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Abstract: Recentadvancesn automatedynthesigoolsfor asynchronousircuits have madepossiblethe design
of large self-timedcircuits. However, thesenew toolsarestill weakin their simulationanddetuggingcapabilities
becausasynchronousircuitsposedifferent challengesndopportunitiesn theseareagrom conventionalclocked
circuits. Balsais suchatool intendedfor the synthesiof large asynchronousircuits. Two majoradditionsto the
Balsaasynchronousircuit synthesissystemare presentedn this paper:a simulationsystemanda visualisation
systemspecificallyaddressingisynchronousircuit simulation.Both operateat the Handshak Componentevel

extendingBalsawith new detugging,profiling andvalidationcapabilitieswhilst at the sametime improving sim-

ulationspeedy overfour ordersof magnitudecomparedvith thepreviously usedasynchronousodellingsystem.
The nev framewvork is evaluated on a Balsa-synthesised ARM-compatible asynchronous processor
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1. INTRODUCTION greeof fine-grainecconcurrencymplying theneed
for
Balsa [Edwards and Bardsle/, 2001] is one of the a) a fast simulation kernel,

recently developed tools intendedto automatethe

descriptionand synthesisof large asynchronougir- b) a detailed simulation trace for profiling,

cuits. It usesa Handshak Circuitsmethodology[Van ¢) a scalableenvironmentfor debuggingwith a
Berkel, 1993] andhassuccessfullycontritutedto the suitablevisualisatiortechniquéor conceptualising
designof majorasynchronousircuitssuchasa DMA the concurrency,

controller for the Amulet3 asynchronougprocessor d) validation at the source (Balsa) language level;
[Bardsley andEdwards,2000]andSFA, anasynchro- . Asynchronousircuits are often non-deterministic
nous ARM V5T compatible processor entirely and suffer from complicatedtiming relationships
describedn Balsa,composedf tenthousandinesof betweeneventsand emergenttiming behaviour.
code and synthesisednto over a million transistors Precisetimings are very difficult to obtain at this
[Planaet al., 2002]. However, the Balsaframevork level of simulation,anda smalltiming difference
lacksadequat@ative deluggingandsimulationtools. canleadto a completelydifferent orderof execu-
To avoid this problem, corventional tools are tion of the components of the system:

emplojed to simulate and dehug the lower level

netlistsautomaticallygeneratedy the Balsasynthe- * Deadlocks are hard to avoid, analyse and debug;

sis. However, thenetlistlevel is too far remavedfrom * Asynchronousnodulesconnectedy delayinsen-
the Balsa leel for the tools to be cemnient to use. sitive interfacesalsooffer opportunitiedor simpli-
fication of the simulationscheduleandindeedfor
This paperdescribesa simulation and visualisation distributedsimulation,althoughthislatteraspects
systemoperatingat the Handshak Componentevel, not considered further in this paper.

availableasanextensionof the Balsaframework, and
intendedto help the designerof large asynchronous

circuits by offering new dehugging,profiling andval- 1.1. Handshake Circuits

idation capabilities,as well asimproved simulation _
speedThenew simulationandvisualisationarchitec- ~ Handshak Componentsare parameterisableompo-
ture dealswith the following characteristicof asyn- ~ hentsused as an implementationtechnologyinde-
chronous systems: pendenintermediatdor synthesisn asimilarmanner

to the EDIF LPM componenset[EDIF]. Unlike the

* Asynchronouhardwaresystemsxhibitahighde- EDIF componentset, eachof the terminalsof the
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Handshak Componentss accompaniedy request/
acknavledgesignallingto indicatewhenthe dataon
that terminal is ready and when the data has been
acceptedy the party connectedo thatterminal.In
thiswayHandshak Componentsommunicatsolely
by taking partin datahandshagsandareconnected
togethersolely by channelsncludingthis handsha&
signalling.

The use of cooperatte handshakingn Handshak
Circuits (compositionsof Handshak Components)
allows circuitsto be built which do notrequirea glo-
bal clock for internalsynchronisationA Handshak
Circuittherebypresentsveryflexible, modularinter-
faceto the world. Handshak Circuits can also be
themseles partitionedinto modular subcircuits(to
map onto a numberof ICs/FPGAsfor instance)by
separatinghe circuits’ componentsnto groupsand
using the channelsconnectingthose groupsas the
interfacesbetweerthosegroups.Figurel shavs how
two Handshak Componentsireconnectedby achan-
nel. Here,the connections betweera Fetchcompo-
nent “T” and a Casecomponent‘@”. The Fetch
componenpresentsa handshak requesianddatato
the Casecomponentusing an ‘active’ port (with a
filled circle), which the Casereceveson a ‘passie’
port. Datafollows the directionof the requesin this
exampleandthe acknavledgmentflows in the oppo-
site direction. In this figure, individual, physical
request/ackneledgementind datawires are explic-
itly shovn. Datais carriedon separataviresfrom the
signalling (it is ‘bundled’ with the control) although
thisis notnecessarilyhe casewith otherdata/signal-
ling encodingschemesNormally, Handshak Circuit
diagramsshav the channelasa singlearc wherethe
controlanddirectioncanbe discernedrom the pas-
sive/active natureof theportsconnecte@dndanarrow-
head on the arc indicates data direction.
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1.2. Delay I nsensitivity

Methodologiesexist (DI codes,dual rail encoding,
NULL CorventionLogic) to implementchannekon-
nectionswith ‘delay-insensitre’ signallingwherethe
timing relationshipsbetweenindividual wires of an
implementeathannetlonotaffectthefunctionalityof
the channel[Seitz, 1980; Rem, 1990; Martin, 1990;
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Figure 1: Two connected Handshake Components
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Fant and Brandt, 1997]. The methodologiesan be
usedto implement Handshak Circuits which are
robust to nave implementation,processvariations
andinterconnectdelay propertiesin their interfaces
to other asynchronougircuits, Handshak Circuits
usually match data rates by the use of request/
acknavledgesignalling avoiding potentiallydanger-
ous eplicit synchronisation between clock domains.

Where asynchronougircuits are interfacedto syn-
chronougircuits,theproblemsof synchronisatiomare
no worse than betweendifferent synchronouslock
domains.

1.3.Balsa

Theaim of Balsais to provide syntax-directe@¢ompi-
lation without needingto optimisea flat netlistat the
gate-level to producesuitablysmallandfastcircuits.
Improvementof the area/performanceharacteristics
of a Balsadesignis usuallyperformedby modifying
the Balsadescriptionfor a circuit andthentestingthe
effect of thatmodificationin simulation(designitera-
tion). Syntax-directed compilation enables the
designeto have a clearunderstandingf the effect of
sourcedescriptionmodificationson the implementa-
tion. This makesthe procesf designrefinemen{by
rewriting the description)muchsimplerthanfor less
transparent synthesis mechanisms.

1.4. History

The original simulationsystemfor Balsawas based
on LARD, the Languagdor AsynchronoudResearch
andDevelopmentwhichis a modellinglanguagéor
asynchronougircuits [Endecottand Furber 1994].
The Handshak Circuit generatedfrom a Balsa
descriptionwas transformedto a LARD program,
which wasin turn compiledandsimulated.The first
versionof the LARD simulatorwasa languagenter-
preter leadingto a simulationspeedworsethanthat
obtainedduring simulationof the post-synthesitay-
out. An improvedversionof thesimulatorwaswritten
later, where LARD was transformedinto C code,
compiled and executed.The simulation speedwas
about64 timesfaster but the successie transforma-
tions and compilationsof the codelost much of the
original structureof the Balsadescription.This made
the processf identifying erroneoudalsacodefrom
simulation results aery difficult task.

Apart from simulationthroughLARD, Balsadesign-
ershave beenextensiely usingconventionalsimula-
torsin orderto simulatethe netlistsgeneratedy the
Balsa synthesis. Unfortunately this solution also
malkes difficult the processof mappingthe detected
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errors onto the origina Balsa source code, which
results again in a tedious debugging stage. Balsa is
now simulated directly at the Handshake Circuit level,
four orders of magnitude faster than the original sim-
ulator, significantly faster than the post-synthesissim-
ulators, and  providing good  debugging
functionalities. In the new simulation flow described
in this paper, LARD is no longer employed athough
it can still be useful for the description of some test
harnesses.

2. ARCHITECTURE

The simulation and visualisation system described in
this paper isimplemented as an extension of the exist-
ing Balsa synthesis framework.

The global architecture of the Balsa development
framework is shown in figure 2. The framework con-
sists of a collection of software and scheme scripts
communicating viafiles. The flow startswith a Balsa
description, compiled into a Handshake Circuit
description, and splits into two branches: the original
synthesis branch and the new simulation and visuali-
sation branch. Synthesisis used to transform a high-
level Balsa description of an asynchronous VLSI cir-
cuit into anetlist of combinational logic, registersand
asynchronous cells, as described in [Bardsley, 1998;
Bardsley, 2000]. Simulation is used to debug, profile
and validate a Balsa design at the Handshake Compo-
nent level, and is described in the rest of this paper.
This section introduces the different components of
the simulation system and the flows of data running

inside the simulation system and between it and the
rest of the framework, together with the structures
chosen to represent these flows.

2.1. Components Of The Simulation System

The simulation system is divided into two parts: the
Handshake Circuit simulator, able to process low-
level Handshake Communication at high speed, and
the visualisation system, whose aimisto display both
the simulator activity and someinferred results on top
of an organised high-level graph representation of the
Balsacircuit. Thesimulator isasingle program whose
inputs and output are described in the next subsec-
tions, and the visualisation system is expanded astwo
components. the Handshake Circuit visualisation,
composed of the graph layout, navigation and anima-
tion processes and GTKWave, which is an externa
module used to display waveforms of the Handshake
Channels[GTKWave].

Not represented on the diagram are two tools used to
manipulate Balsa projects. Projects are used to group
the different Balsa files describing a circuit together
with the descriptions of the test harnesses. The first
tool, balsamd, generates a Makefile from a project
description in order to automate the successive callsto
the various Balsa scripts. The second tool, bal sa-mgr,
is a graphical IDE for Balsa, able to manipulate the
project files and to give access to the Balsa programs
through the interface.
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Figure 2: Organisation of the Balsa framework
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2.2. Modelling Handshake Circuits

A Handshake Circuit is a collection of Handshake
Components linked together by communication chan-
nels. It can be modelled as a graph whose edges and
vertices are respectively its components and channels.
This basic representation allows the use of standard
graph layout software for the visualisation of Hand-
shake Circuits. For example, the tool dot [AT&T
Research] is used to produce a static view of a Hand-
shake Circuit as a PostScript document.

Although the Handshake Circuit graph alone is suffi-
cient for the synthesis process, it needs to be anno-
tated to allow the debugging software to map the
Handshake Circuit onto the original Balsa descrip-
tion, and so be able to report ssimulation faults with
reference to the Balsa source code. The visualisation
system can also take advantage of this extrainforma-
tion to show simultaneously the original source code
and the compiled Handshake Circuit mapped onto it.

In order to map the Handshake Circuit onto the Balsa
source code, a way of addressing this source code
must be defined. A logical way isto use the Balsafile
names and positions in the files. The compilation
process is so transparent that before optimisation, a
one-to-one correspondence exists between the Balsa
constructs and the Handshake Communication chan-
nels [Bardsley, 2000]. It is then easy to make the cor-
respondence between the Balsa description and the
Handshake Circuit by associating a Balsa position
information to each Handshake Channel.

Thisissimple and sufficient for error reporting. How-
ever, it does not take into account the Balsa structure
as it is developed during compilation: A Basa
description where a non-shared procedure is called
from two different places would be compiled into a
circuit containing two sub-circuits corresponding to
this procedure. In a situation like this, a visualisation
system where the Handshake Circuit is mapped onto
the Balsa description should obviously show the two
instances of the procedure in an expanded form.

A method of extracting the structure of the Balsa
description has been devel oped for the compiler, lead-
ing to atree representation of the structure hierarchy.
The combination of thistree with the graph represent-
ing the Handshake Circuit produces a clustered graph
representation, which contains at the same time the
information of the Handshake Components, the com-
municating channels and the Balsa hierarchy. All this
information is used by the visualisation system to pro-
duce adetailed view for debugging the Bal sa descrip-
tion and the generated circuit together.

[.J. of SSIMULATION Vol.4 No.3&4

2.3. Trace Format

The trace format is used to transfer information from
the simulator to the visualisation system. The infor-
mation required to be transferred between these two
components comprises the channel and component
activities aswell as some timing information. On one
hand, channel activity is reported as a sequence of
events corresponding to the handshake protocol, and
gives some information about the data and control
flows inside the Handshake Circuit. On the other
hand, component activity providesinformation for the
estimation of the power consumption. Both channel
and component traces are interleaved with some tim-
ing information in order to allow timing estimations.

At thislevel, the dataand control flows are not distin-
guished, as they both are simulated as channel com-
munications. The distinction between the different
types of flow isdonelater by the visualisation or anal-
ySiS process.

A critical aspect of this operation is the huge amount
of data flowing through. Two orthogonal methods for
reducing the amount of traced information are
detailed in section 3.2.3: a time-based method based
on checkpointing, and a space-based method based on
the user control to select someregionsof interest, lim-
iting the traced data to these regions.

2.4. Test harnesses and co-simulation

The Balsa language was developed to describe only
synthesisable structures. Consequently, accesses to
computer resources such as reading data files cannot
be done at the Balsa language level. In order to pro-
vide such accesses, the simulator integrates atest har-
ness interface, giving the designer the possibility to
connect the ports of their Balsa circuit to some exter-
nal components. Two possibilities are offered for
these external components:

e Thedesigner can choose to use some of the special
test harness components described as part of the
simulator. Simulating these embedded compo-
nents is efficient for speed and their integration in
the visualisation system makes them easy to be de-
bugged. Although these components' main roleis
togiveaccesstofilesand avirtual console, another
special component simulates the behaviour of a
memory module, in the same way as memory gen-
erators are used for the generation of an efficient
layout of the memory system. These components
are described in section 3.3.3.

» The designer can describe their own components
(asynchronous or not) in the language of their
choice, and co-simulate the Balsa Handshake Cir-
cuit and the other description thanks to the co-sim-
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ulation interface. At the time of writing, the only
supported language for co-simulation is LARD,
but it is planned to define a generic interface that
can be used with any language.

3. HANDSHAKE CIRCUIT SIMULATOR

Design space exploration is performed in Balsa by
making changesto the source Bal salanguage descrip-
tion. Design iteration is used to evaluate the effect of
these changes. For thisto be an effective technique, a
simulator must be fast and reflect the speed and struc-
ture of thereal circuit.

The new simulation system for Balsa has been devel-
oped around two axes:

» Design analysis: to provide the designer with rele-
vant information for debugging and optimising his
circuit

» Speed: necessary for practical design iteration and
validation.

The choice of simulating at the Handshake Circuit
level is explained first, followed by the description of
the simulator itself, covering the solutions adopted to
handle the various problems of deadlocks, non-deter-
minism and data analysis.

3.1. Advantages of Simulating at the Handshake
Component L evel

Simulation of aBalsadescription can be performed at
several distinct levels of abstraction [Bardsley, 1998]:

» Language level behavioural ssimulation,
» Handshake Component simulation,
» Gatelevel smulation,

» Switch and analogue extracted layout based simu-
lation.

Thedescribed Balsasimulator isworking at the Hand-
shake Component level. This is a good compromise
between the direct simulation of the high-level Balsa
description and the simulation of the synthesised
netlist.

A language level behavioural simulation presents the
advantage of providing an easy accessto variable val-
ues and structures for inspection and debugging pur-
poses. However, the simulation itself is not any easier
at this level than at the Handshake Circuit level. On
the contrary, the nested Balsa structures add a com-
plexity whichis not present in the flat structure of the
Handshake Circuits: A Handshake Circuit can be
modelled by a simple graph structure of Handshake
Components where the component set iswell defined
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and does not change for every modification in the lan-
guage. Thisimplies a simple structure for the Hand-
shake Circuit simulator and avoids the need for too
many simulator updates. On the contrary, the major
drawback of a behavioural simulation at the Balsa
level isthat any changein the Balsalanguage requires
an update of the simulator.

Technology independence is a useful factor for a
Balsa language simulator: The handshake protocol
and data encoding (the way the data and the request
and acknowledge signal sare encoded on wires) do not
have to be chosen prior to the simulation. Thisis not
the case for the simulation of Handshake Circuits and
simulations at lower levels where the communication
protocol between components and the data encoding
have to be specified. However, knowing such proper-
ties of the circuit brings some useful information such
asthe possibility of visualising data and control flows
as they would appear inside the real hardware circuit.

The lowest two simulation levels correspond to the
simulation of the netlist generated from the Hand-
shake Circuit by the synthesistool (seefigure 2) at the
gate level or later as an extracted layout. Their main
advantage is to provide more precise timing simula-
tions as well as to enable estimations such as el ectro-
magnetic emissions, but at the cost of some addition-
nal simulation processing time. Gate level and layout
simulators are already available as synchronoustools,
and can be used with Balsa-synthesised circuits,
although without any automatic way for the simulator
to reference the Bal sa source code for error reports or
flow analysis, both useful for debugging purposes.

In summary, simulating at the Handshake Component
level provides the following advantages:

+ Fast simulation,

» Simple simulator (only 40 to 50 standard Hand-
shake Components, linked together by easily sim-
ulated wires),

» Good possihilities of circuit analysisexploiting the
data and control flows,

* One-to-one correspondence with the Balsa source
code.

One may prefer simulating at a lower level (gates or
layout) for theincreased precision. Assaid previously,
thisis still possible through the use of conventional
circuit simulation tools.

3.1.1. Choice of the handshake protocol
As the ssimulation of Handshake Circuits is technol -

ogy dependent, the handshake protocol and data
encoding have to be defined prior to the ssimulation.
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The Balsaframework isconstructed in such away that
different back-end technologies and implementation
styles can be used for synthesis and thus the simula-
tion framework must take account of these options
where appropriate.

Data encoding defines how the request and acknow!-
edge signals are mixed with the data to define how a
Handshake Channel will be synthesised as a set of
wires. The current implementation of the simulation
scheduler authorises only a fixed number of request
and acknowledge signals per channel, whatever the
width (in bits) of the data is. In practice, this means
that only single-rail data encodings can be simulated.

Both the 2-phase and 4-phase single-rail handshake
protocols have been implemented as libraries of
Handshake Components used by the simulator. The
former provides a better speed as half as many events
are flowing in the circuit. However, the later provides
more information about the data flows thanks to its
return-to-zero phase.

3.2. A Simulator Designed For Design Analysis

Design analysisisthe main purpose of thissimulation
system. It allows the designer to debug and optimise
the Balsa description of a circuit, and is basically
divided into two activities: firstly, the debugging func-
tionalities, dealing with the asynchronous problems of
deadlocks and non-determinism, as well as with the
analysis of the data and control flows; And secondly,
the profiling functionalities, dealing with the estima-
tion of time and power consumption inside the circuit.

3.2.1. Deadlocks

Without implicit global clock control, the control
logic in asynchronous design is more complex thanin
the synchronous world since each module of the
design needs hardware to perform synchronisation, to
wait for data, and to trigger other moduleswhen it has
produced itsdata. The use of explicit communications
between modules increases the risk of introducing
deadlocks: distributed control through which a circle
of unresolvable dependencies causes al activity to
cease. This problem can be introduced by design
errors. Ideally, deadlocks should be detected and then
avoided at a very early stage in the design process.
Unfortunately, current formal validation techniques
[Barringer et a., 1996] cannot cope with large
designs, hence the use of extensive simulation to give
good confidence in the design functionality.

Handshake Circuits have only two ways of stopping
their execution: the acknowledgment of the main con-
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trol signal (reset) or a deadlock. The former indicates
the successful completion of the simulation, and is
characterised by the absence of any pending control
signal in the circuit. A real circuit built in hardware
and ending in such a manner would need to be reacti-
vated before being able to operate again. The dead-
lock situation indicates that the activity has been
stopped due to a missing acknowledge/request event.
Unfortunately, this doesn’t tell usif the missing event
is due to anormal or to an erratic behaviour.

Different types of deadlocks must be distinguished,
leading to different actions of the simulator:

» Valid deadlock. This deadlock arises when a cir-
cuit designed to run forever (think of apipelinecir-
cuit for example) has processed al the available
input data. The circuit has correctly sent a request
on its input data port, but never received any an-
swer, leading to the deadlock situation. Thisisthe
normal and only way for the circuit to finish when
it has consumed every test vector. The simulator
must then stop without indicating an error.

e Error deadlock. This type of deadlock is due to a
real error in the Balsa description, and requires the
simulator to stop and generate a complete enough
description of the Handshake Component and
channel states for debugging.

e Error in co-simulation deadlock. This is a high-
level deadlock between two or more co-simulation
systems. The problem isthat each simulator hasits
own local view of the whole circuit, and thus can-
not detect individually such deadlocks. A process
tracking high-level communicationsis necessary.

e Temporary deadlock. Not really a deadlock, this
situation arises when the external environment
(test harnesses, or other ssimulatorsin the case of a
co-simulation) is taking a very long simulation
time to process its data, and thus appears to be
dead from the point of view of the Balsasimulator.
In this situation, the simulator should wait until an
external event is available. Thisis not precisely a
deadlock, as “temporary” indicates that the dead-
lock situation will be solved after an undefined pe-
riod of time. However, the distinction between this
type of deadlock and the “error in co-simulation”
deadlock typeisdifficult to makein practice. This
type of deadlock can be avoided if processes are
able to indicate a minimal potential timestamp of
their next event, as proposed by [Chandy and Mis-
ra, 1979].

Thedifficulty isto be able to detect the correct type of
deadlock in any situation. The solution proposed here
is to check some properties characterising the differ-
ent types of deadlocks. Furthermore, simpler proper-
ties can be used when the interface ports of the
simulated circuit are of certain (simple) types, namely
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in thecaseof asinglesimulation(notaco-simulation)
orwhentheinputportsarelinkedto fixed-lengtHiles.

The simplestcaseis a single simulationwithout ary
portotherthantheresetport. Thisspeciakaseof acir-
cuit without port is trivial andary deadlockwill be
immediately reported as an Error deadlock.

A moreinterestingandvery oftenly encounteredase
is thesearchor deadlockghroughsuccessie valida-
tion tests:The simulationconsistf a singleprocess
with inputportslinkedto fixed-lengtHfiles andoutput
ports linked to specified-lengthfiles (or ary other
interfaceproviding animmediateacknavledgeto ary
incomingrequeskevent,in orderto preventary Tem-
porarydeadlockandwhosefinal expectedsizeis pro-
vided). In this situation, only the Valid and Error
deadlocksanoccurandaquick detectiorof anError
deadlockcanbedoneby negatingthe property“Valid
deadlock=> no input pending& outputfiles com-
pleted”.

The generalcasecanbe distinguishby the properties
enunciatedby [ChandyandMisra, 1979]asDeadlock
conditions: A setof processeh in anetwork is saidto
be (Error) deadlocled at somestageof the computa-
tion if and only if

« termination condition: not all the processesn h
have terminated and

» executability condition: no processn his executa-
ble and

+ closure condition: if h; in h is waiting on edgee,
and e is incident ony fthen his in h.

In the caseof a co-simulationenvironment,the Error
and Error in co-simulation deadlocksare distin-
guishedrespectiely by oneof the simulatorsandby
a separateprocesstracking high-level communica
tions between simulators.

3.2.2. Non-determinism

Becauseof non-determinismrepeatedexecutionsof
thesameasynchronoudesignfor thesamenputmay
give different outputs.

In asimulationat the Handshak Componentevel, a
repeatabldehaiour canbeenforcedf thefollowing
conditions hold:

* Inputs from external environment are the same;

« Initial valuesfor the different componentf the
system are the same;

 Individual processes are deterministic.

In Balsa,the only sourceof non-determinisms one
particularHandshak ComponentalledArbiter, used
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to guarante¢hemutualexclusionof two passveinput
channels’communicationdy passinga single com-
municationatatime ontooneof thetwo active output
channels[Bardsley, 1998]. Arbiters are explicitly
introducedby the Balsa“arbitrate... end” statement.
Designersalwaystry to minimisethe useof arbitra-
tion. However, the simulatorshouldbe ableto handle
the few caseswhere arbitersare requiredand non-
determinism problems can appear

The non-deterministic behaiour of the arbiter
appearsvhenbothinputs’ communicationsrrive at
the sametime or within a small time window. Here
lies the absurdityof the situation:timing estimations
of the simulationat the Handshak Componentevel
arequite poor andfar from whathappensn the real
circuit. Two requestsarriving at the sametime in an
arbiterduringthehandshag&circuit simulation-lead-
ing to a non-deterministidehaiour — would proba-
bly have arrivedquietly oneafterthe otheronthereal
hardware.In the sameway, but far moreproblematic:
Two requestsarriving at the sametime on the real
hardwarecircuit could arrive at differenttimesin the
simulator avoiding the important detectionof the
non-deterministicsituation. In order to detectsuch
casestheArbiter componentanwork with timewin-
dows: Whenacommunicatioris recevedononeof its
inputs,the componentvaitsfor a possiblerequesbn
its other input during a specifiedamountof time
beforebeingableto decideif its behaiour shouldbe
deterministiqonerequestecevedduringthelapseof
time) or non-deterministic(two receved requests).
The choiceof the delayis critical: A too shortdelay
would missthe detectionof somenon-deterministic
situations,whereasa too long delay would lead to
false detections of non-deterministic situations.

In thecaseof anon-deterministisituation thebeha-
iour of thearbiterhasto bedefined A randombeha-
iour, or different deterministic behaiours can be
used:always choosingthe first input, or always the
secondane;startingwith thefirstinputandswitching;
choosingthe sameinput asthe onereceved last, or
alternating;etc. In the currentimplementation this
solutionis usedtogetherwith the checkpointingsys-
tem. This allows the designetto rewind a simulation
to the non-deterministigpoints and manually define
thedesirecbehaiour beforerestartinghesimulation.

Anotherpossiblesolutionis to createwo branche®f
the simulationevery time a non-deterministicsitua-
tion occurs However, thismethodalsorequiresaway
to avoid the creationof 2" simulationbrancheswhich
canbe doneby exploiting the factthat— mostof the
time — two branchesdiffer only during a certain
amounbf time beforegoingbackto anidenticalstate.
This requiresa way of analysingdifferentbranches
fairly quickly in orderto join thembackwhentheir
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execution becomes identical. This last idea has not
been implemented, although it would be a way to
reflect every possible behaviour of the VLSI circuit.

3.2.3.Data and Control Flavs

Observing the flow of data and the state of control is
useful for debugging, asit alows the designer to ver-
ify that data and threads of execution evolve correctly
inside the circuit. Based on the trace format (section
2.3) which contains the history of control state
changes, both flows are enclosed in the sequence of
handshake signals — requests, acknowledgements and
datatransfers—and will be extracted and separated at
the visualisation system level.

Two difficulties have been encountered: Firstly, the
amount of information to be collected can be gigantic,
generating some trace files of many gigabytes and
slowing down the simulation by a couple of orders of
magnitude. Secondly, the visualisation of so much
information can be problematic. This second point is
addressed in section 4.

A couple of simple ways for reducing the amount of
traced information are used in this system: a time-
based method based on checkpointing, and a space-
based method based on the user control to select the
desired channels. These methods are orthogonal, and
have limitations making them insufficient for han-
dling efficiently large designs. Checkpointing is lim-
ited in the actual framework to the ssimulation of a
single Balsa description, and is thus unavailable for
co-simulations. Letting the user choose which chan-
nelsareimportant workswell for designs smaller than
a few hundreds of channels, but is impractical for
larger designs. Current research isintended to easethe
user'stask by providing agraphical view of the chan-
nels mapped onto a clustered graph reflecting the
structure of his Balsa description.

Observing the flow of dataand the state of control can
also be useful for optimising the circuit, since the
designer can detect if some control flows are not fin-
ishing as early asexpected, for example when they are
waiting for useless return-to-zero phases of some
components in a 4-phase protocol.

3.2.4.Profiling

Estimates of time and power at the Handshake Com-
ponent level are available for Balsa simulations.
These currently areimprecise resultsintended to help
detecting performance bottlenecks inherent in an
architecture and to provide a basis for circuit optimi-
sation. Each component isassigned aspecific duration
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and power consumption, and the visualisation system
isableto integrate them over specified periods of time
and specified areas, giving a rough estimation of the
time and power consumption for the execution of spe-
cific actions inside the different parts of the circuit.
The channels are deliberately ignored during the pro-
filing process, as no information about the future
length of thelayout wiresisknown at thislevel. Asfor
the dataand control flows, the profiling informationis
exported from the simulator to the visualisation sys-
tem via the trace file. In the current implementation,
the timing and power information are fixed for each
component, giving very imprecise results since, for
exampl e, the same component isused for both the Add
and the And operations. This will probably be
improved in a future version of the simulator. How-
ever, the estimations provided by this model are suffi-
cient for detecting the main performance bottlenecks
of acircuit.

3.3. A Simulator Designed For Speed

The previous section was dealing with design analy-
sis, necessary for the debugging and optimisation
phases of acircuit design. Asexplained in section 3.1,
simulating at alower level would provide the designer
with more precise timing and power estimations,
helpful for abetter understanding of the circuit behav-
iour. However, this would come at the price of a
slower simulation, and a simulator a few orders of
magnitude faster can often counter-balance the lack of
precision inherent to the high-level simulation of the
Balsa Handshake Circuits. Moreover, a fast smula-
tion isimportant for evaluating quickly a design dur-
ing the process of design space exploration by
iteration.

3.3.1.Component-oriented simulation

The Handshake Circuit simulator is based on a com-
ponent-oriented world view, which is based on the
discrete event scheduling model. Using this tech-
nique, a discrete event simulation is viewed as a col-
lection of componentsthat interact with each other by
exchanging messages through communication ports.
Besides components, the simulation contains a simu-
lation engine that is responsible for synchronising
components. An event-oriented view is adopted to
model individual components, i.e., the component has
one or more event handlers each of which performs
corresponding actions upon the arrival of a certain
type events. Components receive and schedule asyn-
chronous events by pops and pushes onto an array of
time queues modelling discrete times between now
and now plus the (constant) maximum duration of a
component activity.
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3.3.2. Scheduler

This section describes the scheduler implemented in
the simulator, and particularly the option taking
advantage of the delay-insensitive (D) nature of the
Balsacircuits.

Thisisastandard event-based simulator working with
time queues: Each Handshake Component is imple-
mented as a set of possible handshake events (request
and acknowledge for each port) which, when exe-
cuted, pushes some messages onto the time queuesin
order to activate the following connected components
at specific times.

Asynchronous circuits described in Balsa present the
important property of being delay-insensitive (DI)
when coupled with a DI protocol (see Introduction).
The simulator assumes a single-rail protocol whichis
normally non-DI. However, the manner in which it is
implemented ensures the DI property of the commu-
nications during the simulation: The data value
always arrives in the destination component before
the request or acknowledge event it is bundled with.

The advantage of DI circuits at the scheduler level is
their ability to be executed “really asynchronously”:
An activated component can wait as long as it wants
before being processed without changing the behav-
iour of the circuit: It isthe same situation as when the
component’s activation wire takes a very long time to
transmit the event, whichisnot aprobleminaDI envi-
ronment. An exampleisgivenin figure 3, where each
parallel column of components can be executed inde-
pendently to calculate the formula X+, 2
However, an inattentive simulator woul dzsi mulfe_t%e
Handshake Componentslineby line, thusinterleaving
the execution of both columns. A better smulator (in
the same way asarea person) would execute the first
column, and then the second one, thus making a better
use of the data locality (better use of the cache mem-
ory). In both cases, the Add component hasto wait for
its two inputs to acknowledge before being able to
carry on itswork.

In order to achieve this result, the scheduler can be
simplified: The time queue necessary to execute line
by lineisnot useful anymore, and the direct execution
without time queue processes the column serially:
Each component requests the data from the next com-
ponent, and this request is directly processed in the
order shown in figure 4.

This schedul er has been used successfully in conjunc-
tion with the 2-phase handshake protocol, doubling
the simulation speed. Unfortunately, timestamps of
the handshake events as ordered by this scheduler are
in a different order than what they would be in areal
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execution of the circuit. Although thisisnot important
for circuit validation, in a debugging context, out-of-
order messages prevent the correct analysis of the dif-
ferent flows of data and control. As a consequence of
this, this special scheduler is not used when debug-
ging. It is only useful when speed is very important,
as a 4 times improvement is obtained when coupled
with the 2-phase handshake protocol, compared to the
4-phase protocol used with the normal scheduler.

A point not discussed yet is what happens in a case
such as “x<-1 || x->var”, i.e. when aread and a write
or two writes are occurring in parallel. The answer is
simple: Balsa does not allow such constructs, which,
if needed, must be described more precisely with the
use of arbitration.

reset

Figure 3: Handshake Cir cuit f or _(X2+ Dy 1
req req req
2 ) +1
req ack+ ack+ ack+
— data data data
- X
ack+
data req req req
*2 1/ -1
ack+ ack+ ack+
data data data

Figure 4: Ex ecution or der of the components of
the Handshake Cir cuit in figure 3

3.3.3. Special test harness components

Test harnesses generally require access to the compu-
ter resources (output to screen or files, input from
files) and thus can not be described with the Balsa
HDL. For this reason, they were originally described
using LARD, the language originally used at the Uni-
versity of Manchester for modelling the behaviour of
asynchronous circuits.

Unfortunately, the synchronisations required to co-
simulatethe LARD and Balsalanguages, added to the
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slow simulation speed of LARD were increasing the
simulation time considerably. Furthermore, the simu-
lations of LARD and Balsawere visualised by differ-
ent software, making it difficult for the user to observe
both of them together.

Some special test harness components have thus been
designed closer to the Balsa level, available for the
simulation without any loss of speed, and provided
with a direct interface in the Balsa visualisation sys-
tem. These componentswereoriginally specially inte-
grated for the simulation of the SPA processor and
provide read and write accessesto files and a consolg;
a specific memory component simulates a configura-
ble memory.

3.3.4. Co-simulation, Distributed simulation

Co-simulation is used for the moment only for the
execution of test-harnesses described with the LARD
language. The co-simulation interface will be
extended in the future to allow other languages to be
co-simulated with Balsa.

Another use of the co-simulation interface is to co-
simulate multiple Balsa designs. Doing this on differ-
ent computers is equivalent to running a distributed
simulation. A couple of pointsin favour of the distrib-
uted simulation of Balsa are:

« The static structure of a Balsa-described design is
easy to divide and distribute: The analysis of data
and control flows gives a way to determine fron-
tiers with the fewest communications;

» A scheduler similar to the one presented earlier (in
section 3.3.2) can be used to reduce the need for
time synchronisation between simulators;

» The automatic synchronisation of the components
of asynchronous circuits makesthemideal for dis-
tributed simulations.

4. VISUALISATION

The process of understanding a program involves
reverse engineering the source code [Rugaber 1992].
[Chikofsky and Cross|1, 1990] givethefollowing def-
inition of reverse engineering: "Reverse engineering
isthe process of analyzing asubject systemto identify
the system’s components and their interrelationships
and create representations of the system in another
form or at ahigher level of abstraction.”.

The visualisation system presented in this sectionisa
reverse engineering tool used for program under-
standing. It extractsimportant information from three
sources — the Balsa source description, the compiled
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Handshake Circuit, and the simulation trace — and
builds adynamic representation of the systemin order
to help designers debug their circuits.

The visualisation system is composed of three main
modules working with Handshake Circuits, plus a
couple of components for extra visualisation at other
levels:

e The layout module, able to organise Handshake
Components and groups thereof in a big picture,
hopefully with short and non-overlapping commu-
nication channels, mapped onto a clustered graph
reflecting the structure of the Balsa description;

e The navigation module, key of the scalability of
the system;

e The animation module, able to paint components
and communication channels into different col-
ours, according to their state and activity, in order
to visualise data and control flows;

* Aninterface for test-harness components;

« GTKWave, an externa module used to display
waveforms of the Handshake Channels.

Spaced-based visualisation is provided by the layout
and navigation modules, whereas time-based visuali-
sation is available through the animation module.

An illustration of the visualisation system is given in
figure 5, showing a global view of the Balsa descrip-
tion of SPA microprocessor. The next section
describes the layout, navigation and animation views
that allow such a complex representation be of practi-
cal useto adesigner.

4.1. Layout

The aim of the layout module is to show the state of
the whole Handshake Circuit at a given time on one
picture. This serves two roles: As a still image, it
shows the overall design of the circuit and as an ani-
mated image, it will be used by the animation module
described later.

The layout module is based on the following require-
ment: To be able to organise every Handshake Com-
ponent on a plane in areadable manner. Theterm “in
areadable manner” istrandated here to “minimising
the size and the overlapping wires (communication
channels)”, and issimplified in the current research to
“minimising the size of the communication chan-
nels’. Another idea taken into account is to try to
reflect the structure of the Balsadescription onthevis-
ualised circuit, i.e. components declared closeto each
other in the Balsa description should appear close to
each other on the visualised picture of the circuit.
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Figure 5: Global view of a circuit structure
(The SPA microprocessor core)

The chosen technique for organising the Handshake
Components is based on a force-directed layout sys-
tem [Di Battista, Eadeset al., 1998], where each com-
ponent or group of components is described as a
particle with a size. These simple rules apply: If two
particles are too close to each other (i.e. the distance
between them isless than the sum of their sizes), they
repulse each other; otherwise, if the two particles are
linked (components linked by a channel for Hand-
shake Communication), they attract each other. If the
two particles are far from each other and not linked,
they do not interact.

At the sametime, the layout of the graph of the Hand-
shake Circuit is mapped onto the clustered graph
reflecting the structure of the Balsa description. This
allows low-level information such as data flows to be
visualised on the high-level Balsa structure. Further-
more, the reduction/expansion of clusters provides a
means to display the circuit at different levels of
abstraction.

4.2. Navigation

The aim of the navigation moduleisto show precisely
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any chosen part of the circuit, and to navigate inside
the circuit quickly and intuitively. This serves the
debugging functionalities, and is here to help the
designer locate quickly and accurately the faulty parts
of adesign.

The navigation module is the key for a scalable visu-
alisation system: Firstly, it interacts with the layout
module to provide functionalities such as zoom, pan,
and manipulation of clusters, necessary for the visual-
isation of large designs. Secondly, it providesthe pos-
sibility to select intuitively regions of interest, a
necessary action to reduce the amount of traced infor-
mation (see section 3.2.3). It is also used to select
regions for profiling.

4.3. Animation

Once the components of thecircuit areorganisedinan
easily readable way, a representation of the circuit
structure is available. Based on the trace format
described in section 2.3, the role of the animation
moduleisto add further information to the static pic-
ture in order to represent the data and control flows,
and the changing activity of the components during
the simulation.

This is done here by representing each component or
channel state by a colour, and animating the colours
asthe simulation system updates the state of the com-
ponents and channels.

The advantage of such an animation systemisits abil-
ity to show al the information available from the
Balsa description and from the execution of the simu-
lation of the system, and then let the user decide what
he wants to focus on. Debugging is made easier
through the visualisation of the parallel activity:
Every thread of execution of a simulation can be
shown simultaneously, and the observer can focus on
one specific thread, observeits activity, and can easily
observeits merging with another thread or its splitting
into two threads. Moreover, every thread is ensured
not to overlap with any other in the visualisation area,
whereas they often overlap on a source file descrip-
tion.

This animation system also provides some interesting
debugging featuresfor deadlocks and livelocks. When
adeadl ock situation arises, the program stops, leaving
the guilty components in a specific colour and the
trace of the components before them in another col-
our, making it less difficult to debug. In alivelock sit-
uation, the colours can be observed circling in an
endless loop.

Furthermore, the one-to-one correspondence between
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the Balsa description and the visualised Handshake
Componentsmakesit easy to link any error located on
the visualised circuit with its corresponding location
in the Balsa description.

4.4. Other visualisation tools

4.4.1. Test harness components

Aninterfaceis provided for visualising the activity of
the test harness components. Input from files and out-
put to filesand console are displayed together with the
channel activity. The specia test harness Memory
component gets a more complex interface where it is
possible to visualise and edit the contents of the Sim-
ulated memory.

4.4.2. GTKWave

GTKWave is an external module used to display
waveforms of the Handshake Channels. It is directly
linked to the Handshake Circuit visualisation system,
which provides the user interface to select which
channels are to be displayed in GTKWave. In return,
GTKWave is used to select the periods of time over
which the power consumption needs to be estimated
by the profiling module.

5. CONCLUSIONS

The simulation and debugging of asynchronous cir-
cuits bring some new possibilities of optimisation to
the general event-driven simulation of VLS| circuits,
but asynchronous circuits also require some new fea-
tures for being debugged efficiently. This paper has
described a new simulation system and visualisation
system aimed at easing the design of such circuits.

The simulator described here shows some good
results concerning scalability and simulation speed
thanks to the use of simple Handshake Circuits. The
debugging and visualisation aspects of the described
framework take advantage of the one-to-one corre-
spondence between the high-level description lan-
guage Balsa and the Handshake Circuits in order to
provide an efficient debugging interface for handling
non-determinism problems, data and control flow
analysis and deadlock detection.

Profiling at the Handshake Circuit level, based on
fixed values of time and consumption assigned to each
type of component, and disregarding the channel
activity, is rather imprecise. However, it is sufficient
for detecting the main performance bottlenecksinside
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acircuit.

Further work includesthe co-simulation of Balsawith
other languages, and a basic interface is already in
place for co-simulating Balsa with the LARD asyn-
chronous behavioural language.

ACKNOWLEDGEMENTS

This research is supported by the EPSRC Grant GR/
N19618.

REFERENCES

AT& T Research. Practical Reusable UNIX Software.
URL: http://www.research.att.com/sw/tool s/reuse.

Bardsley A. 1998, “Balsa: An Asynchronous Circuit
Synthesis System”. M.Phil. Thesis. The University of
Manchester.

Bardsley A. 2000, “Implementing Balsa Handshake
Circuits’. Ph.D. Thesis. The University of Manches-
ter.

Bardsley A. and Edwards D.A. 2000, “ Synthesising
an asynchronous DMA controller with Balsa'. In
Journal of Systems Architecture, 46. Pp1309-1319.

Barringer H., Fellows D., Gough G.D., Jinks P,
Marsden B. and Williams A. 1996. “Design and Sim-
ulation in Rainbow: A framework for Asynchronous
Micropipeline Circuits’. In Proceeding of the Euro-
pean Smulation Symposium. Genog, Italy.

Chandy K.M. and Misra J. 1979, “ Deadlock Absence
Proof for Networks of Communicating Processes’.
In Information Processing Letters, 9, 4, November
1979, Pp185-189.

Chikofsky E.J. and Cross Il JH. 1990. “Reverse
engineering and design recovery: A taxonomy”. In
|EEE Software. Volume 7(1), Pp13-17.

Di Battista G., Eades P, Tamassia R. and Toallis I.
1998, Graph Drawing: Algorithms for Geometric
Representations of Graphs. Prentice-Hall.

EDIF Library of Parameterized Modules. URL.
http: /Aww.edif.org/I pmweb/.

Edwards D.A. and Barddey A. 2001, “Balsa - An
Asynchronous Hardware Synthesis System”. In Prin-
ciples of Asynchronous Circuit Design. Pp153-218.
ISBN 0-7923-7613-7.

ISSN 1473-804x online, 1473-8031 print



L. JANIN, A. BARDSLEY, D.A. EDWARDS. SIMULATION AND ANALY SIS OF SYNTHESISED ASYNCHRONOUS CIRCUITS

Endecott PB. and Furber S.B. 1994, “Modelling and
simulation of asynchronous systems using the LARD
hardware description language”. In Proceedingsof
the 12th European Simulation Multiconfeence
Manchester, Society for Computer Simulation Inter-
national. Pp39-43.

Fant K.M. and Brandt S.A. 1997, NULL Corvention
Logic Tech. Report Theseus Logic Inc. 140, 485 N.
Keller Rd. Maitland, FL 32751.

GTKWave. URL: http://www.cs.man.ac.uk/amulet/
tools/gtkwave/.

Martin A.J. 1990, “The Limitations to Delay-Insensi-
tivity in Asynchronous Circuits’. In 6th MIT Confer-
ence on Advanced Reseain VLS| Pocesses

PlanaL.A., Riocreux PA., Bainbridge W.J., Bardsley
A., Garside J.D. and Temple S. 2002, “SPA — A Syn-
thesisable Amulet Core for Smartcard Applications”.
In Proceedings of Async’200®anchester, UK.

Rem M. 1990, “The Nature of Delay Insensitive
Computing”. In Higher Oder Workshop Banff.

Rugaber S. 1992, “Program Comprehension for
Reverse Engineering”. In Proceedingsof the AAAI
Workshopon Al and Automated Program Under-
standing San Jose, California.

Seitz C.L., 1980. “System Timing”. In Introduction
to VLSISystemsC. Mead and L. Conway, eds. Addi-
son Wesley, chapter 7. ISBN 0-201-04358-0.

Van Berkel K. 1993, “Handshake Circuits—an Asyn-
chronous Architecture for VLSl Programming”. In
International Serieson Parallel Computes. Volume
5. Cambridge University Press.

[.J. of SSIMULATION Vol.4 No.3&4

BIOGRAPHIES

Lilian Janin isaPhD student
in the Computer Science
Department at the University
of Manchester. He received
his M.Sc. in Advanced Com-
puter Science at the University
of Manchester and his degree
of Engineer from the Institut
d Informatique d’ Entreprise,
France. His current research interests are in simula-
tion and visualisation of large asynchronous systems.

Dr Andrew Barddey
received the degrees of B.Sc.
(Computer Engineering,
1996), M.Phil and Ph.D
(Computer Science, 1998,
2000) from the University of
Manchester. Sincethen hehas
worked as a researcher in the
Amulet group, working on the
Balsa synthesis system.

Dr Doug EdwardsisaSenior
Lecturer in Computer Sci-
ence. He received a B.Sc. in |
Physics and Electronic Engi-
neering and M.Sc. and Ph.D.
degreesfrom the University of
Manchester.  His  current
research interests are in syn-
thesis and simulation of large
asynchronous systems. Previ-
ouswork hasbeeninthe areas
of Computer Networking, routing algorithms and
hardware routing engines for PCB layout and formal
verification of hardware.

ISSN 1473-804x online, 1473-8031 print



	Simulation and analysis of synthesised Asynchronous Circuits
	L. Janin, A. Bardsley, D.A. Edwards
	Department of Computer Science The University of Manchester Manchester M13 9PL, U.K.
	{janinl, bardsley, doug}@cs.man.ac.uk
	1.� Introduction
	a) a fast simulation kernel,
	b) a detailed simulation trace for profiling,
	c) a scalable environment for debugging with a suitable visualisation technique for conceptualisi...
	d) validation at the source (Balsa) language level;
	1.1.� Handshake Circuits
	Figure 1: Two connected Handshake Components

	1.2.� Delay Insensitivity
	1.3.� Balsa
	1.4.� History

	2.� Architecture
	2.1.� Components Of The Simulation System
	2.2.� Modelling Handshake Circuits
	2.3.� Trace Format
	2.4.� Test harnesses and co-simulation

	3.� Handshake CIRCUIT Simulator
	3.1.� Advantages of Simulating at the Handshake Component Level
	3.1.1.� Choice of the handshake protocol

	3.2.� A Simulator Designed For Design Analysis
	3.2.1.� Deadlocks
	3.2.2.� Non-determinism
	3.2.3.� Data and Control Flows
	3.2.4.� Profiling

	3.3.� A Simulator Designed For Speed
	3.3.1.� Component-oriented simulation
	3.3.2.� Scheduler
	Figure 3: Handshake Circuit for
	Figure 4: Execution order of the components of the Handshake Circuit in figure 3

	3.3.3.� Special test harness components
	3.3.4.� Co-simulation, Distributed simulation


	4.� Visualisation
	4.1.� Layout
	Figure 5: Global view of a circuit structure (The SPA microprocessor core)

	4.2.� Navigation
	4.3.� Animation
	4.4.� Other visualisation tools
	4.4.1.� Test harness components
	4.4.2.� GTKWave


	5.� Conclusions
	Acknowledgements
	References
	Biographies
	Figure 2: Organisation of the Balsa framework





