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Abstract: Recentadvancesin automatedsynthesistoolsfor asynchronouscircuitshave madepossiblethedesign
of largeself-timedcircuits.However, thesenew toolsarestill weakin their simulationanddebuggingcapabilities
becauseasynchronouscircuitsposedifferentchallengesandopportunitiesin theseareasfromconventionalclocked
circuits.Balsais sucha tool intendedfor thesynthesisof largeasynchronouscircuits.Two majoradditionsto the
Balsaasynchronouscircuit synthesissystemarepresentedin this paper:a simulationsystemanda visualisation
systemspecificallyaddressingasynchronouscircuit simulation.Both operateat theHandshake Componentlevel
extendingBalsawith new debugging,profiling andvalidationcapabilitieswhilst at thesametime improving sim-
ulationspeedbyoverfourordersof magnitudecomparedwith thepreviouslyusedasynchronousmodellingsystem.
The new framework is evaluated on a Balsa-synthesised ARM-compatible asynchronous processor.
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1. INTRODUCTION

Balsa [Edwards and Bardsley, 2001] is one of the
recently developed tools intended to automatethe
descriptionand synthesisof large asynchronouscir-
cuits.It usesa Handshake Circuitsmethodology[Van
Berkel, 1993]andhassuccessfullycontributedto the
designof majorasynchronouscircuitssuchasaDMA
controller for the Amulet3 asynchronousprocessor
[Bardsley andEdwards,2000]andSPA, anasynchro-
nous ARM V5T compatible processor entirely
describedin Balsa,composedof tenthousandlinesof
codeand synthesisedinto over a million transistors
[Planaet al., 2002]. However, the Balsa framework
lacksadequatenativedebuggingandsimulationtools.
To avoid this problem, conventional tools are
employed to simulate and debug the lower level
netlistsautomaticallygeneratedby the Balsasynthe-
sis.However, thenetlist level is too far removedfrom
the Balsa level for the tools to be convenient to use.

This paperdescribesa simulation and visualisation
systemoperatingat theHandshake Componentlevel,
availableasanextensionof theBalsaframework, and
intendedto help the designerof large asynchronous
circuitsby offering new debugging,profiling andval-
idation capabilities,as well as improved simulation
speed.Thenew simulationandvisualisationarchitec-
ture dealswith the following characteristicsof asyn-
chronous systems:

• Asynchronoushardwaresystemsexhibitahighde-

greeof fine-grainedconcurrencyimplying theneed
for

a) a fast simulation kernel,

b) a detailed simulation trace for profiling,

c) a scalableenvironmentfor debuggingwith a
suitablevisualisationtechniquefor conceptualising
the concurrency,

d) validation at the source (Balsa) language level;

• Asynchronouscircuitsareoftennon-deterministic
and suffer from complicatedtiming relationships
betweeneventsand emergenttiming behaviour.
Precisetimings arevery difficult to obtainat this
level of simulation,anda small timing difference
canleadto a completelydifferent orderof execu-
tion of the components of the system;

• Deadlocks are hard to avoid, analyse and debug;

• Asynchronousmodulesconnectedby delayinsen-
sitive interfacesalsooffer opportunitiesfor simpli-
fication of thesimulationschedulerandindeedfor
distributedsimulation,althoughthis latteraspectis
not considered further in this paper.

1.1. Handshake Circuits

Handshake Componentsareparameterisablecompo-
nents used as an implementationtechnologyinde-
pendentintermediatefor synthesisin asimilarmanner
to the EDIF LPM componentset[EDIF]. Unlike the
EDIF componentset, eachof the terminals of the
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Handshake Componentsis accompaniedby request/
acknowledgesignallingto indicatewhenthedataon
that terminal is ready and when the data has been
acceptedby the party connectedto that terminal. In
thiswayHandshakeComponentscommunicatesolely
by takingpart in datahandshakesandareconnected
togethersolelyby channelsincludingthis handshake
signalling.

The use of cooperative handshakingin Handshake
Circuits (compositionsof Handshake Components)
allows circuitsto bebuilt which do not requirea glo-
bal clock for internalsynchronisation.A Handshake
Circuit therebypresentsaveryflexible,modularinter-
face to the world. Handshake Circuits can also be
themselves partitionedinto modular subcircuits(to
map onto a numberof ICs/FPGAsfor instance)by
separatingthe circuits’ componentsinto groupsand
using the channelsconnectingthosegroupsas the
interfacesbetweenthosegroups.Figure1 showshow
twoHandshakeComponentsareconnectedbyachan-
nel. Here,theconnectionis betweena Fetchcompo-
nent “T” and a Casecomponent“@”. The Fetch
componentpresentsa handshake requestanddatato
the Casecomponentusing an ‘active’ port (with a
filled circle), which the Casereceiveson a ‘passive’
port. Datafollows thedirectionof therequestin this
exampleandtheacknowledgmentflows in theoppo-
site direction. In this figure, individual, physical
request/acknowledgementanddatawires areexplic-
itly shown. Datais carriedonseparatewiresfrom the
signalling(it is ‘bundled’ with the control) although
this is notnecessarilythecasewith otherdata/signal-
ling encodingschemes.Normally, HandshakeCircuit
diagramsshow thechannelasa singlearcwherethe
control anddirectioncanbediscernedfrom thepas-
sive/activenatureof theportsconnectedandanarrow-
head on the arc indicates data direction.

1.2. Delay Insensitivity

Methodologiesexist (DI codes,dual rail encoding,
NULL ConventionLogic) to implementchannelcon-
nectionswith ‘delay-insensitive’ signallingwherethe
timing relationshipsbetweenindividual wires of an
implementedchanneldonotaffectthefunctionalityof
the channel[Seitz, 1980;Rem,1990;Martin, 1990;

Fant and Brandt, 1997]. The methodologiescan be
used to implement Handshake Circuits which are
robust to naive implementation,processvariations
andinterconnectdelayproperties.In their interfaces
to other asynchronouscircuits, Handshake Circuits
usually match data rates by the use of request/
acknowledgesignallingavoiding potentiallydanger-
ous explicit synchronisation between clock domains.

Whereasynchronouscircuits are interfacedto syn-
chronouscircuits,theproblemsof synchronisationare
no worsethan betweendifferent synchronousclock
domains.

1.3. Balsa

Theaimof Balsais to providesyntax-directedcompi-
lation without needingto optimisea flat netlistat the
gate-level to producesuitablysmallandfastcircuits.
Improvementof thearea/performancecharacteristics
of a Balsadesignis usuallyperformedby modifying
theBalsadescriptionfor acircuit andthentestingthe
effectof thatmodificationin simulation(designitera-
tion). Syntax-directed compilation enables the
designerto haveaclearunderstandingof theeffectof
sourcedescriptionmodificationson the implementa-
tion. Thismakestheprocessof designrefinement(by
rewriting thedescription)muchsimplerthanfor less
transparent synthesis mechanisms.

1.4. History

The original simulationsystemfor Balsawasbased
on LARD, theLanguagefor AsynchronousResearch
andDevelopment,which is a modellinglanguagefor
asynchronouscircuits [Endecottand Furber, 1994].
The Handshake Circuit generatedfrom a Balsa
descriptionwas transformedto a LARD program,
which wasin turn compiledandsimulated.The first
versionof theLARD simulatorwasa languageinter-
preter, leadingto a simulationspeedworsethanthat
obtainedduringsimulationof thepost-synthesislay-
out.An improvedversionof thesimulatorwaswritten
later, where LARD was transformedinto C code,
compiled and executed.The simulation speedwas
about64 timesfaster, but thesuccessive transforma-
tions andcompilationsof the codelost muchof the
original structureof theBalsadescription.Thismade
theprocessof identifying erroneousBalsacodefrom
simulation results a very difficult task.

Apart from simulationthroughLARD, Balsadesign-
ershave beenextensively usingconventionalsimula-
tors in orderto simulatethenetlistsgeneratedby the
Balsa synthesis.Unfortunately, this solution also
makesdifficult the processof mappingthe detected

Figure 1: Two connected Handshake Components
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errors onto the original Balsa source code, which
results again in a tedious debugging stage. Balsa is
now simulated directly at the Handshake Circuit level,
four orders of magnitude faster than the original sim-
ulator, significantly faster than the post-synthesis sim-
ulators, and providing good debugging
functionalities. In the new simulation flow described
in this paper, LARD is no longer employed although
it can still be useful for the description of some test
harnesses.

2. ARCHITECTURE

The simulation and visualisation system described in
this paper is implemented as an extension of the exist-
ing Balsa synthesis framework.

The global architecture of the Balsa development
framework is shown in figure 2. The framework con-
sists of a collection of software and scheme scripts
communicating via files. The flow starts with a Balsa
description, compiled into a Handshake Circuit
description, and splits into two branches: the original
synthesis branch and the new simulation and visuali-
sation branch. Synthesis is used to transform a high-
level Balsa description of an asynchronous VLSI cir-
cuit into a netlist of combinational logic, registers and
asynchronous cells, as described in [Bardsley, 1998;
Bardsley, 2000]. Simulation is used to debug, profile
and validate a Balsa design at the Handshake Compo-
nent level, and is described in the rest of this paper.
This section introduces the different components of
the simulation system and the flows of data running

inside the simulation system and between it and the
rest of the framework, together with the structures
chosen to represent these flows.

2.1. Components Of The Simulation System

The simulation system is divided into two parts: the
Handshake Circuit simulator, able to process low-
level Handshake Communication at high speed, and
the visualisation system, whose aim is to display both
the simulator activity and some inferred results on top
of an organised high-level graph representation of the
Balsa circuit. The simulator is a single program whose
inputs and output are described in the next subsec-
tions, and the visualisation system is expanded as two
components: the Handshake Circuit visualisation,
composed of the graph layout, navigation and anima-
tion processes and GTKWave, which is an external
module used to display waveforms of the Handshake
Channels [GTKWave].

Not represented on the diagram are two tools used to
manipulate Balsa projects. Projects are used to group
the different Balsa files describing a circuit together
with the descriptions of the test harnesses. The first
tool, balsa-md, generates a Makefile from a project
description in order to automate the successive calls to
the various Balsa scripts. The second tool, balsa-mgr,
is a graphical IDE for Balsa, able to manipulate the
project files and to give access to the Balsa programs
through the interface.

Figure 2: Organisation of the Balsa framework
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2.2. Modelling Handshake Circuits

A Handshake Circuit is a collection of Handshake
Components linked together by communication chan-
nels. It can be modelled as a graph whose edges and
vertices are respectively its components and channels.
This basic representation allows the use of standard
graph layout software for the visualisation of Hand-
shake Circuits. For example, the tool dot [AT&T
Research] is used to produce a static view of a Hand-
shake Circuit as a PostScript document.

Although the Handshake Circuit graph alone is suffi-
cient for the synthesis process, it needs to be anno-
tated to allow the debugging software to map the
Handshake Circuit onto the original Balsa descrip-
tion, and so be able to report simulation faults with
reference to the Balsa source code. The visualisation
system can also take advantage of this extra informa-
tion to show simultaneously the original source code
and the compiled Handshake Circuit mapped onto it.

In order to map the Handshake Circuit onto the Balsa
source code, a way of addressing this source code
must be defined. A logical way is to use the Balsa file
names and positions in the files. The compilation
process is so transparent that before optimisation, a
one-to-one correspondence exists between the Balsa
constructs and the Handshake Communication chan-
nels [Bardsley, 2000]. It is then easy to make the cor-
respondence between the Balsa description and the
Handshake Circuit by associating a Balsa position
information to each Handshake Channel.

This is simple and sufficient for error reporting. How-
ever, it does not take into account the Balsa structure
as it is developed during compilation: A Balsa
description where a non-shared procedure is called
from two different places would be compiled into a
circuit containing two sub-circuits corresponding to
this procedure. In a situation like this, a visualisation
system where the Handshake Circuit is mapped onto
the Balsa description should obviously show the two
instances of the procedure in an expanded form.

A method of extracting the structure of the Balsa
description has been developed for the compiler, lead-
ing to a tree representation of the structure hierarchy.
The combination of this tree with the graph represent-
ing the Handshake Circuit produces a clustered graph
representation, which contains at the same time the
information of the Handshake Components, the com-
municating channels and the Balsa hierarchy. All this
information is used by the visualisation system to pro-
duce a detailed view for debugging the Balsa descrip-
tion and the generated circuit together.

2.3. Trace Format

The trace format is used to transfer information from
the simulator to the visualisation system. The infor-
mation required to be transferred between these two
components comprises the channel and component
activities as well as some timing information. On one
hand, channel activity is reported as a sequence of
events corresponding to the handshake protocol, and
gives some information about the data and control
flows inside the Handshake Circuit. On the other
hand, component activity provides information for the
estimation of the power consumption. Both channel
and component traces are interleaved with some tim-
ing information in order to allow timing estimations.

At this level, the data and control flows are not distin-
guished, as they both are simulated as channel com-
munications. The distinction between the different
types of flow is done later by the visualisation or anal-
ysis process.

A critical aspect of this operation is the huge amount
of data flowing through. Two orthogonal methods for
reducing the amount of traced information are
detailed in section 3.2.3: a time-based method based
on checkpointing, and a space-based method based on
the user control to select some regions of interest, lim-
iting the traced data to these regions.

2.4. Test harnesses and co-simulation

The Balsa language was developed to describe only
synthesisable structures. Consequently, accesses to
computer resources such as reading data files cannot
be done at the Balsa language level. In order to pro-
vide such accesses, the simulator integrates a test har-
ness interface, giving the designer the possibility to
connect the ports of their Balsa circuit to some exter-
nal components. Two possibilities are offered for
these external components:

• The designer can choose to use some of the special
test harness components described as part of the
simulator. Simulating these embedded compo-
nents is efficient for speed and their integration in
the visualisation system makes them easy to be de-
bugged. Although these components’ main role is
to give access to files and a virtual console, another
special component simulates the behaviour of a
memory module, in the same way as memory gen-
erators are used for the generation of an efficient
layout of the memory system. These components
are described in section 3.3.3.

• The designer can describe their own components
(asynchronous or not) in the language of their
choice, and co-simulate the Balsa Handshake Cir-
cuit and the other description thanks to the co-sim-
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ulation interface. At the time of writing, the only
supported language for co-simulation is LARD,
but it is planned to define a generic interface that
can be used with any language.

3. HANDSHAKE CIRCUIT SIMULATOR

Design space exploration is performed in Balsa by
making changes to the source Balsa language descrip-
tion. Design iteration is used to evaluate the effect of
these changes. For this to be an effective technique, a
simulator must be fast and reflect the speed and struc-
ture of the real circuit.

The new simulation system for Balsa has been devel-
oped around two axes:

• Design analysis: to provide the designer with rele-
vant information for debugging and optimising his
circuit

• Speed: necessary for practical design iteration and
validation.

The choice of simulating at the Handshake Circuit
level is explained first, followed by the description of
the simulator itself, covering the solutions adopted to
handle the various problems of deadlocks, non-deter-
minism and data analysis.

3.1. Advantages of Simulating at the Handshake
Component Level

Simulation of a Balsa description can be performed at
several distinct levels of abstraction [Bardsley, 1998]:

• Language level behavioural simulation,

• Handshake Component simulation,

• Gate level simulation,

• Switch and analogue extracted layout based simu-
lation.

The described Balsa simulator is working at the Hand-
shake Component level. This is a good compromise
between the direct simulation of the high-level Balsa
description and the simulation of the synthesised
netlist.

A language level behavioural simulation presents the
advantage of providing an easy access to variable val-
ues and structures for inspection and debugging pur-
poses. However, the simulation itself is not any easier
at this level than at the Handshake Circuit level. On
the contrary, the nested Balsa structures add a com-
plexity which is not present in the flat structure of the
Handshake Circuits: A Handshake Circuit can be
modelled by a simple graph structure of Handshake
Components where the component set is well defined

and does not change for every modification in the lan-
guage. This implies a simple structure for the Hand-
shake Circuit simulator and avoids the need for too
many simulator updates. On the contrary, the major
drawback of a behavioural simulation at the Balsa
level is that any change in the Balsa language requires
an update of the simulator.

Technology independence is a useful factor for a
Balsa language simulator: The handshake protocol
and data encoding (the way the data and the request
and acknowledge signals are encoded on wires) do not
have to be chosen prior to the simulation. This is not
the case for the simulation of Handshake Circuits and
simulations at lower levels where the communication
protocol between components and the data encoding
have to be specified. However, knowing such proper-
ties of the circuit brings some useful information such
as the possibility of visualising data and control flows
as they would appear inside the real hardware circuit.

The lowest two simulation levels correspond to the
simulation of the netlist generated from the Hand-
shake Circuit by the synthesis tool (see figure 2) at the
gate level or later as an extracted layout. Their main
advantage is to provide more precise timing simula-
tions as well as to enable estimations such as electro-
magnetic emissions, but at the cost of some addition-
nal simulation processing time. Gate level and layout
simulators are already available as synchronous tools,
and can be used with Balsa-synthesised circuits,
although without any automatic way for the simulator
to reference the Balsa source code for error reports or
flow analysis, both useful for debugging purposes.

In summary, simulating at the Handshake Component
level provides the following advantages:

• Fast simulation,

• Simple simulator (only 40 to 50 standard Hand-
shake Components, linked together by easily sim-
ulated wires),

• Good possibilities of circuit analysis exploiting the
data and control flows,

• One-to-one correspondence with the Balsa source
code.

One may prefer simulating at a lower level (gates or
layout) for the increased precision. As said previously,
this is still possible through the use of conventional
circuit simulation tools.

3.1.1. Choice of the handshake protocol

As the simulation of Handshake Circuits is technol-
ogy dependent, the handshake protocol and data
encoding have to be defined prior to the simulation.
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The Balsa framework is constructed in such a way that
different back-end technologies and implementation
styles can be used for synthesis and thus the simula-
tion framework must take account of these options
where appropriate.

Data encoding defines how the request and acknowl-
edge signals are mixed with the data to define how a
Handshake Channel will be synthesised as a set of
wires. The current implementation of the simulation
scheduler authorises only a fixed number of request
and acknowledge signals per channel, whatever the
width (in bits) of the data is. In practice, this means
that only single-rail data encodings can be simulated.

Both the 2-phase and 4-phase single-rail handshake
protocols have been implemented as libraries of
Handshake Components used by the simulator. The
former provides a better speed as half as many events
are flowing in the circuit. However, the later provides
more information about the data flows thanks to its
return-to-zero phase.

3.2. A Simulator Designed For Design Analysis

Design analysis is the main purpose of this simulation
system. It allows the designer to debug and optimise
the Balsa description of a circuit, and is basically
divided into two activities: firstly, the debugging func-
tionalities, dealing with the asynchronous problems of
deadlocks and non-determinism, as well as with the
analysis of the data and control flows; And secondly,
the profiling functionalities, dealing with the estima-
tion of time and power consumption inside the circuit.

3.2.1. Deadlocks

Without implicit global clock control, the control
logic in asynchronous design is more complex than in
the synchronous world since each module of the
design needs hardware to perform synchronisation, to
wait for data, and to trigger other modules when it has
produced its data. The use of explicit communications
between modules increases the risk of introducing
deadlocks: distributed control through which a circle
of unresolvable dependencies causes all activity to
cease. This problem can be introduced by design
errors. Ideally, deadlocks should be detected and then
avoided at a very early stage in the design process.
Unfortunately, current formal validation techniques
[Barringer et al., 1996] cannot cope with large
designs, hence the use of extensive simulation to give
good confidence in the design functionality.

Handshake Circuits have only two ways of stopping
their execution: the acknowledgment of the main con-

trol signal (reset) or a deadlock. The former indicates
the successful completion of the simulation, and is
characterised by the absence of any pending control
signal in the circuit. A real circuit built in hardware
and ending in such a manner would need to be reacti-
vated before being able to operate again. The dead-
lock situation indicates that the activity has been
stopped due to a missing acknowledge/request event.
Unfortunately, this doesn’t tell us if the missing event
is due to a normal or to an erratic behaviour.

Different types of deadlocks must be distinguished,
leading to different actions of the simulator:

• Valid deadlock. This deadlock arises when a cir-
cuit designed to run forever (think of a pipeline cir-
cuit for example) has processed all the available
input data. The circuit has correctly sent a request
on its input data port, but never received any an-
swer, leading to the deadlock situation. This is the
normal and only way for the circuit to finish when
it has consumed every test vector. The simulator
must then stop without indicating an error.

• Error deadlock. This type of deadlock is due to a
real error in the Balsa description, and requires the
simulator to stop and generate a complete enough
description of the Handshake Component and
channel states for debugging.

• Error in co-simulation deadlock. This is a high-
level deadlock between two or more co-simulation
systems. The problem is that each simulator has its
own local view of the whole circuit, and thus can-
not detect individually such deadlocks. A process
tracking high-level communications is necessary.

• Temporary deadlock. Not really a deadlock, this
situation arises when the external environment
(test harnesses, or other simulators in the case of a
co-simulation) is taking a very long simulation
time to process its data, and thus appears to be
dead from the point of view of the Balsa simulator.
In this situation, the simulator should wait until an
external event is available. This is not precisely a
deadlock, as “temporary” indicates that the dead-
lock situation will be solved after an undefined pe-
riod of time. However, the distinction between this
type of deadlock and the “error in co-simulation”
deadlock type is difficult to make in practice. This
type of deadlock can be avoided if processes are
able to indicate a minimal potential timestamp of
their next event, as proposed by [Chandy and Mis-
ra, 1979].

The difficulty is to be able to detect the correct type of
deadlock in any situation. The solution proposed here
is to check some properties characterising the differ-
ent types of deadlocks. Furthermore, simpler proper-
ties can be used when the interface ports of the
simulated circuit are of certain (simple) types, namely
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in thecaseof asinglesimulation(notaco-simulation)
orwhentheinputportsarelinkedto fixed-lengthfiles.

Thesimplestcaseis a singlesimulationwithout any
portotherthantheresetport.Thisspecialcaseof acir-
cuit without port is trivial andany deadlockwill be
immediately reported as an Error deadlock.

A moreinterestingandveryoftenlyencounteredcase
is thesearchfor deadlocksthroughsuccessivevalida-
tion tests:Thesimulationconsistsof a singleprocess
with inputportslinkedto fixed-lengthfilesandoutput
ports linked to specified-lengthfiles (or any other
interfaceproviding animmediateacknowledgeto any
incomingrequestevent,in orderto preventany Tem-
porarydeadlock,andwhosefinal expectedsizeis pro-
vided). In this situation, only the Valid and Error
deadlockscanoccurandaquickdetectionof anError
deadlockcanbedoneby negatingtheproperty“Valid
deadlock=> no input pending& output files com-
pleted”.

Thegeneralcasecanbedistinguishby theproperties
enunciatedby [ChandyandMisra,1979]asDeadlock
conditions: A setof processesh in anetwork is saidto
be(Error) deadlockedat somestageof thecomputa-
tion if and only if

• termination condition: not all the processesin h
have terminated and

• executability condition: noprocessin h is executa-
ble and

• closure condition: if hi in h is waiting on edgee,
and e is incident on hj, then hj is in h.

In thecaseof a co-simulationenvironment,theError
and Error in co-simulation deadlocksare distin-
guishedrespectively by oneof thesimulatorsandby
a separateprocesstracking high-level communica-
tions between simulators.

3.2.2. Non-determinism

Becauseof non-determinism,repeatedexecutionsof
thesameasynchronousdesignfor thesameinputmay
give different outputs.

In a simulationat theHandshake Componentlevel, a
repeatablebehaviour canbeenforcedif thefollowing
conditions hold:

• Inputs from external environment are the same;

• Initial valuesfor the different componentsof the
system are the same;

• Individual processes are deterministic.

In Balsa,the only sourceof non-determinismis one
particularHandshakeComponentcalledArbiter, used

toguaranteethemutualexclusionof twopassiveinput
channels’communicationsby passinga singlecom-
municationatatimeontooneof thetwo activeoutput
channels[Bardsley, 1998]. Arbiters are explicitly
introducedby theBalsa“arbitrate... end” statement.
Designersalwaystry to minimisethe useof arbitra-
tion. However, thesimulatorshouldbeableto handle
the few caseswherearbitersare requiredand non-
determinism problems can appear.

The non-deterministic behaviour of the arbiter
appearswhenboth inputs’ communicationsarrive at
the sametime or within a small time window. Here
lies theabsurdityof thesituation:timing estimations
of thesimulationat theHandshake Componentlevel
arequitepoorandfar from whathappensin the real
circuit. Two requestsarriving at the sametime in an
arbiterduringthehandshakecircuit simulation– lead-
ing to a non-deterministicbehaviour – would proba-
bly havearrivedquietlyoneaftertheotheronthereal
hardware.In thesameway, but farmoreproblematic:
Two requestsarriving at the sametime on the real
hardwarecircuit couldarrive at differenttimesin the
simulator, avoiding the important detectionof the
non-deterministicsituation. In order to detectsuch
cases,theArbiter componentcanwork with time win-
dows: Whenacommunicationis receivedononeof its
inputs,thecomponentwaitsfor a possiblerequeston
its other input during a specifiedamount of time
beforebeingableto decideif its behaviour shouldbe
deterministic(onerequestreceivedduringthelapseof
time) or non-deterministic(two received requests).
Thechoiceof thedelayis critical: A too shortdelay
would miss the detectionof somenon-deterministic
situations,whereasa too long delay would lead to
false detections of non-deterministic situations.

In thecaseof anon-deterministicsituation,thebehav-
iour of thearbiterhasto bedefined.A randombehav-
iour, or different deterministic behaviours can be
used:alwayschoosingthe first input, or always the
secondone;startingwith thefirst inputandswitching;
choosingthe sameinput asthe onereceived last, or
alternating;etc. In the current implementation,this
solutionis usedtogetherwith thecheckpointingsys-
tem.This allows thedesignerto rewind a simulation
to the non-deterministicpointsandmanuallydefine
thedesiredbehaviourbeforerestartingthesimulation.

Anotherpossiblesolutionis to createtwo branchesof
the simulationevery time a non-deterministicsitua-
tion occurs.However, thismethodalsorequiresaway
to avoid thecreationof 2n simulationbranches,which
canbedoneby exploiting the fact that– mostof the
time – two branchesdiffer only during a certain
amountof timebeforegoingbacktoanidenticalstate.
This requiresa way of analysingdifferentbranches
fairly quickly in order to join thembackwhentheir
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execution becomes identical. This last idea has not
been implemented, although it would be a way to
reflect every possible behaviour of the VLSI circuit.

3.2.3.Data and Control Flows

Observing the flow of data and the state of control is
useful for debugging, as it allows the designer to ver-
ify that data and threads of execution evolve correctly
inside the circuit. Based on the trace format (section
2.3) which contains the history of control state
changes, both flows are enclosed in the sequence of
handshake signals – requests, acknowledgements and
data transfers – and will be extracted and separated at
the visualisation system level.

Two difficulties have been encountered: Firstly, the
amount of information to be collected can be gigantic,
generating some trace files of many gigabytes and
slowing down the simulation by a couple of orders of
magnitude. Secondly, the visualisation of so much
information can be problematic. This second point is
addressed in section 4.

A couple of simple ways for reducing the amount of
traced information are used in this system: a time-
based method based on checkpointing, and a space-
based method based on the user control to select the
desired channels. These methods are orthogonal, and
have limitations making them insufficient for han-
dling efficiently large designs. Checkpointing is lim-
ited in the actual framework to the simulation of a
single Balsa description, and is thus unavailable for
co-simulations. Letting the user choose which chan-
nels are important works well for designs smaller than
a few hundreds of channels, but is impractical for
larger designs. Current research is intended to ease the
user’s task by providing a graphical view of the chan-
nels mapped onto a clustered graph reflecting the
structure of his Balsa description.

Observing the flow of data and the state of control can
also be useful for optimising the circuit, since the
designer can detect if some control flows are not fin-
ishing as early as expected, for example when they are
waiting for useless return-to-zero phases of some
components in a 4-phase protocol.

3.2.4.Profiling

Estimates of time and power at the Handshake Com-
ponent level are available for Balsa simulations.
These currently are imprecise results intended to help
detecting performance bottlenecks inherent in an
architecture and to provide a basis for circuit optimi-
sation. Each component is assigned a specific duration

and power consumption, and the visualisation system
is able to integrate them over specified periods of time
and specified areas, giving a rough estimation of the
time and power consumption for the execution of spe-
cific actions inside the different parts of the circuit.
The channels are deliberately ignored during the pro-
filing process, as no information about the future
length of the layout wires is known at this level. As for
the data and control flows, the profiling information is
exported from the simulator to the visualisation sys-
tem via the trace file. In the current implementation,
the timing and power information are fixed for each
component, giving very imprecise results since, for
example, the same component is used for both the Add
and the And operations. This will probably be
improved in a future version of the simulator. How-
ever, the estimations provided by this model are suffi-
cient for detecting the main performance bottlenecks
of a circuit.

3.3. A Simulator Designed For Speed

The previous section was dealing with design analy-
sis, necessary for the debugging and optimisation
phases of a circuit design. As explained in section 3.1,
simulating at a lower level would provide the designer
with more precise timing and power estimations,
helpful for a better understanding of the circuit behav-
iour. However, this would come at the price of a
slower simulation, and a simulator a few orders of
magnitude faster can often counter-balance the lack of
precision inherent to the high-level simulation of the
Balsa Handshake Circuits. Moreover, a fast simula-
tion is important for evaluating quickly a design dur-
ing the process of design space exploration by
iteration.

3.3.1.Component-oriented simulation

The Handshake Circuit simulator is based on a com-
ponent-oriented world view, which is based on the
discrete event scheduling model. Using this tech-
nique, a discrete event simulation is viewed as a col-
lection of components that interact with each other by
exchanging messages through communication ports.
Besides components, the simulation contains a simu-
lation engine that is responsible for synchronising
components. An event-oriented view is adopted to
model individual components, i.e., the component has
one or more event handlers each of which performs
corresponding actions upon the arrival of a certain
type events. Components receive and schedule asyn-
chronous events by pops and pushes onto an array of
time queues modelling discrete times between now
and now plus the (constant) maximum duration of a
component activity.
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3.3.2. Scheduler

This section describes the scheduler implemented in
the simulator, and particularly the option taking
advantage of the delay-insensitive (DI) nature of the
Balsa circuits.

This is a standard event-based simulator working with
time queues: Each Handshake Component is imple-
mented as a set of possible handshake events (request
and acknowledge for each port) which, when exe-
cuted, pushes some messages onto the time queues in
order to activate the following connected components
at specific times.

Asynchronous circuits described in Balsa present the
important property of being delay-insensitive (DI)
when coupled with a DI protocol (see Introduction).
The simulator assumes a single-rail protocol which is
normally non-DI. However, the manner in which it is
implemented ensures the DI property of the commu-
nications during the simulation: The data value
always arrives in the destination component before
the request or acknowledge event it is bundled with.

The advantage of DI circuits at the scheduler level is
their ability to be executed “really asynchronously”:
An activated component can wait as long as it wants
before being processed without changing the behav-
iour of the circuit: It is the same situation as when the
component’s activation wire takes a very long time to
transmit the event, which is not a problem in a DI envi-
ronment. An example is given in figure 3, where each
parallel column of components can be executed inde-
pendently to calculate the formula .
However, an inattentive simulator would simulate the
Handshake Components line by line, thus interleaving
the execution of both columns. A better simulator (in
the same way as a real person) would execute the first
column, and then the second one, thus making a better
use of the data locality (better use of the cache mem-
ory). In both cases, the Add component has to wait for
its two inputs to acknowledge before being able to
carry on its work.

In order to achieve this result, the scheduler can be
simplified: The time queue necessary to execute line
by line is not useful anymore, and the direct execution
without time queue processes the column serially:
Each component requests the data from the next com-
ponent, and this request is directly processed in the
order shown in figure 4.

This scheduler has been used successfully in conjunc-
tion with the 2-phase handshake protocol, doubling
the simulation speed. Unfortunately, timestamps of
the handshake events as ordered by this scheduler are
in a different order than what they would be in a real

execution of the circuit. Although this is not important
for circuit validation, in a debugging context, out-of-
order messages prevent the correct analysis of the dif-
ferent flows of data and control. As a consequence of
this, this special scheduler is not used when debug-
ging. It is only useful when speed is very important,
as a 4 times improvement is obtained when coupled
with the 2-phase handshake protocol, compared to the
4-phase protocol used with the normal scheduler.

A point not discussed yet is what happens in a case
such as “x<-1 || x->var”, i.e. when a read and a write
or two writes are occurring in parallel. The answer is
simple: Balsa does not allow such constructs, which,
if needed, must be described more precisely with the
use of arbitration.

3.3.3. Special test harness components

Test harnesses generally require access to the compu-
ter resources (output to screen or files, input from
files) and thus can not be described with the Balsa
HDL. For this reason, they were originally described
using LARD, the language originally used at the Uni-
versity of Manchester for modelling the behaviour of
asynchronous circuits.

Unfortunately, the synchronisations required to co-
simulate the LARD and Balsa languages, added to the
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slow simulation speed of LARD were increasing the
simulation time considerably. Furthermore, the simu-
lations of LARD and Balsa were visualised by differ-
ent software, making it difficult for the user to observe
both of them together.

Some special test harness components have thus been
designed closer to the Balsa level, available for the
simulation without any loss of speed, and provided
with a direct interface in the Balsa visualisation sys-
tem. These components were originally specially inte-
grated for the simulation of the SPA processor and
provide read and write accesses to files and a console;
a specific memory component simulates a configura-
ble memory.

3.3.4. Co-simulation, Distributed simulation

Co-simulation is used for the moment only for the
execution of test-harnesses described with the LARD
language. The co-simulation interface will be
extended in the future to allow other languages to be
co-simulated with Balsa.

Another use of the co-simulation interface is to co-
simulate multiple Balsa designs. Doing this on differ-
ent computers is equivalent to running a distributed
simulation. A couple of points in favour of the distrib-
uted simulation of Balsa are:

• The static structure of a Balsa-described design is
easy to divide and distribute: The analysis of data
and control flows gives a way to determine fron-
tiers with the fewest communications;

• A scheduler similar to the one presented earlier (in
section 3.3.2) can be used to reduce the need for
time synchronisation between simulators;

• The automatic synchronisation of the components
of asynchronous circuits makes them ideal for dis-
tributed simulations.

4. VISUALISATION

The process of understanding a program involves
reverse engineering the source code [Rugaber 1992].
[Chikofsky and Cross II, 1990] give the following def-
inition of reverse engineering: "Reverse engineering
is the process of analyzing a subject system to identify
the system’s components and their interrelationships
and create representations of the system in another
form or at a higher level of abstraction.".

The visualisation system presented in this section is a
reverse engineering tool used for program under-
standing. It extracts important information from three
sources – the Balsa source description, the compiled

Handshake Circuit, and the simulation trace – and
builds a dynamic representation of the system in order
to help designers debug their circuits.

The visualisation system is composed of three main
modules working with Handshake Circuits, plus a
couple of components for extra visualisation at other
levels:

• The layout module, able to organise Handshake
Components and groups thereof in a big picture,
hopefully with short and non-overlapping commu-
nication channels, mapped onto a clustered graph
reflecting the structure of the Balsa description;

• The navigation module, key of the scalability of
the system;

• The animation module, able to paint components
and communication channels into different col-
ours, according to their state and activity, in order
to visualise data and control flows;

• An interface for test-harness components;

• GTKWave, an external module used to display
waveforms of the Handshake Channels.

Spaced-based visualisation is provided by the layout
and navigation modules, whereas time-based visuali-
sation is available through the animation module.

An illustration of the visualisation system is given in
figure 5, showing a global view of the Balsa descrip-
tion of SPA microprocessor. The next section
describes the layout, navigation and animation views
that allow such a complex representation be of practi-
cal use to a designer.

4.1. Layout

The aim of the layout module is to show the state of
the whole Handshake Circuit at a given time on one
picture. This serves two roles: As a still image, it
shows the overall design of the circuit and as an ani-
mated image, it will be used by the animation module
described later.

The layout module is based on the following require-
ment: To be able to organise every Handshake Com-
ponent on a plane in a readable manner. The term “in
a readable manner” is translated here to “minimising
the size and the overlapping wires (communication
channels)”, and is simplified in the current research to
“minimising the size of the communication chan-
nels”. Another idea taken into account is to try to
reflect the structure of the Balsa description on the vis-
ualised circuit, i.e. components declared close to each
other in the Balsa description should appear close to
each other on the visualised picture of the circuit.
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The chosen technique for organising the Handshake
Components is based on a force-directed layout sys-
tem [Di Battista, Eades et al., 1998], where each com-
ponent or group of components is described as a
particle with a size. These simple rules apply: If two
particles are too close to each other (i.e. the distance
between them is less than the sum of their sizes), they
repulse each other; otherwise, if the two particles are
linked (components linked by a channel for Hand-
shake Communication), they attract each other. If the
two particles are far from each other and not linked,
they do not interact.

At the same time, the layout of the graph of the Hand-
shake Circuit is mapped onto the clustered graph
reflecting the structure of the Balsa description. This
allows low-level information such as data flows to be
visualised on the high-level Balsa structure. Further-
more, the reduction/expansion of clusters provides a
means to display the circuit at different levels of
abstraction.

4.2. Navigation

The aim of the navigation module is to show precisely

any chosen part of the circuit, and to navigate inside
the circuit quickly and intuitively. This serves the
debugging functionalities, and is here to help the
designer locate quickly and accurately the faulty parts
of a design.

The navigation module is the key for a scalable visu-
alisation system: Firstly, it interacts with the layout
module to provide functionalities such as zoom, pan,
and manipulation of clusters, necessary for the visual-
isation of large designs. Secondly, it provides the pos-
sibility to select intuitively regions of interest, a
necessary action to reduce the amount of traced infor-
mation (see section 3.2.3). It is also used to select
regions for profiling.

4.3. Animation

Once the components of the circuit are organised in an
easily readable way, a representation of the circuit
structure is available. Based on the trace format
described in section 2.3, the role of the animation
module is to add further information to the static pic-
ture in order to represent the data and control flows,
and the changing activity of the components during
the simulation.

This is done here by representing each component or
channel state by a colour, and animating the colours
as the simulation system updates the state of the com-
ponents and channels.

The advantage of such an animation system is its abil-
ity to show all the information available from the
Balsa description and from the execution of the simu-
lation of the system, and then let the user decide what
he wants to focus on. Debugging is made easier
through the visualisation of the parallel activity:
Every thread of execution of a simulation can be
shown simultaneously, and the observer can focus on
one specific thread, observe its activity, and can easily
observe its merging with another thread or its splitting
into two threads. Moreover, every thread is ensured
not to overlap with any other in the visualisation area,
whereas they often overlap on a source file descrip-
tion.

This animation system also provides some interesting
debugging features for deadlocks and livelocks. When
a deadlock situation arises, the program stops, leaving
the guilty components in a specific colour and the
trace of the components before them in another col-
our, making it less difficult to debug. In a livelock sit-
uation, the colours can be observed circling in an
endless loop.

Furthermore, the one-to-one correspondence between

Figure 5: Global view of a circuit structure
(The SPA microprocessor core)
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the Balsa description and the visualised Handshake
Components makes it easy to link any error located on
the visualised circuit with its corresponding location
in the Balsa description.

4.4. Other visualisation tools

4.4.1. Test harness components

An interface is provided for visualising the activity of
the test harness components. Input from files and out-
put to files and console are displayed together with the
channel activity. The special test harness Memory
component gets a more complex interface where it is
possible to visualise and edit the contents of the sim-
ulated memory.

4.4.2. GTKWave

GTKWave is an external module used to display
waveforms of the Handshake Channels. It is directly
linked to the Handshake Circuit visualisation system,
which provides the user interface to select which
channels are to be displayed in GTKWave. In return,
GTKWave is used to select the periods of time over
which the power consumption needs to be estimated
by the profiling module.

5. CONCLUSIONS

The simulation and debugging of asynchronous cir-
cuits bring some new possibilities of optimisation to
the general event-driven simulation of VLSI circuits,
but asynchronous circuits also require some new fea-
tures for being debugged efficiently. This paper has
described a new simulation system and visualisation
system aimed at easing the design of such circuits.

The simulator described here shows some good
results concerning scalability and simulation speed
thanks to the use of simple Handshake Circuits. The
debugging and visualisation aspects of the described
framework take advantage of the one-to-one corre-
spondence between the high-level description lan-
guage Balsa and the Handshake Circuits in order to
provide an efficient debugging interface for handling
non-determinism problems, data and control flow
analysis and deadlock detection.

Profiling at the Handshake Circuit level, based on
fixed values of time and consumption assigned to each
type of component, and disregarding the channel
activity, is rather imprecise. However, it is sufficient
for detecting the main performance bottlenecks inside

a circuit.

Further work includes the co-simulation of Balsa with
other languages, and a basic interface is already in
place for co-simulating Balsa with the LARD asyn-
chronous behavioural language.
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