overhead by putting these two
extra numbers in Iterative Registerl and Iterative Register2
in Figure 2 at the start of the multiplication. For positive
inputs we set the Iterative Registers to zero. In the first
cycle of multiplication, 4-2 adder row2 just propagates the
two partial products from the Pipeline Registers to the Iter-
ative Registers. For negative inputs, the first cycle is used in
4-2 adder row2 to add the two partial products to the two
extra numbers. The implementation of the sign-changing
algorithm in our pipelined iterative architecture needs only
two rows of inverters and MUZXes, which represents a very
small hardware overhead.

5. ASYNCHRONOUS CONTROL

It is often argued by advocates that asynchronous logic of-
fers a more flexible power-management strategy than clocked
logic because an asynchronous system only performs pro-
cessing ‘on demand’ [12]. With asynchronous latch con-
trollers, we can readily close the datapath circuits as soon
as they have finished performing their logic functions. This
kind of fine-grain control may stop unnecessary switching
activity, thus saving power. For clocked circuits, arithmetic
functions always have a fixed operation time independent of
their inputs. For example, a synchronous multiplier will fin-
ish a multiplication in a fixed number of clock cycles even for
a simple multiplication such as 1 x 1. Otherwise, it is very
difficult for the circuit to achieve pipelined operation. An
asynchronous logic block, on the other hand, co-operates
with other asynchronous blocks by sending ‘request’ and
‘acknowledgement’ signals, thus avoiding this kind of diffi-
culty. It is in the nature of asynchronous circuits to achieve
input-dependent computation, which means that for simple

operands they take a short computation time and consume
little energy whereas for complex operands they take a long
computation time and consume more energy.

In Section 2 we presented the unbalanced SBC distribu-
tions displayed by the four benchmark programs. An asyn-
chronous multiplier can fully exploit this characteristic to
minimize power consumption. The basic principle of out
design is as follows: the multiplier takes 4 cycles to finish
a multiplication through a pipelined iterative architecture.
We divide the 32 bits of a multiplier into 4 groups, 8 bits for
each group. So if Bits1 — Bitay4 are all Os or 1s, one cycle of
multiplication can be sped up. Similarly, two or three cycles
can be sped up if the next one or two groups of eight bits
are all the same as the top group. The multiplication cycles
can be separated into two kinds — normal cycles and early
termination cycles. In normal cycles the multiplier operates
as usual, but during early termination cycles the 4-2 com-
pressors are idle and the Iterative Registers simply shift the
output to the proper position. This is called an ‘early ter-
mination’ algorithm. With the early termination algorithm
we can not only save power but also increase the throughput
of the multiplier.

The asynchronous latch controller used in the multiplier is
shown in Figure 5. The latch controller is constructed from
two C-elements [13]. It is normally closed, which means
that the latch opens only when a new stable value is avail-
able on its inputs, preventing unwanted glitches from prop-
agating to the next pipeline stage. Normally-closed latch
controllers are good for low power [14]. The latch controller
is also fully-decoupled [15], and we can use normal level-
sensitive latches to construct an asynchronous pipeline with
100% occupancy. Clocked logic requires edge-triggered reg-
isters to construct pipelines with 100% occupancy. As is
well known, level-sensitive latches present half the capacitive
load of edge-triggered registers to clock signals. In the new
multiplier, the Pipeline Registers are level-sensitive latches
and the Iterative Registers are edge-triggered registers. The
multiplier is a 2-stage pipeline, so its control circuit includes
two latch controllers, controlling the Pipeline Registers and
the Iterative Registers respectively.

Aout

Rout

VLt

Figure 5: A normally-closed latch controller

To understand fully why the new multiplier consumes less
power than its synchronous counterpart, analyzing the oper-
ation of the pipeline is very important. Figure 6 illustrates
the different pipeline operations of the asynchronous multi-
plier and a synchronous multiplier under the conditions of
(a) 4 normal cycles and (b) 1 normal cycle. Without early
termination as shown in Figure 6(a), the synchronous mul-
tiplier has some unnecessary switching activity in the first
and last cycles: In the first cycle, only pipeline stagel needs
to do useful work, while stage2 should be idle and wait for
the data from stagel. In the last cycle, pipeline stagel has
finished its work, and only stage2 needs to calculate the fi-

nal result. However, because in the synchronous multiplier
both pipeline register and shift register are connected to
the global clock signal, both stages operate simultaneously,
thus causing some unnecessary switching activity. With 3
early termination cycles, the synchronous multiplier wastes
even more energy in unnecessary activity as shown in Fig-
ure 6(b). In conclusion, asynchronous design has a more
flexible power-management strategy and will stop activity
in some or all of the system whenever its operation is un-
needed. It is difficult for synchronous logic to achieve this
goal because all the subsystems are driven by the same clock
signal. The power in very carefully designed asynchronous
circuits is dissipated along the lines of “pay as you go” or
“on demand”. The power dissipation only depends on how
much work needs to be done.

Necessary activity Unnecessary activity % ‘

swal 1 .
s L

Shift register

Early termination cycles —» Z%
The proposed multiplier

s [
=

Shift register

A synchronous multiplier

(&) Without early termination (b) 3 early termination cycles
Figure 6: The pipeline operations
in the two multipliers

6. SPLIT REGISTERS

In our design we use the PowerPC603 master-slave reg-
ister [16] in our Iterative Registers. Although the Pow-
erPC register is very power-efficient, and we use small level-
sensitive latches for the Pipeline Registers, we still find that
the registers and their drivers consume about 58% of the
total power. This is because large registers (we have about
200 register bits) put a heavy load on the control wires. The
long wires themselves constitute a large capacitance. If we
can decrease the capacitance of the registers and wires we
can greatly improve the power-efficiency of the multiplier.
Because of the unbalanced SBC distribution, in most cases
the top 16 bits of Pipeline Register and Iterative Register
stay 0 and we do not need to clock them. Therefore we split
the registers into 3 groups. The first group is Bitss — Bits,
the second group is Bit1s — Bits and the third group is
Bit7; — Bito. The circuit is shown in Figure 7.

We use two control wires — Pass0 and Passl — to con-
trol how many bits should be clocked. Because we already
have a cycle detector to detect how many normal cycles a
multiplication needs, the only overhead incurred for split-
ting the registers is 2 MUXes. Testing the split registers by
simulating the schematic we found a 12% energy saving. Be-
cause the schematic-based simulation does not include wire
capacitance we think it likely that in a real circuit splitting
the registers will offer a greater power saving.

The split-register technique is similar to a technique used
previously in a low power register bank [17]. However, we

Pass1 PassO

Clock

B31-B16 ‘ ‘BZI.S—BB ‘ ‘ B7-B0O ‘

Figure 7: 32-bit split register organization

have not seen it applied before to the design of latch- or
register-based multipliers.

7. EXPERIMENTAL RESULTS

Four different multipliers were implemented for compari-
son. They are: a synchronous non-Booth’s multiplier with
unified registers (SNN), an asynchronous Booth’s multiplier
with unified registers (ABN), an asynchronous non-Booth’s
multiplier with unified registers (ANN) and an asynchronous
non-Booth’s multiplier with split registers (ANS). The var-
ious implementations were simulated using HSPICE, with
netlists exported from Cadence Composer-Schematic. A
Verilog test harness was constructed to present the input
stimuli and to check that the outputs were correct.

The multipliers were analyzed under the conditions of a
1.8 volt supply and 27 °C temperature on a 0.18 micron
CMOS technology. The input vectors were 1000 pairs of
numbers taken randomly from the 4 benchmarks introduced
in Section 2. We controled the throughput at 100 million
multiplications per second. The results are shown in Table
3.

Table 3: Power comparisons among 4 multipliers
Multipliers | SNN | ABN | ANN | ANS
Power (mW) | 16.17 | 9.56 7.35 6.47
Ratio 2.2 1.3 1 0.88

As can be seen from Table 3, the asynchronous multipliers
consume less than half the power of their synchronous coun-
terparts. Non-Booth’s multipliers save 23% of the power of
those using the modified Booth’s algorithm, and split regis-
ters save another 12% of the power.

The ANS multiplier completes a multiplication requiring 4
normal cycles in 6.5 ns, resulting in a throughput of 150 mil-
lion multiplications per second. However, this is the worst
case. It completes a multiplication requiring 3 normal cycles
in 6.0 ns, a multiplication requiring 2 normal cycles in 5.2
ns, and a multiplication requiring 1 normal cycle in 4.3 ns.
Based on the unbalanced SBC distribution, ANS has an av-
erage throughput of more than 200 million multiplications
per second.

8. CONCLUSION

Four benchmark programs were analyzed in order to find
the statistics of typical multiplication operands. It was
found that the distributions are imbalanced in two ways that
are very important for low-power multiplier design: posi-
tive operands greatly out-number negative operands, and

the number of significant bits is typically small (fewer than
16).

A new design for a low-power multiplier was presented
based upon the above observations. The new multiplier uses
an area-efficient pipelined iterative architecture. It employs
asynchronous control and an early-termination scheme, and
has a very flexible way to control the datapath. The new
multiplier dissipates power ‘on demand’ — for those small
operands, it consumes less power; for large operands, it
consumes more power. QOur experiments show that asyn-
chronous control reduces the multiplier’s power consumption
by more than half.

A non-Booth’s algorithm avoids the inverting operations
that are necessary in multipliers using the modified Booth’s
algorithm, thereby avoiding a lot of signal transitions. A
sign-changing algorithm is used to ensure that the non-
Booth’s multiplier retains its low-power advantage for neg-
ative operands. Compared to a Booth’s multiplier, the non-
Booth’s multiplier has a 23% reduced power dissipation.

Split registers help the multiplier to save a further 12%
of its power dissipation. The total switching capacitance
is decreased by splitting a large register into several small
segments. In most cases, only a small part of the register is
driven by the clock signal on each cycle, thus saving power.

The new asynchronous multiplier demonstrates the low-
power advantage of asynchronous logic resulting from its
fine-grain control. Although the multiplier is an iterative
asynchronous multiplier, the non-Booth’s algorithm used
here is equally suited to synchronous multipliers, including
array and tree multipliers. The split datapath scheme is
also valid for any register- or latch-based multiplier with an
unbalanced distribution of input operands.

9. REFERENCES

[1] S. B. Furber, D. A. Edwards and J. D. Garside.
AMULETS3: a 100 MIPS Asynchronous Embedded
Processor. ICCD’00, 17-20th September 2000.

[2] D. Soudris, C. Piguet and C. Goutis (eds). Designing
CMOS Circuits for Low Power. Kluwer academic
publishers, 2002.

[3] A.P. Chandrakasan and R. W. Brodersen. Low Power
Digital CMOS Design. Kluwer academic publishers,
1995.

[4] T. Callaway and E. Swartzlander. The Power
Consumption of CMOS Adders and Multipliers, in
Low-Power CMOS Design, A. Chandrakasan and R.
Brodersen (eds), IEEE Press, 1998.

[5] L. Bisdounis, D. Gouvetas and O. Koufopavlou.
Circuit Techniques for Reducing Power Consumption
in Adders and Multipliers, in [2].

[6] J. Hennessy and D. A. Patterson. Computer
Architecture — A Quantitative Approach, Third
Edition. Morgan Kaufmann Publishers, 2003.

[7] Amos. R. Omondi. Computer Arithmatic Systems:
Algorithms, Architecture and Implementation.
Prentice Hall, 1994.

[8] M. Santoro. SPIM: a pipelined 64 x 64-bit iterative
multiplier, IEEE Journal of Solid-State Clircuits, 1989.

[9] R. Fried. Minimizing Energy Dissipation in
High-Speed Multipliers, Proc. of International
Symposium on Low Power Electronics and Design,
1997.

[10] J. Liu, Arithmetic and Control Components for an
Asynchronous System, PhD thesis, The University of
Manchester, 1997.

[11] A. D. Booth, A Signed Binary Multiplication
Technique, Quart. Journ. Mech. and Applied Math.,
vol. 4, part 2, pp. 236 240, 1951.

[12] S. B. Furber, A. Efthymiou, J.D. Garside, M.J.G.
Lewis, D.W. Lloyd and S. Temple, Power
Management in the AMULET Microprocessors, [EEE
Design and Test of Computers Journal special issue
pp. 42-52 (Ed. E. Macii), March-April 2001.

[13] J. Sparsg, S. Furber (eds). Principles of Asynchronous
Circuit Design: A systems perspective. Kluwer
Academic Publishers, 2001.

[14] M. Lewis, J.D. Garside, L.E.M. Brackenbury.
Reconfigurable Latch Controllers for Low Power
Asynchronous Circuits. Proceedings of Async99, April
1999.

[15] S.B. Furber and P. Day, Four-Phase Micropipeline
Latch Control Circuits, IEEE Transactions on VLSI
Systems, vol. 4 no. 2, June 1996 pp. 247-253.

[16] V. Stojanovic and V.G. Oklobdzija. Comparative
analysis of master-slave latches and flip-flops for
high-performance and low-power systems. IEFEE
Journal of Solid-State Circuits, April 1999.

[17] V. Zyuban and P. Kogge, Split Register File
Architectures for Inherently Low Power
Microprocessor, Power Driven Microarchitecture
Workshop at ISC98, June 1998.

