Replace this file with prentcsmacro.sty for your meeting,

or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Return Value Prediction meets Information
Theory

1 2

Jeremy Singer ' Gavin Brown

School of Computer Science
University of Manchester
Manchester, UK

Abstract

Accurate return value prediction is a key tool for enabling effective speculative
method-level parallelism, which will be a standard feature in the next generation of
chip-multiprocessor architectures. In this paper we give some information theoretic
measures that indicate intrinsic predictability of method return values. This is in
stark contrast to the current ad-hoc heuristic measures imposed by specific predic-
tion techniques. Our hope is that the application of information theoretic principles
to the field of return value prediction should result in new kinds of predictors, and
better deployment of existing prediction techniques. The two main contributions
of this work are: (i) to show that there is some correlation between information
theoretic measures and return value predictor performance; (ii) to highlight some
major issues that need to be resolved before information theory can be adopted
practically by the return value prediction community.

Key words: return value prediction, information theory,
speculative method-level parallelism, entropy.

1 Return Value Prediction

Value prediction involves the estimation of the next value in a sequence, given
knowledge of the sequence so far. This is a classic time series problem, for
which standard prediction techniques are well-known. However this paper fo-
cuses on value sequences generated by microprocessors executing code in real
time. If the techniques we describe are to be implemented directly in processor
architecture, then they must be fast (to operate in real time) and cheap (to
be implemented in reasonable transistor budgets). These constraints restrict
our consideration to the simplest value prediction techniques. In fact several

! Email: jsinger@cs.man.ac.uk
2 Email: gbrown@cs.man.ac.uk

(©2006 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

SINGER AND BROWN

different value prediction techniques have been proposed, that are amenable
to hardware implementation. These techniques have been justified by various
empirical studies to determine that value sequences computed by processors
are predictable. Unfortunately the only measure of predictability is the predic-
tion accuracy of a particular value prediction technique! This paper addresses
the issue of predictability at a more fundamental level. We are interested
in whether value sequences are intrinsically predictable, independent of which
techniques may be employed to take advantage of this predictability. The un-
derlying, fundamental predictability may be measured by the application of
information theoretic metrics such as entropy and redundancy. To the best of
our knowledge, there is no other predictability study that takes this approach.

This paper focuses on a specific kind of value sequence generated at run-
time. Assuming an object-oriented model of execution, we are interested in
the sequence of values generated by each method. A method m will have
a return value sequence of length n if m is called n times during program
execution.

1.1 Motivation

Return value prediction is a key part of speculative method-level parallelism
(SMLP), as described by Chen and Olukotun [4]. Given the ability to predict
method return values accurately, it is possible to speculate on the outcome of
method calls. At a call point, the caller usually waits for the callee to com-
plete and return a value, whereas in the SMLP paradigm the caller predicts
the callee’s value, and executes speculatively as if the callee had already com-
pleted. Of course, the callee has to execute too, to validate the prediction. If
the speculation succeeds, then effectively both the callee and part of the caller
execute in parallel. Figure 1 shows a Java program fragment and how it may
be executed via SMLP.

This is an effective way of extracting parallelism from sequential object-
oriented programs. Warg and Stenstrom report a speedup of 3.5 over se-
quential execution on an ideal machine with perfect memory and return value
prediction [24]. However when speculation fails, expensive mechanisms are
required to rollback and re-execute in a non-speculative manner. These de-
tails are beyond the scope of this paper. However their expense dictates that
if SMLP is to give any performance advantage, then speculations have to
succeed fairly often. The crucial point is that successful speculation is only
possible with accurate return value predictions.

1.2 Techniques

Value prediction techniques were originally developed in order to increase
instruction-level parallelism. Originally, values were predicted for LOAD in-
structions that retrieve data from memory [17]. This idea was soon extended
to predict values for all instructions that update an entry in the processor

2

SINGER AND BROWN

(non-spec) speculation depth

(start)

void a() {
// initial code

8poo [emut (e

x = Db();
// continuation code

spawn spec thread

... 2
// final code §
2
; 5
&
=)
int b () { commit spec thread
// computation »
ce =3
return ...; e :T)
} s K
=8 o
o
35
=
(0]

Fig. 1. Speculative method-level parallelism in action

register file [16]. These techniques took advantage of the newly discovered
phenomenom of value locality, which refers to the high likelihood of a previ-
ously seen value being computed repeatedly by a particular instruction.

With current interest in thread-level parallelism, value prediction is now
applied to sequences of method return values. This is the enabling technology
for speculative method-level parallelism (SMLP). The two standard limits
studies for SMLP [18,24] both consider value prediction to be helpful, if not
essential, for effective SMLP.

The simplest prediction technique is last value prediction (LVP) [17]. In
this scheme, it is assumed that the next value computed will be the same as the
previous value. This naive approach is surprisingly effective. It works because
sequences of repeated return values such as (1,1, 1,...) are fairly common.

An extension of the LVP technique is stride value prediction (SVP) [10].
In this scheme, it is assumed that the next value v, can be computed from
the previous two values v,,_; and v,,_s.

VUp = Up_1 + Stride
where
stride = v,_1 — Up_a
SVP works for arithmetic progression sequences such as (1,2,3,...). Note

that when stride is 0, SVP behaves as LVP.
Sazeides and Smith [22,21] refer to LVP and SVP as computational pre-

3

SINGER AND BROWN

dictors. They introduce a new class of predictors, known as context-based
predictors. The finite context method (FCM) predictor uses the history of
recent values to predict the next value. This scheme relies on repeated pat-
terns of values occurring in a return value sequence. This is justified by the
common occurrence of control flow loops in programs. An FCM predictor is
generally implemented as a lookup table, indexed by context. The context will
be composed of the most recently seen values. The table entry will contain the
values that have followed this context on previous occasions. The value that
has the highest frequency is predicted, since it is the most likely value to come
next, based on the sequence so far. The order of an FCM predictor denotes
the size of the context associated with each entry in the lookup table. So an
nth-order FCM predictor uses n consecutive return values for its context. The
capacity of an FCM predictor denotes how many entries may be stored in the
lookup table.

Hybrid predictor models [23] incorporate two or more different prediction
schemes. They are able to achieve greater accuracy in general, as is to be
expected from the principles of ensemble learning [3,25].

This paper focuses on LVP and first-order FCM predictors.

1.3 Predictability

Until now, the performance of value predictors has been used to measure the
predictability of value sequences. For instance, Sazeides and Smith commence
their predictability study [22]: “The predictability of a sequence of values is a
function of both the sequence and the predictor used to predict the sequence.”
Our view is that predictability should be independent of any particular predic-
tor. Gabbay and Mendelson [11] define value predictability as “the potential
that resides in a program to successfully predict the outcome values generated
during its execution.” While we agree with this statement, we do not agree
with the subsequent statement that predictability depends “on the capabilities
of the value predictor.”

Essentially, we argue that predictability is an inherent property of a value
sequence, entirely independent of value prediction schemes. If a sequence is
predictable, then it should be predictable by some predictor, but we make
no assertions about which particular predictor should be used. Information
theory provides us with fundamental measures of predictability, that can be
applied to value sequences.

One important measurement for value predictors is confidence. This esti-
mates how likely value predictions are to be accurate. Inaccurate predictions
are likely to cause incorrect speculations. Recall that it is expensive to recover
from the effects of incorrect speculations, so in such cases it is better not to
speculate at all.

Generally confidence is based on predictor performance (so all methods are
continuously monitored by the return value predictor, regardless of whether

4

SINGER AND BROWN

or not they are currently candidates for thread-level speculation). We argue
that confidence should be based on a more intrinsic measure of predictability,
derived from information theoretic principles.

1.4 Contributions

This paper makes four key contributions.

(i) It applies principles of information theory (Section 2) to value prediction.

(i) It identifies information theoretic metrics of first-order redundancy and
normalized mutual information as possible measures of return value se-
quence predictability (Section 2).

(iii) It presents a study of Java method return value predictability (Section
3.3). This is superior to similar studies [24,14] that rely on specific value
prediction techniques.

(iv) It highlights current challenges (Section 3) and potential future research
directions in this new area (Section 4). It notes implications for upcoming
virtual machines and chip-multiprocessor architectures.

2 Information Theory

Information theory provides a rich mathematical framework for analysis of
data sources. Originally developed by IBM in the context of secure commu-
nications and cryptography, it has been applied in fields as diverse as ma-
chine learning, medical image processing, and financial market prediction.
We explore how these ideas might be applied to return value prediction for
thread-level speculation. Note that there is little existing work that applies
information theoretic entropy to value streams. An early study examines the
entropy of hardware-generated streams of memory addresses across the ad-
dress bus [13]. Recent work by Clark et al [5] measures entropy of variable
values in a simple imperative language. They derive rules to model how dif-
ferent program statements transform entropies. Their research area is static
analysis for information flow security.

2.1 Entropy, Redundancy, Mutual Information

The fundamental measure in this framework is entropy, which explicitly quan-
tifies the information content in a given source of data: the more ‘randomness’
or unpredictability in the data source, the higher the entropy value. As an
example consider a device producing symbols according to a random variable
X, defined over a finite alphabet of possible symbols S. If we assume each suc-
cessive symbol s; € S is independent of the previous ones, the unconditional

5

SINGER AND BROWN

entropy is defined as,
5]

(1) H(X) = - Zp(i) log(p(i))

where p(7) is the probability of the ith symbol being produced. Note that all
logarithms are taken to base 2. In practical terms, p(i) can be calculated with
frequency counts, i.e.:

(2) p(i) =

In this work, we consider the device as a method within a computer pro-
gram, returning values when it is called®. Each successive call may change
the machine state, so we consider the random variable defining the method
behaviour to have changed also: the variable now is X, while on the next call
it is Y, and we wish to compute the uncertainty in Y given that we know X.
In this case it is clear that successive method return values are not indepen-
dent of one another, and what we have in fact could be considered as a time
series of values. An unconditional entropy measurement will not take this
into account, therefore we use conditional entropy.

S| |S|

(3) H(Y|X) = Zp ijl log(p(jli))

This is the First Order Conditional Entropy. The required probabilities can
again be computed from frequency counts:

. number of times s; follows s;
(4) p(jli) = -

First Order Conditional Entropy (FOCE) has a minimum value of zero and
a maximum value of log(|S]). It measures the uncertainty we have in the next
return value, given that we know the current value. If values are produced
uniformly at random over the set of possible symbols [S|, then eq.(3) will
converge in the limit to log(|S]).

number of occurrences of symbol s;

total number of symbols seen

number of occurrences of s;

An important issue arises here when applying this to return value predic-
tion. Imagine the case when a method only ever produces values from the set
{=1,0,+1}, for example returning the status of a file handle. Now imagine
a method producing values from the set {0, 1,2,3}, for example calculating
modulo(n,4). The random variables defining these methods have different
numbers of outcomes—even if they are entirely random, the maximum FOCE
value of the first method is log(3), and the second log(4). Does this mean the
first one is more ‘predictable’? A fix of sorts can be obtained by normalizing
the FOCE, this is the redundancy,

H(Y|X)
log(|S1)

3 At present we do not consider possible arguments to these methods. This is a context-
insensitive analysis [20].

(5) RY|X)=1-

SINGER AND BROWN

Redundancy 0 means the variable is entirely random, and 1 means entirely
deterministic. The conditional entropy may however not tell us the full story.
A small value for H(Y|X) (i.e. a small uncertainty in Y given X) could be
because X tells us a lot about Y, or because H(Y") is small to begin with. This
problem of course remains with the redundancy since it is just a normalised
version of the conditional entropy.

The Mutual Information between X and Y removes this problem. The
Mutual Information is,

(6) I(X;Y) = H(Y) - HY[X)

This is easily computed from the entropy measurements we have already de-
scribed above. This measurement is symmetric, i.e. I(X;Y) = I(Y; X), and
tells us the reduction in our uncertainty of Y, when the value of X is revealed
to us. Unlike Pearson’s R correlation coefficient, which only detects linear
correlations between random variables, the mutual information can detect ar-
bitrary nonlinear relationships between X and Y.

I(X;Y) can be normalized to a value between 0 and 1 by dividing by
H(Y). All mutual information values in Section 3 are normalized in this way.
A high value of mutual information indicates that there is information in the
symbol sequence to be discovered. A low value of mutual information indicates
that there is no information, and therefore little opportunity for prediction.
These are ‘textbook’ definitions of mutual information. When we began to
investigate the possibilities for it (and indeed all of these measurements) in
return value prediction, we encountered several non-trivial issues that we will
now describe.

3 Issues to be Resolved

We have explored the possibilities of applying information theory to return
value prediction. We note the following issues which we believe are critical for
progress in this area.

3.1 For methods with a large range of return values, i.e. |S| is large, how
can we quickly estimate the entropy when we have such a sparse sample
from the probability distribution?

Consider 1000 calls of a method that may return 232 possible values! We have

an extremely unreliable estimate of the probabilities, and therefore also of the

entropy measurements—how do we deal with this? When can we trust our
measurements? This issue is particularly pertinent when we attempt to do
online sampling of return values for dynamic speculative optimizations.

7

SINGER AND BROWN

100 s E— T T T T T

: Ivp +
. fcm X
+ i H H H
] e e e e e .
[%2]
c
S | %
(8]
5 s X s s s s
g o A y— pr— — pr— I
a ‘ x ‘ ‘ ‘
©
o
§ + ,k": i H H H i
E 40 T [::"" t':’ """""""" [[[7
g . X X
@
o +
. +
X ; ; : : :
20 b S S S SO S i
i +ii i w i i
#» ',: + N
X N
%Jr *r + ! + :
+ :
+
0 . L 1 & 1 1 1 I‘Sﬁ
0 50 100 150 200 250 300

number of distinct symbols

Fig. 2. Alphabet size versus predictability

3.2 How can we compare entropy values between methods that have different
numbers of possible return values?

In general a larger alphabet makes a return value sequence harder to predict,
as Figure 2 clearly shows. This graph plots the relationship between alphabet
size and predictor accuracy for two common predictors. There are two points
for each method, one for its LVP accuracy and the other for its FCM accuracy.
The data is collected from all methods in the SPEC JVMO98 benchmark suite
that return 32-bit integer values and are called at least 100 times. Appendix
A gives full experimental details.

The issue here is that when we calculate mutual information on one method,
we may have seen an alphabet of three characters, but how can we compare
this mutual information value to another value computed over 1000 charac-
ters? It is difficult to compare information channels of different arities.

One possible approach is to reduce the total number of states that must
be computed. (The number of states should increase with the alphabet size.)
This reduction can be achieved by state lumping (8], which is very similar
to the idea of abstract interpretation [6] from static analysis of programs.
Basically, this approach reduces the state space by grouping together sets of
related states into compound abstract states. Such techniques can reduce the
size of value prediction tables for context-based predictors in a more principled
way than existing hash-based algorithms [21].

8

SINGER AND BROWN

A Java type expresses an upper bound on the number of symbols that may
be returned by a method. However it is often the case that primitive types
are not expressive enough to specify the precise range of symbols returned
by a method. All our calculations assume that each method’s alphabet size
is equal to the number of distinct symbols observed as return values from
that method. Methods with large alphabets are ideal candidates for state
lumping. One pragmatic reason is that it makes the analysis cheaper. One
theoretical reason is that it makes comparison with other methods fairer. We
attempted to create a variant of FCM that groups together low frequency
symbols, identified by frequency analysis over a training set of return values
for each method. We grouped together infrequent symbols into an ‘unknown’
state. When the FCM predictor predicted the next symbol to be ‘unknown’
we refused to make any prediction. The technique did not work well. We
found that we refused to make predictions far too often. Also our entropy
and redundancy calculations were inaccurate since we treated ‘unknown’ as
an ordinary symbol. So a sequence of the form (‘unknown’; ‘unknown’; ...,
‘unknown’) has redundancy 1, which should indicate predictability. Really, we
would need to treat the ‘unknown’ state similar to the ‘Not-a-Number’ concept
from floating-point arithmetic and somehow work this into our information
theory equations. It would be interesting to see how mutual information
varies with state lumping, as the number of allowed states varies.

3.8 Measures like redundancy and mutual information tell us when there is
information to discover, but they give no help on how to discover it!

Figure 3 shows the correlation between redundancy and predictor accuracy.
There are two points for each method, one for its LVP accuracy and the other
for its FCM accuracy. The data is collected from the same set of benchmark
methods as in Section 3.2.

Figure 4 is a similar plot. It shows the correlation between normalized mu-
tual information and predictor accuracy. There seems to be less correlation
for normalized mutual information than for redundancy. However we discov-
ered that the anomalous states can be removed by filtering out methods that
have an alphabet size of fewer than 15 symbols. There is obviously a complex
relationship between entropy and alphabet size and predictor accuracy, which
we are still investigating.

One possible clue to the relationship between entropy and accuracy is the
Fano inequality, a fundamental bound in information theory [7]. Given a
data source with FOCE H(Y|X) and alphabet size |Y'|, then the minimum
misprediction rate p is bounded as:

HY|X)—-h
. o HLX) — hip)
log(|Y]) =1
where h(p) is the binary entropy function:
(8) h(p) = —(plogp + (1 — p)log(1 - p))

9

SINGER AND BROWN

100 | T T T T * —F %
vp + x
fem
X
o
; : * :
BOF I i i S — .
o i
S ! X
g 4 X
o
—_ H H H X H
he] e S -
o 60 : : Pox ‘
o i i % i X :
3 -
) i
= ! X
8 -
- L A]
= 40 :
(0]
o + i
@) ‘)
% ; +
e +
X +
20 + .
X +
: ty
+
+ L
i . ¥
T
X * +
0 L&]]] L ,
0 0.2 0.4 0.6 0.8 1

1st-order redundancy

Fig. 3. Redundancy versus predictability

Figure 5 shows the Fano inequality plotted for boolean method return values
(where |Y'| = 2). The points are boolean method return value traces from
SPEC JVM98 benchmarks. Each method is called at least 100 times, and its
values are predicted using the simple LVP technique. The maximum accuracy
bound is (1 — p) where p is the minimum misprediction rate. Clearly all the
points satisfy the bound. More theoretical development is needed before we
can apply the Fano inequality to larger alphabet sizes (particularly integer
return values) and more complex predictors (which make use of other history
features in addition to the last value).

It is clear to see that a low value of redundancy (or mutual information)
generally indicates a low predictor accuracy for all predictors. This is an
extremely reliable indication of unpredictability. Conversely, a high value of
redundancy (or mutual information) indicates that some predictor may have
high accuracy, but we have no idea which predictor is correct (FCM, LVP,
SVP, other, or hybrid of these). The information theoretic metrics give no
clues as to which prediction technique will work best. Thus, redundancy (or
mutual information) gives an intrinsic predictability measure but this is not
necessarily a tight upper bound on the accuracy of a particular prediction
technique!

Figure 6 confirms our intuition. This graph shows that methods that return
purely random sequences of values have a redundancy (or mutual information)
of 0, indicating complete unpredictability. One method has an alphabet of

10

SINGER AND BROWN

100 ¥ T T T T T E
vp + ; X
fem ~ ‘
X
H H + H H
X H H H H
8O [S L e — .
X
[%2]
s x X
= +
5 B0 | OO OOt SRR o SO]
(0]
= : i X : :
s < < |
(8] : *
o :
= X,
8 H + H X H X H »
E A0 [X I [7
S X
o + 1
5 < | x
Q- + '1 H
X< N
i ;
20 s -
+ 3
X N X
3 T Lo, X
+ +
+ : + . + N
; +
X - +
0 L=]]] +] ;
0 0.2 0.4 0.6 0.8 1

normalized mutual information

Fig. 4. Mutual information versus predictability

{0,1} and the other has an alphabet of {0,1,...,99}. Note that although
both methods are equally unpredictable in terms of information theory, actual
predictors are more likely to guess the right answer with a smaller alphabet
size than a larger one!

These random methods are contrasted with a real method from the SPEC
JVM98 benchmark set, that shows some predictability and some accuracy.
Also for reference, we study a stride sequence (1,2,...,99999). According
to the information theoretic metrics this sequence should be predictable, but
neither of our two featured predictors (FCM and LVP) can handle strides, so
both have low accuracy scores.

3.4 How can we take account of strides?

We note that any information theoretic measurement will give the same values
for a contiguous sequence of increasing values such as (1,2,3,...) as for a
non-repeating sequence of unrelated values such as (1,42, —5,...), yet SVP
will clearly achieve 100% accuracy on the first sequence. The reason that
SVP can succeed here is that it takes into account the fact that the values
in the first sequence are ordinal, related to each other. Shannon’s Entropy
assumes categorical random variables, i.e. the fact that a 2 follows a 1, is no
different from a 42 following a 1—the return values are treated as discrete
events from a multinomial probability distribution. One obvious route might

11

SINGER AND BROWN

Fano Bound

LVP

Aoeinooy

0.3F

0.2

0.1F

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Conditional Entropy H(Y|X)

0.1

Fig. 5. Fano inequality bounds LVP predictability for boolean methods

T T
| | I,
| [stride sequence
I I R I
| | -~ |
, , .l |
| | IS
\\\\\\ B b	
e [
[L. I	
Ler" ol I	
.	+l M
R I I oo	
“““ T U B	
.. real-world sequeénce Lt !	
R, la=="	
T T T T T T	

Co
S
e
o
o
3
?
_
w
o
kel
c
-5

nce ,..

100

suonoipaid 1994100

usoled

0.6

0.4
normalized mutual information

. random 0-99 seqlience’ .

I

I .
1 o
o o
aV]

Fig. 6. Mutual information versus predictability for selected methods

12

SINGER AND BROWN

be to compute information theoretic properties of the strides; in the first
sequence above we note that the strides would show up as entirely predictable,
having a redundancy of 1. The question of course arises, when do we trust our
measurements on the strides as opposed to our measurements on the values
themselves?

3.5 Could information theoretic measurements be used as switching criteria
to decide which member of a hybrid predictor will be correct?

Hybrid predictors are arguably one of the most successful techniques applied
in this field [23]. Generally hybrids incorporate a computational predictor
such as SVP and a context-based predictor such as FCM. The idea is not con-
strained to return value prediction however. The field of ensemble learning
[3,25] is concerned with building machine learning techniques that can effi-
ciently combine different predictors, possibly switching between them, so as
to exploit their strengths and weaknesses in different situations. It is entirely
plausible that this field will provide the necessary background for a major
boost in the power of return value prediction for thread-level speculation.

3.6 How can we implement these measures and procedures efficiently, such
that their overhead will not negate their utility when incorporated into a
chip?

To the best of our knowledge, there are no existing hardware implementations
of return value prediction units. Lipasti and Shen [15] estimate that ‘super-
speculative prediction structures, including those for branch prediction’ would
cost ‘roughly 36 million transistors’ out of a total of 180 million transistors
for a processor core. This is a significant cut of the transistor budget.

These proposed prediction units only perform simple computational oper-
ations, including comparisons, increments and hashes. An alternative imple-
mentation, based on information theory, would require much more complicated
calculations involving logarithms, multiplications and divisions. Ideally, such
computation would make use of existing arithmetic and floating-point units,
rather than reimplementing specialized circuitry.

However, we envisage that value prediction will only occur for return values
at the end of methods, rather than for all instructions. Since the frequency of
method execution is much lower than the frequency of instruction execution,
it should be possible to implement return value prediction entirely in software.
For VM-based systems, the prediction mechanism can be incorporated directly
into the VM itself. There is an existing precedent for this: SableSpMT [19]
performs software return value prediction within the Sable JVM. For this
study, we have used Jikes RVM [1,2], which is a powerful adaptive JVM. Jikes
RVM already has features for runtime method-level profiling. It would be
extremely straightforward to extend this profiling to perform dynamic return
value prediction.

13

SINGER AND BROWN

In such a system, no extra hardware support is necessary! An all-software
solution is extremely flexible and extensible. This is a clear advantage for VM-
based architectures. Note that hardware support is still required to deploy
thread-level speculation in order to take advantage of predictability, but such
hardware issues are beyond the scope of this paper.

4 Future Work

Much work remains to be done. Once we have satisfactorily resolved the is-
sues highlighted in Section 3, we hope to implement a system in which these
information theoretic calculations can occur at runtime, rather than as a post-
processing step. It is well known that programs exhibit phased behaviour at
runtime [9,12]. We conjecture that this is true of method predictability. We
hope to spot changes in predictability behaviour dynamically, and make adap-
tive prediction decisions in response to our online measurements.

References

[1] Alpern, B., C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan and J. Whaley, The Jalapeno virtual
machine, IBM System Journal 39 (2000), pp. 211-238.

[2] Alpern, B., S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng,
J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B.
Moss, T. Ngo, V. Sarkar and M. Trapp, The Jikes research virtual machine
project: Building an open source research community, IBM Systems Journal 44
(2005), pp. 1-19.

[3] Brown, G., J. Wyatt, R. Harris and X. Yao, Diversity creation methods: A
survey and categorisation, Journal of Information Fusion 6 (2005), pp. 5-20.

[4] Chen, M. and K. Olukotun, Ezploiting method-level parallelism in single-
threaded Java programs, in: Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, 1998, pp. 176-184.

[5] Clark, D., S. Hunt and P. Malacaria, Quantified interference for a while
language, Electronic Notes in Theoretical Computer Science 112 (2005),
pp. 149-166.

[6] Cousot, P. and R. Cousot, Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixrpoints, in:
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 1977, pp. 238-252.

[7] Cover, T. M. and J. A. Thomas, “Elements of Information Theory,” Wiley,
1991.

14

SINGER AND BROWN

[8] Derisavi, S., H. Hermanns and W. Sanders, Optimal state-space lumping in
Markov chains, Information Processing Letters 87 (2003), pp. 309-315.

[9] Duesterwald, E., C. Cascaval and S. Dwarkadas, Characterizing and predicting
program. behavior and its wariability, in: Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, 2003, pp.
220-231.

[10] Gabbay, F. and A. Mendelson, Speculative execution based on value prediction,
Technical Report EE Department TR 1080, Technion: Israel Institute of
Technology (1996).

[11] Gabbay, F. and A. Mendelson, Using value prediction to increase the power of
speculative execution hardware, ACM Transactions on Computer Systems 16
(1998), pp. 234-270.

[12] Georges, A., D. Buytaert, L. Eeckhout and K. D. Bosschere, Method-level
phase behavior in Java workloads, in: Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, 2004, pp. 270-287.

[13] Hammerstrom, D. W. and E. S. Davidson, Information content of CPU memory
referencing behavior, in: Proceedings of the 4th Annual Symposium on Computer
Architecture, 1977, pp. 184-192.

[14] Hu, S., R. Bhargava and L. K. John, The role of return wvalue prediction
i exploiting speculative method-level parallelism, Journal of Instruction-Level
Parallelism 5 (2003).

[15] Lipasti, M. and J. Shen, Superspeculative microarchitecture for beyond AD 2000,
IEEE Computer 30 (1997), pp. 59-66.

[16] Lipasti, M. H. and J. P. Shen, Ezceeding the dataflow limit via value prediction,
in: Proceedings of the 29th Annual ACM/IEEE International Symposium on
Microarchitecture, 1996, pp. 226—237.

[17] Lipasti, M. H., C. B. Wilkerson and J. P. Shen, Value locality and load
value prediction, in: Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems, 1996,
pp. 138-147.

[18] Oplinger, J. T., D. L. Heine and M. S. Lam, In search of speculative thread-
level parallelism, in: Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, 1999, pp. 303-313.

[19] Pickett, C. J. and C. Verbrugge, Return value prediction in a Java virtual
machine, in: Proceedings of the Second Value-Prediction and Value-Based
Optimization Workshop, 2004, pp. 40-47.

[20] Ruf, E., Context-insensitive alias analysis reconsidered, in: Proceedings of
the ACM SIGPLAN 1995 Conference on Programming Language Design and
Implementation, 1995, pp. 13-22.

15

SINGER AND BROWN

[21] Sazeides, Y. and J. Smith, Implementations of context based wvalue
predictors, Technical Report TR-ECE-97-8, Department of Electrical Computer
Engineering, University of Wisconsin-Madison (1997).

[22] Sazeides, Y. and J. E. Smith, The predictability of data values, in: Proceedings
of the 30th Annual ACM/IEEE International Symposium on Microarchitecture,
1997, pp. 248-258.

[23] Wang, K. and M. Franklin, Highly accurate data value prediction wusing
hybrid predictors, in: Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, 1997, pp. 281-290.

[24] Warg, F. and P. Stenstrom, Limits on speculative module-level parallelism in
imperative and object-oriented programs on CMP platforms, in: Proceedings
of the International Conference on Parallel Architectures and Compilation
Techniques, 2001, pp. 221-230.

[25] Woods, K., W. P. Kegelmeyer and K. Bowyer, Combination of multiple
classifiers using local accuracy estimates, IEEE Transactions on Pattern
Analysis and Machine Intelligence 19 (1997), pp. 405-410.

A Experimental Setup

The experiments were conducted using the Jikes RVM adaptive runtime com-
pilation system for Java programs [1,2]. We modified the code generation sys-
tem so that when a 32-bit integer return JVM bytecode instruction (ireturn)
is compiled, the code sequence also dumps out the return value and method
identifier to a trace file. Note that the ireturn instruction is used to return
values from Java primitive types boolean, byte, char, short and int. It
is necessary to use high-level debugging information in the Java class file to
determine the actual type of return value for each method. Note also that
each method has its own unique integer identifier.

We took the following steps to ensure that the trace data is as realistic as
possible.

(i) All experiments are performed using the optimizing version of the Jikes
RVM compiler. This performs standard JVM optimizations including
method inlining. So all methods should be reasonably sized and non-
trivial.

(ii) All experiments run the SPEC JVM98 benchmark suite for trace file
data generation. This is an industry-standard Java benchmark suite. It
consists of eight compute-intensive standalone Java applications.

(iii) The benchmark programs take maximum sized (s100) input data sets,
representing real-world workloads. It is to be noted that previous studies
into Java method return value predictability [24,14] used much smaller
(s1) input data sets for the same benchmarks.

16

SINGER AND BROWN

Once the trace files have been generated, simple script programs postpro-
cess the return value streams on a per-method basis, to simulate the behaviour
of different value predictors, or to compute information theoretic quantities
such as entropy and redundancy.

17

	Return Value Prediction
	Motivation
	Techniques
	Predictability
	Contributions

	Information Theory
	Entropy, Redundancy, Mutual Information

	Issues to be Resolved
	 For methods with a large range of return values, i.e. |S| is large, how can we quickly estimate the entropy when we have such a sparse sample from the probability distribution?
	 How can we compare entropy values between methods that have different numbers of possible return values?
	 Measures like redundancy and mutual information tell us when there is information to discover, but they give no help on how to discover it!
	 How can we take account of strides?
	 Could information theoretic measurements be used as switching criteria to decide which member of a hybrid predictor will be correct?
	 How can we implement these measures and procedures efficiently, such that their overhead will not negate their utility when incorporated into a chip?

	Future Work
	References
	Experimental Setup

