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Abstract. In this paper we examine issues involving the transmission
of information by spike trains through networks made of real time asyn-
chronous spiking neurons. For our convenience we use a spiking model
that is has an intrinsic delay between an input and output spike. We look
at issues involving transmission of a desired average level of stable spik-
ing activity over many layers, and show how feed-back reset inhibition
can achieve this aim. We then deal with the coherence of spike trains
and show that it is possible for a burst of spikes emitted by a layer to
not diverge when passing through different layers of neurons. We present
the results of simulations done on a multi layered feed-forward system
to illustrate our method.

1 Introduction

Spiking neural models have been a source of interest [1] due to their biological
plausibility and computational power. We are interested in engineering high
level systems such as associative memories out of low level components such as
spiking neurons, and in this paper we deal with some of the modelling issues
in any such undertaking. Spiking neurons transmit information in the form of
electrical pulses called spikes, whose firing times carry information. High level
systems transmit information as symbols, which can be translated to a series
or burst of spikes in the equivalent low level model. In a spiking neuron model
of a high level system, in order to preserve the integrity of the transmitted
information it is important for these spike bursts forming symbols to be stable
(not die out or explode as it is transmitted through layers of neurons) and
coherent (different bursts of spikes should not interfere with each other: there
should be an appreciable time lag between them so that the symbols can be
distinguished). In this paper we seek to tackle these two issues. There has been
previous work done in these issues: studies have been made of the dynamics of
activity in synfire chains [2, 3], consisting of neurons linked in a feed-forward
chains propagating spiking activity.

In this paper, we have used simulations of spiking systems to illustrate our
solutions, mainly because we encountered the mentioned problems during our
efforts to model a real memory through spiking neurons. For our simulation



purposes we have taken a feed-forward system of layers of neurons emitting
bursts of spikes (a synfire chain), as illustrated in figure 1(a). Such a system is
simple and sufficient for manifesting the problems we described.
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Fig. 1. (a) Architecture of the simulated network. The neurons in each layer are con-
nected to those in the next layer with partial connectivity. The first layer fires a burst
of spikes, which is fed to the second layer, whose outputs are fed to the third layer
and so on. The temporal widths of the output spike bursts are measured. (b) Plot of
a typical RDLIF neural activation with time, when the neuron receives a single input
spike at time t=0. (c) Use of feed-back reset inhibition.

1.1 Model of spiking neuron

We use a rate driven leaky integrate and fire (RDLIF) model of spiking activity.
As the name indicates, it is similar to the standard leaky integrate and fire (LIF)
model [1], the only difference being that incoming spikes increase the driving
force or the first derivative of the activation, rather than the activation itself.
In this model, the behaviour of a neuron can be described by two variables: the
activation a, the quantity which induces the neuron to emit a spike if it exceeds a
threshold, and the activation driving force r, which controls the rate of increase
of the activation. Both activation and driving force decay with time, the rate of
decay being governed by their respective time constants τa and τr.

The driving force, or rate ri of the ith neuron increases with incoming spikes
and decays with time t, till it reaches a resting value r0

ṙi =
∑

j

wijxj − (ri − r0)/τr (1)

Here xj =
∑

n δ(t− tn) is the sum total of impulse functions of the input spikes
emitted from the jth input neuron and wij is the connection strength.

This driving force ri drives the activation ai, which itself decays with time
to a resting value a0.

ȧi = ri − (ai − a0)/τa (2)

If the activation of the neuron exceeds its local threshold, it fires a spike and
immediately its activation is reset to a refractory level, and driving force to 0 to
prevent the activation from increasing.



Figure 1(b) shows the shape of the activation curve of an RDLIF neuron,
following a single input spike at time 0. We see that the activation at first
increases due to the increased driving force caused by the incoming spike, but
after a time the decay becomes dominant. For an RDLIF neuron to fire, it should
get sufficient number of input spikes within a specified time, to enable it to reach
the threshold before it ‘dies out’ because of the decay of the activation and
activation rate. There is an inherent time lag between the input spike and the
maximum activation reached by the neuron. If the system contains a feed-back
loop, such a time lag is necessary, or else at least one input neuron would have to
fire a spike at the same time as an output neuron fires a spike, and there would
be no temporal separation between the input and output bursts. The standard
LIF model cannot achieve this property. This motivated our choice of neural
model. Although we have performed simulations on feed-forward networks only,
in principle they should work equally well if feed-back loops are present.

2 Simulation of a multi-layered system

We simulated a feed-forward network of partially connected layers of RDLIF
neurons. We fed the first layer a uniformly distributed random set of spikes,
and fed them into the second layer, the second layer spikes into the third layer
and so on. Delays in the system are solely due to the second order dynamics
inherent in the equations in the previous section. We then measured and plotted
the temporal separation of the spike burst when passing through different layers.

2.1 Implementation method

In this section we describe our simulation method for modelling an infinite num-
ber of different feed-forward layers of neurons. Our simulation program has a
loop, each of whose iterations represents a propagation from layer i to layer
(i+1). There is a different weight matrix in each iteration, representing different
layers with the same average connectivity. The first layer is given a random set
of spike firing times. We have an inner loop to count the time in time-steps
in each such iteration, and in each time-step we check if any input or output
neuron has fired. Each input spike increases the gain of the connected neuron
proportional to the connection, as per our RDLIF model. The firings in the ith

layer cause spikes to fire in the (i + 1)th layer. We found in our simulations that
there was a time above which the gain and activation of all the neurons in a layer
would decay and there would not be sufficient stimulus for any neuron to fire.
We wait for this amount of time, found through simulation, which is sufficient
for all the neurons in a layer to fire output spikes. We argue that this method
(using time-steps and waiting for a specified time in each layer before moving
on to the next layer) can be considered similar to an event-driven system.

The process of propagating the spike firings of one layer on to the next is
repeated for the next iteration after copying the output vector of spike timings
to the input layer. In each iteration the input is simply a vector of firing times
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Fig. 2. (a) Plot of the average output dispersion, with initial input dispersion 0, of a
burst of spikes passing through the 200-layer network. (b) Plot of the average output
dispersion with varying input dispersions. (c) Plot of the variation of average output
dispersion with network connectivity. As the connectivity increases, the dispersion
decreases.

and we get an output vector of firing times. We measure the temporal dispersion
by taking the difference of first and last neuron firing times in that burst.

2.2 Sustaining stable activity in a population of neurons

Like we mentioned earlier, stability of the spiking activity over many layers is
an important issue in modelling systems of spiking neurons. We found that for a
given network, there was no threshold such that the system could sustain a stable
average level of spiking activity over infinitely many layers. If the threshold is
too low, the spiking activity dies out within a few layers. If it is too high, the
activity increases with each layer, saturating to an unacceptably high level. The
behaviour of the network abruptly switched from dying out of the spiking activity
to saturation, as the threshold was increased. One of the ways of getting over
this problem is through the use of feed-back reset inhibition. This can enable us
to have a system in which a stable activity of firings could be sustained over a
number of layers.

2.3 Effect of feed-back reset inhibition

Feed-back reset inhibition can be implemented by a neuron that is fed the output
spikes from a layer, and fires an inhibitory spike once it gets a desired number of
input spikes, say N (see figure 1(c)). This strong inhibitory spike resets all of the
neurons in the layer, suppressing output activity of the layer. An RDLIF neuron
with a threshold equal to the number of allowed spikes is equivalent to such a
counter, provided the activation rate time constant τr is small and activation
time constant τa large with respect to the input dispersion. Such systems can be
used to implement N-of-M codes (when the inhibitory spike fires after exactly N
neurons have fired out of a total of M), such as those used by Furber [4]. In our
simulation, we implemented an 11-of-256 code, which could be sustained over
infinitely many layers in this way.



2.4 Simulation results

The parameters in our system are the individual neuron parameters (time con-
stants, threshold) and system parameters (input time spreads and connectivity).
Our model had 200 layers with 10% connectivity from layer to layer. The weights
are real values between 0 and 0.1, chosen from an uniform distribution. The neu-
rons have thresholds of 50 and reset values of -1, time-steps are 10 msec wide,
and both time constants (τa and τr) are 1 sec each.

Figure 2(a) shows the variation of the average output dispersion (over 15
runs) with input dispersion when the initial temporal dispersion was 0. We find
that the dispersion quickly tends to settle down into a range, from its input value
of 0, and does not disperse much. We repeated this experiment with different
values of initial input dispersion and found that we got the same behaviour with
different input parameters. Thus, it is quite a stable and robust system.

We then varied other input parameters. Figure 2(b) shows the variation of
the average output dispersion with the initial dispersion we gave to the first
layer. We see that there is no appreciable change in the average dispersion,
regardless of the input dispersion value. Figure 2(c) shows the variation with
network connectivity. When the connectivity is low, the neurons have difficulty
reaching the threshold and so the average spread is higher, and vice versa.

There are two important system-level time constants in our model, one for
the temporal separation within a burst (our waiting time in each iteration from
layer i to i+1), the other for separation between bursts (which can model axonal
delays). Since we have shown that it is possible to design a system which can
propagate a spike burst of desired spiking activity which can maintain coher-
ence when passing through different layers, we can ensure that the inter-burst
separation is sufficient (by inserting delays) so that successive waves of spikes do
not impinge on each other. On the basis of this, we argue that it is possible to
model a reliable system transmitting useful information using spiking neurons.

3 Conclusions and future work

In this paper we have studied issues involved in modelling systems of spiking
neurons, and have shown that it is possible to propagate a coherent burst of
spiking activity of a desired level over many layers. Work needs to be done in
implementing real-time systems built with spiking neurons.
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