
A spiking neural sparse distributed memory

implementation for learning and predicting

temporal sequences

J. Bose, S. B. Furber, and J. L. Shapiro

School of Computer Science,
University of Manchester,Manchester, UK, M13 9PL.

joy.bose@cs.manchester.ac.uk,

[steve.furber,jonathan.shapiro]@manchester.ac.uk

Abstract. In this paper we present a neural sequence machine that
can learn temporal sequences of discrete symbols, and perform better
than machines that use Elman’s context layer, time delay nets or shift
register-like context memories. This machine can perform sequence de-
tection, prediction and learning of new sequences. The network model
is an associative memory with a separate store for the sequence context
of a pattern. Learning is one-shot. The model is capable of both off-line
and on-line learning. The machine is based upon a sparse distributed
memory which is used to store associations between the current context
and the input symbol. Numerical tests have been done on the machine to
verify its properties. We have also shown that it is possible to implement
the memory using spiking neurons.

1 Introduction

Time is important in many real world tasks. Many applications are sequential
in nature, where the time order of events is important. A sequence machine is
a system capable of storing and retrieving temporal sequences of patterns that
represent discrete symbols. Neural models of temporal sequence learning have
been a source of interest [7, 1, 2]. We are interested in a model that does one-shot
learning, can learn on-line, has good memory capacity, can work with a variety
of sequences and can be implemented using spiking neurons. We do not feel a
model with all these features has been developed earlier.

2 Sequence learning

One thing we need to consider is that two different sequences may have certain
symbols in common. If we use an associative memory to learn the two sequences,
where the association is between the current symbol and the next symbol, it
cannot decide the next symbol after the common because the two sequences
have different successors of the common symbol. It needs to have some idea
of the context as well. Thus the basic sequence machine needs to have four



Associative

Memory

Input

Shift Register
Context

Output

ip

ip(t−2)

ip(t−1)

ip(t)=input at time t

Input

Output

Context

Previous

Layer

Context

Context

Memory

Associative
context

(a) (b)

Fig. 1. (a)Shift register model and (b)a separate neural layer as context

components: input, output, main memory and context memory. The ideal on-
line sequence machine is one that can look back from the most recent inputs,
as far as is necessary to find a unique context for deciding the next character to
be predicted. The machine should be able to ‘lock-on’ or converge to a context
(and thus predict the next output) if it has seen it earlier, and to learn the new
association if it has not. It should have infinite look-back, yet should be able to
distinguish between different contexts.

When a new symbol is presented at the input of the on-line sequence machine,
first of all it learns to associate the new input symbol with the present value of
the context. Based on the new input and the present context, it creates a new
context. Finally it predicts the next output by presenting the modified context
to the memory. The above steps incorporate both prediction and learning. If the
memory has seen a similar input and context before, the expected next output
will be predicted. On the other hand, if it is given a new association, it writes it
to the memory. In this case the predicted output will be erroneous, but the new
association written into the memory should improve its performance if a similar
context is encountered subsequently.

2.1 The Shift Register model

One way to represent the context could be to have a fixed length time window
of the past, and associate the next output with inputs in the time window, as
is done in Time Delay Neural Nets (TDNN)[6]. Such a memory acts like a shift
register. However, the time window is of fixed size, and the number of common
symbols might be greater than this. Fig. 1(a) shows a shift register with look-
back of 2.

2.2 The context neural layer model

Another approach is to use a separate ‘context’ neural layer, with fixed weights,
to represent the entire history of the sequence. Fig. 1(b) gives the structure of the



(a)

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Letter Sequence

N of M encoder

N of M code

C
on

te
xt

D
at

a 
S

to
re

D
ec

od
er

A
dd

re
ss

N of M SDM

N of M code

N of M decoder

MachineSequence

Prev.cxt

Letter
Input

Letter
Output (b)

Old context Input

Scramble 
Deterministically

(simulates neural layer)

Expand

Contract

New context

+

Expand

Fig. 2. (a) shows a sequence machine using an N-of-M Kanerva SDM, having address
decoder, data memory and context neural layers. (b) shows how the new context is
created from the old context and the input in the combined model. The model has
aspects of both the neural layer and the shift register.

context layer based model. The influence of the old context can be modulated
by multiplying the old context outputs by a constant λ and feeding them back
as inputs. The context encodes the entire past history or ‘state’ of the sequence.
Such a model resembles a finite state machine. A similar model with feedback
was used by Elman [4]. A problem with the context neural layer model is that
to retrieve a sequence we need to start retrieval from the beginning, else the
context will be different.

2.3 Combined model

The shift register model and the separate context layer model both have their
advantages and disadvantages. We combine the two in a new memory model by
using a separate context layer with modulated context, where the new context is
determined by both the input and a shifted version of the present context. The
new context is formed from the input and old context as follows (see fig. 2(b)):
First we scramble of the old context, which is equivalent to passing it through a
neural layer. Then the old context is mapped on to a high dimension, expanded
and added to the expanded input. The sum is then contracted. The intention is
that the result should be strongly dominated by the present input, but should
have some bits of the past context in it as well.



(a) 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

N
o 

of
 s

ym
bo

ls
 p

re
di

ct
ed

 c
or

re
ct

ly

Length of input sequence

Combined model
Neural layer
Shift register

(b) 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

N
o 

of
 s

ym
bo

ls
 p

re
di

ct
ed

 c
or

re
ct

ly

Length of input sequence

lambda=1.0
lambda=0.9
lambda=0.7
lambda=0.5
lambda=0.3
lambda=0.2
lambda=0.1
lambda=0

Fig. 3. (a) compares the performance of three types of sequence memories: Shift reg-
ister, neural layer and the combined model. The straight line represents the ideal case,
when the complete sequence is recovered. The combined model(dotted line) performs
better than the others.(b) shows the memory capacity of the combined model in which
the context sensitivity λ has been varied to see what effect λ has on memory perfor-
mance. The topmost curve is for λ=1.0 and lowest for λ=0

3 An implementation using sparse distributed memory

We implemented the sequence machine using a modified Kanerva Sparse Dis-
tributed Memory (SDM)[3] using N-of-M codes[5]. We used an N-of-M code to
encode the symbols, in which N of a total M components are active simulta-
neously to give a valid code. Such memories have been shown to have good
information efficiency, scalability and error tolerance[5].

The N-of-M SDM has two layers of neurons: an address decoder layer, whose
primary purpose is to cast the input symbols into high dimensional space to
make it linearly separable, and a second correlation-matrix layer called the data
store, which associates the first symbol as decoded by the first neural layer, with
the second symbol. Learning takes place only in this layer, while the weights of
the first address decoder layer are set to a constant random value. The complete
system with context is shown in fig. 2(a).

4 Numerical tests on the sequence machine

We conducted some tests on the sequence machines described above, to com-
pare their behaviour with different kinds of sequences. There are three kinds of
sequence machine we are comparing, namely the shift register, context neural
layer and combined model. In each case we used the same SDM of size 512 by
256, with 1024 address decoder neurons. Each input symbol was encoded as an
ordered 11-of-256 code vector. The learning algorithm used in the data store of
the SDM is that the new weight matrix is formed by taking the maximum of
the old weight matrix and the outer product of the two vectors that are being
associated.

Comparison of different models: Here we compare the three models of
sequence machine with optimised parameters and analyse their memory capacity
for different sequence lengths. Repeated characters are guaranteed for sequence



(a) 0 10 20 30 40 50 60 70 80
−2

−1

0

1

2

3

4

5

6

Time

A
ct

iv
at

io
n 

V
al

ue

THRESHOLD 

(b) 0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
vg

 d
is

pe
rs

io
n 

(o
ve

r 
15

 r
un

s)

Layer no.

Initial dispersion is 0

Fig. 4. (a) is the plot of a typical neural activation with time, when the neuron receives
a single input spike at t=0. (b) plots the average dispersion over 16 runs of a burst of
spikes over a network of 200 feed-forward layers.

length greater than 15, which is the alphabet size. Figure 3(a) shows the results.
For each point on the figure we started with a blank memory and input the
sequence twice. The memory learns the sequence on the first presentation of the
input, and in the second time we check the predicted output sequence to see how
accurate the prediction is. We see that the combined model performs the best
of the three and obtains near perfect recall.

Effect of the context sensitivity factor: Here we vary the context sen-
sitivity factor λ and see the memory performance of the combined model. We
see three clear zones. When lambda is 0, the machine is not at all sensitive to
context and it performs badly. When it is 1, which means that the context is
given equal priority as the current input, it performs quite well, giving near per-
fect matching. When it is between these two zones, the combined model behaves
effectively like a shift register. Fig. 3(b) shows one such experiment.

5 Implementation issues using spiking neurons

In this section we mention a few issues when implementing this sequence machine
using low level asynchronous spiking neurons. One of the reasons we used SDM’s
to create our memory was their suitability to spiking neural implementation. We
define a symbol in our sequence machine as being represented by a burst of spikes
emitted by a layer of neurons, the information being encoded in the choice of
neurons firing and times of firing. When modelling such high level synchronous
systems using low level components, we need to ensure that the stability and
coherence of the symbols is maintained. By stability we mean that the spike
burst should not either die out or saturate when propagated through different
layers, but maintain the same average level. By coherence we mean that the
different bursts should not interfere with each other, else it would destroy the
information being propagated as symbols.

For our modelling we used a modification of the standard leaky integrate and
fire (LIF) neural model [8], in which incoming spikes increment the driving force
or first derivative of the activation, rather than the activation itself. Like in the



standard model, if the activation exceeds a local threshold, the neuron fires a
spike and the activation and the driving force are reset. Both the activation and
the driving force decay with time, the rates of decay being governed by their
respective time constants. Fig. 4(a) shows the shape of the activation curve
following a single input spike at time 0. We see that the activation at first
increases due to the increased driving force caused by the incoming spike, but
after a time the decay becomes dominant. There is an inherent time lag between
the input spike and the maximum activation reached by the neuron. If the system
contains a feedback loop, such a time lag is necessary, or else at least one input
neuron would have to fire a spike at the same time as an output neuron fires a
spike, and there would be no temporal separation between the input and output
bursts. The standard LIF model cannot achieve this property. This motivated
our choice of neural model.

We then simulated a network of 200 feed forward layers with same average
connectivity but random connection weights. We gave the first layer a random
input spike burst of firings, and propagated the output burst to the successive
layers. We ensured that the bursts were stable through feedback reset inhibition.
We then plotted the temporal separation of the bursts in each layer. The results
of one such experiment are plotted in fig. 4(b). We see that the average burst
width tends to settle around a narrow time range. If we ensure that the separation
between different bursts is large compared to this average time of one burst (by
adding extra delays), we can prevent different spike bursts from interfering. This
shows it is possible for a spike burst to maintain coherence. So by tuning the
delays between the bursts it is possible to implement the sequence machine using
spiking neurons.

6 Conclusions and further work

We have developed a model that is capable of on-line sequence learning and
prediction. More work needs to be done on issues of implementation by real time
spiking neurons. Work also needs to be done to develop suitable applications.

References

1. Vocal interface for a man-machine dialog. Dominique Beroule. ACL Proceedings,
First European Conference, 1983.

2. Learning Speech as Acoustic Sequences with the Unsupervised Model, TOM. S.
Durand and F. Alexandre. NEURAP, 8th Intl. conference on neural networks and
their applications, France, 1995.

3. P. Kanerva. Sparse Distributed Memory. MIT Press, 1988
4. J. L. Elman. Finding structure in time. Cognitive Science, 1990, 14.
5. S.B. Furber, J.M. Cumpstey, W.J. Bainbridge and S. Temple. Sparse distributed

memory using N-of-M codes. Neural Networks. 2004, 10
6. K.J. Lang and G. E. Hinton. The development of the time delay neural network

architecture for speech recognition. Tech.Report 88152, Carnegie Mellon, 1988.
7. R. Sun and C.L. Giles (Eds.) Sequence Learning. Springer-Verlag, 2000
8. W. Maass and C.M. Bishop (eds.) Pulsed Neural Networks MIT Press, 1998


