
A Microcomputer Interfacing Laboratory

J.D. Garside

Department of Computer Science, University of Manchester

Oxford Road, Manchester, M13 9PL, UK

jgarside@cs.man.ac.uk

Keywords: Teaching, Microcontroller, Interface, ARM, FPGA
the
eir
s.

ut
r
ble
as
ut
ear

her
e
f).
le.
th
he
d
f

id
d

of
nd
to

a
ay
e
O
n

an
,
d

e

Abstract

The majority of computer processors sold today are
used as embedded controllers; devices which rely on a
mixture of hardware and software in a real-time
environment. The teaching of this subject falls somewhere
between computer science and electrical engineering. This
paper describes a laboratory developed to provide an
easy-to-use solution to fill this gap.

1. Introduction

Whilst most laymen might still think of a “computer” as
a large, plastic box with a keyboard and monitor, such
devices represent only a small (and decreasing) proportion
of the industry. The majority of computers are embedded
controllers – devices which are built into an ever-increasing
variety of equipment. Unlike ‘traditional’ computers these
microcontrollers often rely on intimate cooperation
between their hardware (for speed) and software (for
cheapness); if there is time available some functions
normally supported by dedicated hardware may be
implemented in software and vice versa. For example
Dynamic RAM (DRAM) refresh could be relegated to an
interrupt routine whereas encoding of communications
packets may be partially supported with a coprocessor.
There are a number of trade-offs involved and an increasing
demand for engineers with an appropriate background.

The teaching of embedded control in universities often
lies between the remits of computer science departments –
who typically approach the subject (if at all) with a heavy
software bias – and electrical engineering departments –
who usually have a primary interest in the hardware.
However the topic crosses this boundary and it is therefore
desirable to offer a course which blurs this divide.

In order to introduce students to this discipline a course
has been developed within a new degree programme –
Electronic and Computer Systems (ECS) – at the Computer
Science Department at the University of Manchester. This
particular course is somewhat unusual in that it is entirely

practical-based; engineering is a practical subject and
course should therefore force the students to produce th
own designs and allow them to make their own mistake
This naturally reduces the ‘breadth’ of the syllabus b
increases the memorability of the lessons! Afte
considering both the course requirements and the availa
equipment the hardware and most of the software used w
custom-developed. This was a significant undertaking, b
appeared justified at the time and the results seem to b
out this decision.

The wider intent was to create a set of exercises, toget
with supporting equipment, as a ‘kit of parts’ which may b
used to build other university courses (or parts thereo
Naturally such a kit must be cheap, flexible and extensib
This work is ongoing and is being done in association wi
a small group of academics at various universities; t
initial group includes Manchester, Imperial College, an
the University of New South Wales, with expressions o
interest from several other sources.

2. Intention

“Things should be made as simple as possible
– but no simpler.” A. Einstein

The aim of the laboratory is to give the students a sol
experience of computer interfacing. This includes input an
output, timing, interrupts and real-time operation. Some
these concepts can prove intimidating at first encounter a
it is quite easy for students (and, indeed, professionals)
take the ‘easy’ way out. For example, it is ‘easier’ to poll
peripheral than set up interrupt routines; a software del
loop is ‘easier’ to write than programming a hardwar
timer. It is only when several simultaneous, unrelated I/
activities are required that the benefits of ‘correct’ desig
become apparent.

As is revealed from a short perusal of its data sheet
‘off the shelf’ microcontroller can be a complex device and
frequently, not one amenable to the inexperience
programmer. An important consideration within th
laboratory is therefore to introduce complexity



r
is

ies
set
.
ple

he
ing
nd

urn
or

in
eap
ise.
le
n
ut

al
ms

d
nd
on
ad
y
e
n
e
al

d

y
to
t
he
to
a

d in

a
ly
x

the
A
ch
incrementally. To support this end it is desirable to have a
range of simplified peripherals which provide just enough
functionality for each exercise. It is also helpful to simplify
the development environment (both for hardware and
software) or find tools which are easy to use, or already
familiar.

3. Background

In embedded solutions it is not always clear whether a
hardware or a software solution is best for a particular
function and, quite often, a mixed solution is employed.
The object of this course is to practice development at this
level and allow the option of mapping a design into
hardware or software.

In an industrial environment microprocessors have been
available as library components for several years now and
standard ASICs have been large enough to incorporate
them. Somewhat more recently semiconductor
manufacturers have begun to produce FPGAs which
incorporate microprocessor macrocells, one example being
Altera’s Excalibur which contains an ARM processor.
Such devices reflect the existing ASIC design flows but
incorporate the advantages of fast turn-around and
reprogrammability inherent in FPGAs. It is clear that these
devices can both act as a model for current ASIC
development processes and, in the longer term, replace
some of them.

Although such state-of-the-art parts can be expensive
and in short supply in an educational context they can easily
be replaced by a less integrated solution. Therefore the
course has been developed around an experimental circuit
board which provides the following facilities:

• an ARM-based microprocessor system

• a user-configurable FPGA

• a customised software environment

3.1. ARM

The ARM [1], a UK-designed microprocessor, is now
established as the leading 32-bit microcontroller
architecture; ARM programming therefore provides
experience relevant in the marketplace. Being a commercial
architecture there is extensive software support available.
Lastly (but significantly) ARM Limited is also keen to
support the promotion of their products within UK
universities.

Programming a completely ‘blank’ system necessarily
requires the use of assembly language. ARM has a
straightforward, (almost) orthogonal instruction set, unlike
most 8-bit microcontrollers. The architecture is heavily
RISC-inspired, but retains some features, such as condition
codes, which are features of CISC processors; it therefore

occupies a position from where migration to othe
architectures should be relatively easy. The processor
fully interlocked so features such as register dependenc
and branch delay slots are not exposed at instruction
level. It is therefore a straightforward teaching vehicle
These reasons had already led to its adoption as the exam
architecture taught at Manchester University.

Finally there are development tools available so that t
hardware can be adapted for use with other programm
languages and the interfaces between C (for example) a
assembly language are defined and supported. This in t
allows the equipment to support other laboratories
project work.

3.2. FPGAs (Field Programmable Gate Arrays)

FPGAs offer an electronically programmable
replacement for the prototyping ‘breadboards’ once used
teaching digital electronics. These parts are large and ch
enough to encompass any feasible student design exerc
Parts are available which are indefinitely reprogrammab
and, for the performance levels required, CAD tools ca
compile a schematic to an FPGA netlist adequately, witho
user intervention.

Preparing circuits this way has a number of education
advantages over hand-wired designs: there are no proble
introduced from bad or intermittent wiring contacts an
faulty devices are very rare and easily diagnosed a
replaced. It is also possible to concentrate teaching effort
the design process by employing hiearchical design inste
of having to construct many copies of some basic circuit b
hand. This allows much more ambitious designs to b
attempted within a given time, an important consideratio
within an industry that is progressing so rapidly. To achiev
even larger circuits it is possible to supply some function
units pre-built for only a ‘one-off’ start-up cost; to do this
with a breadboard required many hours of time for a skille
technician.

Finally it is possible to recompile the netlists alread
demonstrated using FPGAs using a standard cell library
allow the production of an ASIC. Although this does no
add greatly to the educational experience – except for t
few students with enough time that they can be exposed
some of the ASIC back-annotation and verification – it is
powerful motivating factor. With current levels of
integration many student designs can be accommodate
a single device, thus reducing the cost overall.

At Manchester University we have been using such
design flow for over ten years. It has proved extreme
successful in allowing students to produce comple
designs. A standard second year exercise is now
implementation of a simple RISC microprocessor.
number of student designs prototyped this way rea
silicon each year.



as

a
a

o
e

ds
an
e
s
os

st;
till
a
sor
s a
st
in
e

on
e
e;
me
n

ea
d.
e
n
e

ss.

th
ed
n
e
ng

s;
me
ting
3.3. Software environment

As well as the target hardware it is important that there
is software support available. Development tools for the
hardware (FPGA) development are already available at
educational rates via Europractice [2]. Software compilers
and assemblers are available from ARM Limited, and from
other sources. In addition to this software has been
developed to integrate the user’s view of the environment
and also to simplify the system to allow teaching to
concentrate on the generalities of what is being taught
rather than system implementation detail. This is described
later.

4. Alternative Systems

Instead of the microprocessor/FPGA based hardware a
number of other possible schemes could be employed. Here
some of the rejected alternatives are briefly described and
the reasons for their rejection given.

4.1. Simulation

A software emulation of the entire microcontroller
system could be produced and run on a workstation. This
has one great advantage: it removes the need for physical
hardware with a consequent reduction in system cost,
especially in large laboratories. However there are also
significant disadvantages to this approach.

The simulation would need to be a considerable system.
It would require both a processor emulator to execute the
software and an integrated hardware simulator to run the
gate models. While both of these are available as stand-
alone products the integration of these, together with an I/
O interface to allow user interaction, would present a
considerable development problem.

While this is surmountable (with difficulty) the
simulation is always going to lack one thing – the allure of
the physical system to the student. It is undeniable that there
is more satisfaction in producing a working artefact than in
a mere simulacrum. Furthermore – with appropriately
designed exercises – it can be easier to spot problems with
a real implementation, both for the student and the
laboratory supervisor. A simple of example of the latter
case is a seven-segment display decoder, where a logic error
anywhere soon becomes very obvious!

4.2. PC and I/O board

The next step from a pure simulation would be to
simulate the processor on a PC and map some of its I/O
space onto a dedicated circuit board for user interaction.
Ideally such a circuit board would be external to the PC –
to allow the use of different ‘plug in’ interfaces – and

communicate through some standard means so that it w
not tied to a particular host system.

If this is done the most obvious approach is to fit
microprocessor to the I/O board and communicate via
serial link. If this is accepted then it is a small step t
running the user’s application remotely, freeing it from th
vagaries of the PC.

4.3. ‘All FPGA’ solution

Modern FPGAs can easily hold hundreds of thousan
of gates. One credible solution would therefore be to use
existing FPGA development board and integrate th
processor into the FPGA itself. Since this project wa
begun, such a solution has been provided by Altera’s Ni
embedded processor [3].

This solution has three disadvantages. The first is co
while small FPGAs are quite cheap large ones are s
expensive and this must be multiplied by the capacity of
laboratory. The second disadvantage is that the proces
model must be obtained or developed. This represent
considerable expense in time but is only a ‘one-off’ co
and so is not necessarily significant. The desire to reta
software compatibility with other courses may restrict th
options here, though.

The third disadvantage to this scheme is the compilati
time of the hardware. Student designs will typically requir
a few hundred gates and are relatively quick to compil
however if the processor has to be added to this each ti
the overhead will be significant leading to a long desig
turn-around time and rapid disillusionment.

4.4. Integrated processor/FPGA devices

A number of devices (such as ‘Excalibur) are
becoming available which contain both a CPU and an ar
of FPGA. These appear ideal for the application in han
However at time of writing the cost and availability of thes
is uncertain. Even if the hardware is available at a
economic price there must also be library support for th
development tools available through a subsidised proce

4.5. ARM’s development tools

As would be expected ARM Limited provide
development tools for loading and debugging software bo
in simulation and on remote target systems. Supersed
versions of the toolkit are available free for educatio
purposes. Whilst it is anticipated that this should b
supported by the hardware it is less than ideal for teachi
purposes.

ARM’s tools are intended for experienced developer
such users can be expected to treat the system with so
respect. This is necessary because, for example, reset



er

st
is

ns
a
ng
he
d

re
an
an
er
is

ns
ort
n-
d
rs.

e
ve.
ed
s)
the

)
nd
of
of

ty
nt
he
n

the target system can require a restart of the host software.
Such abuse will be common in a laboratory, where an ideal
system should be able to recover seamlessly.

More seriously the target system is not ‘clean’; the debug
monitor requires certain facilities which the user interferes
with at his peril. A notable example is the interrupt system
where a user mustsupplementthe existing interrupt service
routines – overwriting them will cause a loss of the host
link! An experienced user can be expected to do this
routinely but it is hopelessly confusing for a neophyte.

The system would also need extensive modification to
support the programming of any other devices (specifically
FPGAs) which are hosted off the same serial line. A
protocol which shared the communications link would
therefore need adding to both ends of the software, in itself
a considerable undertaking.

Lastly, while the compilers, assemblers etc. are all
available in command line versions, the windowed system
is currently only available under Microsoft’s Windows.
This renders it incompatible with Manchester University’s
existing FPGA development routes which are all under
Linux. Command line driven versions of the software are
available but tend to produce the ‘wrong impression’ on
modern students. However such tools can be executed in the
background by scripts and are therefore useful for
supporting the finished system.

5. Environment

5.1. Basic hardware

The development environment hardware (figure 1)
comprises an ARM microprocessor system with a separate
FPGA accessible in its I/O space. The ARM processor
connects to the host system via a serial line which can be
used to download programmes for both the hardware and
the software.

The devices chosen are the Atmel AT91 microcontroll
[4] (32 MHz ARM7) and the Xilinx Spartan XCS10XL [5].
The processor provides a highly integrated, low-co
solution to the microprocessor system. Its performance
not high, but it is far more than adequate for the applicatio
in mind. The FPGA is a small, cheap part but with
capacity of a few thousand gates is quite capable of holdi
an adequate variety of I/O interfaces simultaneously. T
system is supported by a 2 Mbyte Flash ROM an
512 bytes of RAM.

The circuit board (figure 2) is capable of accepting mo
devices: the RAM can be expanded up to 4 Mbytes,
Ethernet interface attached and another, larger FPGA c
be fitted to extend the environment to encompass larg
student projects or postgraduate work; however for th
laboratory a restricted, low-cost solution is preferred.

5.2. Software

A set of four DIP switches on the PCB allows the
selection of one of sixteen possible software configuratio
following reset. Some of these are used for system supp
– for example one configuration is used to support an i
circuit ROM reprogramming utility and another is intende
for self-test diagnostics – the others are available for use
Whilst ARM’s ‘Angel’ (the embedded software for their
developer suite) can be installed it is not used in th
laboratory described here for the reasons outlined abo
Instead a purpose-built ‘back-end’ is used. This is design
to be robust and has a protocol which allows the FPGA(
to be downloaded and can also support user data across
same link, whilst still providing the system monitor
functions. A matching ‘front-end’ user interface (Komodo
is provided on the host system which allows the control a
monitoring of the systems status, the downloading
software and hardware configurations, and the execution
user programmes (figure 3).

In order to provide the necessary control and reliabili
the students’ code is executed in a fully virtual environme
running on the target processor (figure 4). This results in t
slightly bizarre circumstance of a processor running a

ARM7

I/O

Timers

Figure 1. Hardware configuration

Serial

RAM

Flash
ROM

(2Mbytes)

RAM
(4Mbytes)

Ethernet

PIO FPGA
(Spartan)

FPGA
(Virtex)

Bus

LCDLEDs

Expansion

AT91

I/O

Populated here

RAM

Figure 2. Laboratory PCB



h-

st
ti-

he
e
it
ut
e
e
e
e
,

he
rd

y
he

or
lly

le.
y
al
e
r

t
ed
A,

a
al
de
the
ffer
e

emulation of its own machine code; however there are a
number of advantages to this scheme:

• The students’ view of the target machine can be com-
pletely ‘clean’. None of the interconnection software is
visible in the virtual environment. This also means the
link cannot be damaged by target software crashes,
which can be observed, single-stepped etc. just like any
other software.

• The student can interrogate the target system at any time
– including while programmes are running. This allows
the display of registers and memory locations as they
change.

• The simulator can simulate hardware which does not ex-
ist. Thus a software upgrade can extend the processor’s
architecture to the latest versions of ARM while still
running on cheap hardware. If desired memory manage-
ment, coprocessors, DSPs etc. could be added or even a
different instruction set employed without changes to
the hardware.

• Sophisticated debugging features (breakpoints, watc
points etc.) can be included easily.

• Simplified hardware interfaces can be provided whil
protecting hardware from potential damage (e.g. mul
ple different outputs driving the LCD bus).

The only real disadvantage of this environment is that t
performance is much lower (about 0.5%) of the nativ
performance. Although this sounds significant in practice
means that the target ‘processor’ can still deliver abo
0.12 MIPS which is far more than is required for any of th
intended experiments. (Due to the slow, 16-bit wid
external RAM on the microcontroller, the performanc
delivered running code from the external RAM would b
about 4 MIPS, so the emulator, in fast, internal RAM
actually delivers ~3% of the true performance.)

Considerable other software is used to support t
laboratory. The assembler and linker from ARM’s standa
‘Software Development Toolkit’ (SDT) are called from a
script invoked from Komodo (although independentl
compiled programmes can also be loaded using t
standard ‘Executable and Linking Format’ (ELF) [6].

Hardware design is supported using the Ment
Graphics design suite (although other tools are equa
applicable) and compiled with Xilinx’ tools. Komodo can
pick up the bit file for downloading with a browser.

5.3. Interface expansion

It is obviously desirable for a piece of laboratory
equipment to serve as many different roles as possib
Although the FPGA allows the digital hardware to be ver
flexible there is still an issue of the interfaces to extern
devices. For example a ‘serial line’ often refers to som
subset of RS232 which requires buffering to particula
voltage levels.

It is not always feasible to predict in advance wha
interfaces will be required. Instead a number of customis
interface modules, with a common interface to the FPG
are produced. Thus, for example, the FPGA can provide
serial interface at the voltage levels used by the digit
circuits and a plug-in module can buffer these and provi
a standard RS232 connector. This approach offers
added advantage of separating the parts most likely to su
from physical or electrical damage from the mor
expensive PCB.

Possible interface modules include:

• Serial drivers

• Parallel port buffer

• Stepper motor drivers

• Analogue inputs/outputs

and others can be designed and added quite cheaply.

Figure 3. User’s view via Komodo

FPGA

ARM

UART

M
em

ory

I/O

I/O

I/O

Host link

Emulator
and host
interface

Figure 4. Virtual ARM Environment



de
–

n
tal
half

of

t
is
n
ral
er

ore
ve
ons,
nt

ro-
of

m

ol
p-
pe
e

t
l-

to
t).
th
at-
These expansion modules can be interchangeable so that
not all the possible units need be fitted at any time. Each
expansion connector occupies sixteen digital I/O pins on an
FPGA; this is adequate for driving the parallel interface to
a character LCD display, or four individual stepper motors,
or an 8-bit DAC plus some bits from analogue comparators
(allowing analogue to digital conversion algorithms to be
explored) etc. If necessary an expansion module can be
built which spans two or more I/O connectors.

6. Exercises

The exercises are primarily concerned with
microprocessor interfacing. This is a subject not easily
taught (practically) in any other way. Subjects covered
include parallel and serial interfacing, timers and, of
course, interrupt programming. Extensions into analogue
interfacing are also planned.

The students already (allegedly!) have some background
knowledge in that they will already have taken courses in
both ARM assembly language programming and basic
hardware design. Basic familiarity with the instruction set
and the tools used is therefore assumed.

Exercises are intended to be short (normally intended to
fit within one or two 2 hour sessions). Each exercise is
intended to introduce one or two basic concepts with these
ideas reinforced by later reuse. All the exercises are
described in a laboratory manual which includes a large
amount of tutorial and background material. Most exercises
contain some suggestions for extensions so that the
enthusiast can take things further. On the other hand there
are numerous ‘side boxes’ which can be ignored if a student
is getting behind.

Although the manual is substantial it deliberately omits
a number of facts which may be very useful, if not essential.
For example the LCD controller (HD44780) command set
is deliberately not described; details are readily available on
the WWW and students must also learn to seek the data
they require themselves.

6.1. Basic experiments

The simplest form of output can be introduced with a
simple ‘traffic lights’ programme which can be extended to
accept user inputs. Initially this can use a simple delay loop
which can later be replaced with a hardware timer.

Once simple I/O has been experienced more complex
interfacing can be introduced. For example a subsequent
session introduces the interface to a character LCD display
(bidirectional parallel interface, strobing data) as a simple
“Hello world” programme (what else?). A later experiment
uses the display drivers to implement a digital clock
(timers, text formatting) and a further exercise places this
under interrupt control.

In this way the students also learn something of co
reusability and the need for some documentation
probably discovering this the hard way, but this ofte
conveys the best lesson. What is more, this incremen
approach ensures that most exercises cannot be left
finished because they will be needed again. The ease
marking is a bonus for the laboratory supervisor.

A simple FPGA configuration (figure 5) is loaded a
power on which is suitable for the early experiments. Th
default configuration is defined by the ‘boot’ option chose
on the board. The bit file is about 16 Kbytes long, so seve
different options can be supported, for example for oth
laboratories.

6.2. Other experiments

Once the basics have been mastered various m
satisfying exercises are attempted. It is impossible to gi
an exhaustive list here, however here are some suggesti
some of which have been incorporated into the curre
syllabus:

• A piezzo-electric buzzer can be used to generate a p
grammable tone; timer interrupts control the duration
a note and a simple interpreter can generate tunes.

• An interrupt controller to help support increased syste
complexity.

• A stepper motor driver can be added to allow the contr
of external moving parts. This could give an added a
peal to some exercises and lead into other, robotics-ty
courses. Extensions to illustrate control theory could b
added if required.

• With an external DAC it is relatively simple to construc
a successive approximation ADC, which can be contro
led by either a hardware or a software algorithm.

• Serial communication can be introduced and used
link to another system (such as another port on the hos
This forces compliance with an external standard. Bo
transmission (easy) and reception (harder) could be
tempted.

Figure 5. Predefined FPGA Configuration



l’

ly

e
rent
g
e
er’
a
e
a.
e.
nd
k is
rse
nce
tly
by

e
.

al
rn
ere
er
d
ty
a
ed

of
• An infra-red communications module allows boards to
communicate with each other remotely.

For many of these exercises the ‘best’ results can only be
obtained by developing some hardware support. For
example tone generation in software is crude – the emulator
does not provide enough performance to give much
resolution – and subject to ‘interference’ from interrupt
service routines. A programmable hardware counter
overcomes these problems. To assist with building these,
students have access to the component library supplied with
the Xilinx tools – which includes registers, counters etc. –
and a local library (figure 6) which provides pin definitions
for the circuit board and some more specific assistance.

It is also possible to combine several of these exercises
in a modular fashion to form ‘mini-projects’. For example
a regular clock interrupt could be combined with an
analogue conversion exercise (e.g. speech sampling) and
with a communications exercise to produce a form of
telephone!

7. Status and Observations

At the time of writing the laboratory has just run for the
first time. The first generation circuit boards are in use and
have so far proved thoroughly reliable; a second generation
system is likely, but this is intended to provide a more
modern, cheaper ‘large’ FPGA option (theVirtex-E) and
will not affect the laboratory described. Enhancement via
new ‘plug-in’ interface modules will be a continuous
process with small incremental costs.

Software development is ongoing, but the first
generation system has proved the concept perfectly
feasible. The emulator is reliable and adequately fast and
the host interface is robust enough to survive the abuse of
inexperienced users without crashing.

Future developments will include some more
streamlining of the embedded code, support for some more
on-board devices, and improvements to the ‘look-and-feel’
of the front end, for example making it easier to customise

to the user’s satisfaction. It is intended that ‘source-leve
debugging will be incorporated in future.

Although the hardware and software have proved large
‘right first time’, the exercises still need further
development. Whilst the students raced through som
others caused severe consternation, for no readily appa
reason. The first major check occurred when servicin
system calls, an exercise requiring little more than th
setting up of a system stack and an understanding of ‘us
and ‘supervisor’ modes, all of which was taught in
preceding course. Clearly relying on material from th
earlier ARM course – only months before – was a bad ide
Such exercises will be broken into smaller steps in futur

As this course has only been running for one year, a
therefore student numbers are small, student feedbac
necessarily limited. The students’ response to the cou
appears largely positive, attested to by the high attenda
at laboratory sessions even in the absence of stric
imposed deadlines. Progress has clearly been checked
‘teething troubles’ with the flow of exercises; while ther
will be ‘tweaking’ we intend to continue the course ‘as is’

8. Conclusions

It is believed that a real, physical environment for re
time development is the best way for a student to lea
about a real-time environment. The system described h
provides precisely that, whilst retaining a very simple us
view of the system, allowing concepts to introduced an
reinforced gradually. The low cost and user expandabili
of the circuit board and the software provides
customisable interface for the exercise designer. It is hop
that this will provide a useful tool for universities for some
years to come.

9. Acknowledgements

The author wishes to acknowledge the contribution
Charlie Brej in the production of the Komodo software.

10. References

[1] S.B. Furber, “ARM System-on-Chip Architecture”,
(Addison Wesley Longman 2000) ISBN: 0-201-67519-6

[2] http://www.europractice.com

[3] http://www.altera.com/literature/lit-nio.html

[4] http://www.atmel.com/atmel/products/prod35.htm

[5] http://www.xilinx.com/partinfo/databook.htm

[6] Tool Interface Standards (TIS) Committee
“Executable and Linking Format (ELF) Specification”
(http://x86.ddj.com/ftp/manuals/tools/elf.pdf)

Figure 6. Extra FPGA Library Components


	A Microcomputer Interfacing Laboratory
	J.D. Garside Department of Computer Science, University of Manchester Oxford Road, Manchester, M1...
	Keywords: Teaching, Microcontroller, Interface, ARM, FPGA
	Abstract
	1. Introduction
	2. Intention
	3. Background
	3.1. ARM
	3.2. FPGAs (Field Programmable Gate Arrays)
	3.3. Software environment

	4. Alternative Systems
	4.1. Simulation
	4.2. PC and I/O board
	4.3. ‘All FPGA’ solution
	4.4. Integrated processor/FPGA devices
	4.5. ARM’s development tools

	5. Environment
	5.1. Basic hardware
	Figure 1. Hardware configuration
	Figure 2. Laboratory PCB

	5.2. Software
	Figure 3. User’s view via Komodo
	Figure 4. Virtual ARM Environment

	5.3. Interface expansion

	6. Exercises
	6.1. Basic experiments
	Figure 5. Predefined FPGA Configuration

	6.2. Other experiments
	Figure 6. Extra FPGA Library Components


	7. Status and Observations
	8. Conclusions
	9. Acknowledgements
	10. References
	[1] S.B. Furber, “ARM System-on-Chip Architecture”, (Addison Wesley Longman 2000) ISBN: 0-201-675...
	[2] http://www.europractice.com
	[3] http://www.altera.com/literature/lit-nio.html
	[4] http://www.atmel.com/atmel/products/prod35.htm
	[5] http://www.xilinx.com/partinfo/databook.htm
	[6] Tool Interface Standards (TIS) Committee “Executable and Linking Format (ELF) Specification” ...




