Concept Assignment as a Debugging Technique for Code Generators

Jeremy Singer
University of Manchester, UK
jsinger@cs.man.ac.uk

Abstract

Code generators are notoriously difficult to debug, yet
their correctness is crucial. This paper demonstrates that
concept assignment can be performed in an entirely syntax-
directed manner for code generators and other highly struc-
tured program modules. Anomalies in this concept assign-
ment indicate the possible existence of bugs. These insights
enable the formulation of a new debugging technique for
code generators. This paper describes the procedure, a
practical implementation, and results from the application
of this debugging technique to an experimental code gener-
ator.

1 Introduction

Code generators feature in compiler backends. Simi-
lar modules are necessary in interpreters, binary translators
and other program transformation systems. A code gener-
ator transforms an input instruction stream into an output
instruction stream, according to some well-defined rules.

In general, programmers find code generator debugging
to be a frustrating, arduous task. There are several reasons
for this difficulty.

1. Second order debugging is required. The principal way
to find errors is to exercise the code generator with
some test input instructions, then execute the output in-
struction stream. Bugs in the output instruction stream
indicate bugs in the code generator. It is necessary to
deduce the code generator bugs by working backward
from the generated code bugs. This approach operates
at a higher level of abstraction than usual, since there
is increased separation from the original source code.
It would be more intuitive to debug the code generator
source code directly rather than to analyse the gener-
ated output code.

2. When code generators target exotic or experimental
platforms, it can be difficult or impossible to run the
generated code and test for bugs. The platform may

be unstable, or not yet developed, or not available in
hardware or simulator.

3. Backends are often the most ugly areas of compil-
ers, since they are not exposed directly to users.
Sometimes code generator source code is itself auto-
generated (entirely or in part) and then modified by
hand. Code generators contain lots of repetitive code,
and there are always many special cases to handle.

4. When a compiler backend is retargetted to a new plat-
form, sometimes the backend for an existing platform
is adapted. Developers may fail to modify sufficient
code, comments and conventions. This style of cuz-n-
paste retargetting is particularly susceptible to subtle
bugs.

Code generator maintainers employ one of the follow-
ing elementary techniques when hunting down their elusive
bugs.

e They insert plenty of trace print f statements into the
code generation methods, and trawl through huge files
of trace output.

e They ‘eyeball’ the code generator source code for ir-
regularities.

e They single-step through generated output code in-
structions and check for errors.

Experienced developers make good use of tools like grep,
diff, awk and perl to analyse generated code or trace files,
but even this is tiresome. As both compilers and target plat-
forms become more complex, there is an urgent need for
better debugging techniques to handle 21st century code
generators. Debugging tools should operate at a higher level
and be more user-friendly.

This paper applies concept assignment (CA) to the prob-
lem of code generator debugging. Section 2 reviews CA,
which is a well-established technique for program under-
standing. There are many approaches to performing CA,
mostly involving artificial intelligence theory. However,
Section 3 shows how CA may be simply applied to code

generators, by means of basic syntax-directed analysis.
Section 4 shows how this syntax-directed CA can help to
discover bugs, by comparing the results of different CAs on
a code generator code base. Section 5 describes an auto-
mated debugging tool that implements this procedure. Sec-
tion 6 reports on results when this tool is applied to an
experimental code generator. Section 7 discusses related
work. Finally Section 8 concludes.
This paper makes four significant contributions.

1. It shows that the CA problem can be solved in an
entirely syntax-directed manner for highly structured
source code modules like code generators.

2. It evaluates several software metrics as a basis for
grouping conceptually related methods.

3. It presents a technique for debugging code generators
that compares different CAs for inconsistencies.

4. Tt describes a functional implementation of this debug-
ging technique, complete with a case study involving
an experimental code generator.

2 Concept Assignment

This section introduces the notion of concept assignment
(CA). It also discusses the computation and application of
CA information.

2.1 What is Concept Assignment?

CA is a process for high-level program comprehension
[2]. It relates human-oriented concepts to implementation-
oriented artefacts. Often, human-oriented concepts are ex-
pressed using UML diagrams or other high-level specifi-
cation schemes, which are far removed from the typical
programming language sphere of discourse. In contrast,
implementation-oriented artefacts are expressed directly in
terms of source code features, such as variables and method
calls.

CA is a form of reverse engineering. In effect, it attempts
to work backward from source code to recover the ‘con-
cepts’ that the original programmers were thinking about as
they wrote each part of the program. This conceptual pat-
tern matching assists maintainers to search existing source
code for program fragments that implement a concept from
the application. This is useful for program comprehension,
refactoring, and post-deployment extension.

Generally, each individual source code entity imple-
ments a single concept. The granularity of CA may be
as small as per-token or per-line; or as large as per-block
or per-method. Often, CA is visualised by colouring each
source code entity with the colour associated with that

particular concept. CA can be expressed mathematically.
Given a set U of source code units ug, u1, . . . , Un, and a set
C of concepts ¢g, c1, . - . , Cm, then CA is the construction of
a mapping from U to C'. Often the mapping itself is known
as the concept assignment.

Note that there is some overlap between CA and aspect
mining [5]. Both attempt to recover high-level information
from low-level program descriptions. The principal differ-
ence is that concepts are universal. Every source code en-
tity implements some concept. In contrast, only some of
the source code implements aspects. Aspects encapsulate
implementation-oriented cross-cutting concerns, whereas
concepts encapsulate human-oriented concerns which may
or may not be cross-cutting.

2.2 Approaches to Concept Assignment

There are two phases in the CA process.

concept selection: determine the set C' of human-oriented
concepts that are implemented in the source code.

concept mapping: map each source code entity (at some
specified granularity) to a particular concept from C'

Either or both of these phases can take place manually
or automatically. Automated CA may require human guid-
ance or intervention. In manual CA, the maintainer tra-
verses the source code and manually assigns a plausible
concept for each source code entity. In automated CA, a
software tool analyses the source code and automatically
selects the most appropriate concept for each source code
entity (for some definition of appropriate). Most automated
systems incorporate some level of artifical intelligence to
determine ‘appropriate’ concepts. Biggerstaff et al describe
a semi-automated design recovery system called DESIRE
[2]. This uses a precomputed domain model and a connec-
tionist inference engine to perform the CA. Gold and Ben-
nett describe a hypothesis-based CA system [12]. This ap-
plies information from a human-generated knowledge base
to source code, using self-organizing maps to perform the
CA.

The simplest approach to automated CA is syntax-
directed, also known as program plan assignment by pars-
ing. Rich and Wills [21] describe a system that operates in
this manner. Biggerstaff et al argue that syntax-directed CA
is not powerful enough to recover genuine human-oriented
concepts, since it is restricted to a ‘parsing-oriented’ view
of the world [2]. However, this paper shows that such a re-
stricted view is sufficient for highly structured code bases
like code generators. The first novel idea in this paper is
that syntax-directed CA is as accurate as manual CA for
a restricted class of highly structured programs. Section 3
provides further detail.

emitADD emitSUB
pop pop
pop pop
add sub
push push

Figure 1. Addition and subtraction code gen-
eration

2.3 Applications of Concept Assignment

Existing CA applications are entirely concerned with
program understanding. This does not seem to be taken fur-
ther. Biggerstaff et al [2] simply present a tool for software
comprehension and visualization. Gold and Bennett [12]
state that the primary motivation for CA is ‘providing the
maintainer with an additional knowledge source from which
to work.” Kontogiannis et al [15] use CA information to as-
sist in the detection of cloned source code, but there is no
automated client that uses this information.

This paper argues that a machine-level program un-
derstanding should facilitate further automated analysis or
transformation of the subject program. The second novel
idea in this paper is that CA supplies information to support
automated debugging. Section 4 elaborates.

3 Code Generators

This section claims that, for the restricted domain of
code generators, syntax-directed CA can produce as accu-
rate results as manual CA.

Code generators usually have standard output patterns
for related input instructions. For instance, consider Figure
1 which shows the code generation methods for addition
and subtraction operations in a stack-based machine. In-
deed, all diadic arithmetic and logical operations will have
the same style.

Groups of conceptually related instructions have similar
code generation patterns in the program source code. These
patterns are easily identifiable by explicit syntactic clues,
such as number of lines of code and control flow structure.
Each related code generation method can be assigned the
same concept. This is the first insight:

Concept assignment for code generators can be
entirely syntax-directed.

Note that this observation does not apply exclusively to
code generators. Other code base genres may exhibit this
phenomenon, so long as they have the same properties that
the code is highly structured, and stereotypical structure in-
dicates conceptually related code.

Basically, syntax-directed CA attempts to discover units
of code (in our case, methods) that are quite similar, but not
exactly the same. It uses simple software metrics such as:

1. number of lines of code (numlines)

2. number of method calls (hnummethodcalls)
3. cyclomatic complexity [18] (cyccomp)

4. ABC complexity [7] (abc)

If two methods have the same score for one or more of
these metrics, then they are assigned the same concept. In
other words, they are conceptually related. This is self-
clustering CA. Rather than doing an explicit initial con-
cept selection step, the process simply clusters the methods
into related groups. Each group is assumed to implement a
concept. Note this is similar to Cimitile et al [4], only we
assume the clusters are valid without performing any ade-
quacy validation process.

The above metrics are absolute, since each method can
be given a score independent of all other methods. There
are also some relative metrics. String similarity is rel-
ative, since it compares all methods at once, and clus-
ters them according to how similar their method names
(methodnames) or method bodies (methodbodies) are to
each other. String similarity is expensive to compute, since
it uses dynamic programming.

All of these software metrics are entirely syntax-
directed. They require no domain-specific knowledge about
input programs. However, the results presented in Section
6 show that such metrics enable as accurate CA analysis as
the best domain-specific knowledge possible.

The above six metrics are primitive. It is possible to com-
bine two or more primitive metrics into a compound metric.
The compound union a+b of metrics @ and b is defined as
follows: a+b relates method m; to method mo if either a
or b relates m; to mo. The union operation generally de-
creases the number of concepts and increases the size of
each concept set. The compound intersection a*b of met-
rics a and b is defined as follows: a*b relates method m; to
method mo if both a and b relate m to mo. The intersec-
tion operation generally increases the number of concepts
and decreases the size of each concept set.

4 Debugging Technique

This section presents the debugging technique for code
generators, that leverages the CA information.

Recall that manual CA should group related code gen-
eration methods correctly, since it relies on human guid-
ance and domain-specific knowledge. The previous section
showed that syntax-directed CA clusters related code gener-
ation methods. However, syntax-directed CA can only give

correct answers if conceptually related methods are syntac-
tically similar, which they should be. If related methods are
not syntactically similar, there is a possible bug! Incorrect
syntax implies an incorrect code generator. Section 1 has
already described why such code generation bugs are diffi-
cult to detect and correct via manual inspection. So an au-
tomated tool that discovers such errors is highly desirable.
This results from the second insight:

Anomalies in syntax-directed CA indicate
potential bugs in code generators.

A comparison between syntax-directed CA and manual
CA highlights unexpected relationships in syntax-directed
CA. These anomalies indicate that further investigation is
required. So the automated debugging tool does not fix the
problem, but it provides a zoom tool to focus the (human)
debugger’s attention.

A procedure for code generator debugging follows.

1. perform manual CA.
2. perform syntax-directed automated CA.

3. detect inconsistencies between manual and automated
CAs.

4. check each inconsistency—is it caused by bugs in the
code generator source code?

Steps 1 and 4 are manual. Steps 2 and 3 are automated. In
effect, the procedure enables expert humans to concentrate
on source code locations containing potential bugs. The hu-
man maintainers then perform manual checks to determine
whether each inconsistency indicates the presence of a gen-
uine bug.

The automated inconsistency detection is important. A
good heuristic seems to be ‘odd-one-out’ detection. It can
be defined as follows. Let f : M — A be the mapping for
concept assignment CA4. Let g : M — B be the map-
ping for a different concept assignment CA g over the same
set of methods M. Method m € M is an ‘odd-one-out’ ex-
actly when f(m) = a, and g(m) = b, and there is no other
method m’ € M with f(m') = a, and g(m’) = b,. This
heuristic highlights anomalies while taking account of the
fact that two different CAs are never exactly aligned. Con-
cept names are generally different. Often there is a different
number of concepts in each CA. These details are examined
empirically in Section 6.

S Implementation

This section describes the software tool that implements
the debugging procedure described in the previous section.
I implemented a syntax-driven CA tool. It is written in
Java and it operates on Java programs. The Java parser is

generated by the JavaCC parser generator. This parser is
extended to compute the appropriate metric scores for each
method’s abstract syntax tree. The tool outputs the scores
for each analysed method into plain text files.

I developed Perl scripts to transform the plain text files
into HTML-based web pages. This enables hyperlinked
cross references, colour highlights and navigation panels.
The auto-generated HTML can be navigated using a famil-
iar web browser interface. This is an intuitive tool to vi-
sualise the CA results. Note that source code navigation
via web browsing was originally proposed in the elucida-
tive programming paradigm. [20].

The simplest CA presentation displays the source code
with colour highlights, where different colours correspond
to different concepts. The output shows a concept map that
gives a high-level overview of the source code, with differ-
ent coloured blocks corresponding to different concepts. A
close-up frame shows the source code of the currently se-
lected method. A different method is selected by clicking
on a new area of the concept map, or by choosing a method
from the list of methods in each concept. Figure 2 shows
an example screenshot of this visualization tool in action.
HTML code should be refreshed each time CA reoccurs, so
the visualization information is dynamically regenerated.

More Perl scripts analyse the CA results. Various tools
compute the union, intersection and difference of two CAs.
The difference tool applies the ‘odd-one-out’ heuristic (out-
lined above) to highlight inconsistencies between CAs.

Once the automated CA information has been gener-
ated, it can be compared with manual CA. For the man-
ual CA data, I grouped Java bytecode operations into con-
cepts, largely based on the groupings suggested by standard
JVM textbooks [17, 22]. These groups include integer arith-
metic operations, conditional branch operations, and float-
ing point arithmetic operations.

Differences between manual and automated CA indicate
potential bugs in the code generator source code, which
need to be investigated further. Again, the web browser
interface presents an intuitive interface to the source code.
Methods that have inconsistently assigned concepts are
highlighted, and the source code can be examined through
the browser.

The three most desirable properties of an automated de-
bugging tool are:

1. scalability, and
2. intuitivity, and
3. precision.

The implementation presented is scalable, since the con-
cept map frame (left panel in Figure 2) enables a high-level
overview as well as a zoom in for detail. The tool is in-
trinsically intuitive since it relies on the familiar underlying

cohepen — = og/ebuisT/aluoy/ :AB [4] WYDS - [13Y4S & =
. ['Z> XoJolld e[izop & D[OSLIOY - Ueld i
U3y 03 JBHEND| 3 2 X03ll{ Bl|IZOW @ oml=busl o) xoau) £

J
)
)

€
@
&

EoR
)

b HI‘

T
+*

spoo=3Aq Io0T =43 jusw=TduT o spoo JTWH .

-

C

Figure 2. Screenshot of the concept visualization tool

|

U
*
*

[3(e,SeTpoqpotaut] SOTPO(POIaULS[[eIpojowumu] [oge,sauruinu] [STeIpoloul N, Sourunu
[oae [duroodAD] Tsarpodpoiman] SaUIRIDOT I]

[e Lo P e L=e

+Salr

[SeUTPTPOT[STI +Sat] TSIespoIaumnm] seuTuinu] [fenuem]

[A =2 (R8s

ndeouod abuerno

(1doauoa uorpasiaiuy punoduros) sqge.saurrumu :1dadouods JUSIIND

) Ti Ay o Tme I AWAL T WIBfsIdezuosysaloadsbuis fswoyyyy e ﬂ_ rﬂ_ & O @

diaH sjool sylewxoog oD malA 1IR3 3|4

web browser infrastructure. The next section discusses the
precision of the debugging tool.

6 Results

This section describes a case study of the application
of this debugging tool to an experimental code generator.
I developed the debugging tool for the specific purpose
of debugging an ARM/Linux code generator for the IBM
Jikes RVM compiler. ARM is a standard RISC architecture
[9]. RVM is an open-source adaptive Java virtual machine
(JVM) [1]. RVM code generator modules are written in
Java. The experimental ARM backend is a non-optimizing
code generator that simply macro-expands Java bytecode
operations into fixed sequences of ARM instructions. This
conforms to the model of code generator assumed by this
paper, for which similar input operations have similar code
generation methods.

Residual bugs are highly likely in the ARM backend,
since it has been developed by copying large portions of
source code from PowerPC and IA-32 backends [3]. These
two architectures are quite different from each other and
from ARM. The relevant source code has been copied based
on its match with the features of the ARM architecture.
Bugs could be caused by mismatches between the origi-
nal target and the new target (for instance, PowerPC has 32
general purpose registers, ARM has less than 16) or by in-
consistencies between several original targets (for instance,
PowerPC method calling conventions differ from IA-32).
Such incompatibilities are likely sources of error.

The empirical results presented in this section show that
structural similarities in code generator source code corre-
late with conceptual similarities. Also, the results show that
anomalies in automated CA can detect a significant number
of bugs.

6.1 Consistency of Manual and Automated CAs

Figure 3 shows the differences between manual CA and
various automated CAs. A score of zero indicates perfect
agreement. The abstract measure of difference is computed
from the proportion of methods that are not ‘odd-ones-out’
in automated CA, and also the total number of concepts in
automated CA compared with the total number of concepts
in manual CA. These results show that intersection-based
compound CAs are most accurate, and that methodbod-
ies*abc gives the closest level of agreement. (Note that all
bar one merges all primitive metrics except for method-
bodies, which is the most expensive to compute.) A low
difference score means that this automated CA should give
few false positives in the debugging tool. Recall that a dif-
ference between manual and automated CAs is interpreted
as a potential bug that needs further investigation.

6.2 Bug Detection

This section discusses the relative capabilities of the var-
ious automated CAs for finding bugs. A potential bug is in-
dicated by a difference between the manual and automated
CAs, using the ‘odd-one-out’ heuristic. I measured this ca-
pability by artificially injecting known bugs into the code
generator source code, and seeing whether these caused
anomalies in automated CA.

The first set of tests injects a single bug at a time into
the ARM RVM code generator source code. There are 10
different cases. These range from generating too few in-
structions, generating too many instructions, generating the
wrong instructions, using incorrectly typed registers or op-
codes in generated instructions. These are typical bugs from
a cut-n-paste error that has not been fixed up properly after-
wards. Figure 4 shows how many of the 10 bug injections
can be detected by each automated CA, when each bug is
injected in a separate run of the debugging tool. Only a
few automated CAs are shown, these include all primitive
CAs and the most accurate compound CAs. Note that the
numlines metric is among the most successful for bug de-
tection. This shows how obvious the bugs are in terms of
syntactic clues. However humlines may not be used for
bug detection in practice, since the previous study shows
that it has a higher number of false positives than, say, num-
lines*abc. Note that methodnames string similarity met-
ric cannot detect any bugs at all. This is because it does not
take any account of syntactic differences in method bodies,
only looks at their names. While this may be a useful met-
ric for clustering related methods into concepts, it is almost
useless for actual bug detection.

The second set of tests injects all 10 bugs into a single
instance of the source code file at once. This may inhibit
the debugging technique, since there will obviously be less
structural similarity. More bugs imply less structural sim-
ilarity between conceptually related code. If the same bug
occurs in two different methods in same concept, that bug
is more difficult to detect since the concept does not have
such stereotypical structure as it should. Figure 5 shows
how many of the 10 bug injections can be detected by each
CA when all 10 bugs are injected at once.

The results show that the debugging technique is less ef-
fective. The maximum number of bugs that can be detected
at once is 6, whereas previously, 8 out of 10 bugs could be
detected on an individual basis. Note that the most accurate
automated CAs are the same as before.

The real measure of the success of this debugging tech-
nique is its ability to detect genuine bugs in the code base.
This was the original motivation for the tool’s development.
Now the tool is reaching maturity, I am about to deploy it for
real bug detection on the ARM code generator, as well as on
other backends for the RVM, notably the newly developed

T T T T 1
primitive — s—

union —

intersection m—

70

60

50

40

30

20

10

oqe,saipogpoyisw
S8IpOgpOYlaW, SaWweuUpoyIaW
saIpogpoylaw, sjjeopoyawiwinu
oge,saujjwnu

dwoooAo, sewreupoylaw
s|jeopoylawiwinu, sauljunu
sa|pogpoyew, sauljwnu
dwo224o,seipogpoylow
saweupoyiaw, s|eapoyiawwnu
dwoooho,saulwnu
oge,seweupoyiaw
saweupoyjawl,sauljwnu
dwoo2A0, s|jeopoyiowwinu

oge, SaIpogpoyaw, saweupoyiaw
oge,dwoooAo

oge, s|[eopoylawiwinu
oQge,seweupoyiaw, sauljunu
auo Jeq ||

sa|pogpoylew-+saulwnu
SaWEBUPOYIBW-+Sauljwnu
S|[eapoylaWWNU+Sauljwnu
oge+saulunu
dwoooko+saulwnu

auo Jeq ||e

sa|pogpoyiew
saweupoyaw
sauljwnu
s|jeopoylawiwinu
oge

dwoooho

Figure 3. Difference between manual CA and various automated CAs

bugs found

10

8
6
4
2
0

seulwnu

oge,sauljwnu

s|[eopoyawwInU

S8IPOgPOYIBW,S|[EOpPOYISIWINU

oge,sslpogpoyidw

oqge

dwoooAo, sewreupoylow

dwoooAd

seipogpoylow

sewreupoylew

Figure 4. Number of individual bugs detected using various automated CAs

10

cyccomp | —

methodbodies |—

methodnames

bulgs found —
8] ‘
6
4
2
0
8 2 8 3
® g 8 £
° (7} E
£ £ 3
£ §
IS c
=
=

methodnames*cyccomp |——

methodbodies*abc |
nummethodcalls*methodbodies

Figure 5. Number of bugs detected in composite test using various automated CAs

prototype Jamaica backend [23]. Another validation step is
to mine the code generator’s revision history files, and see
if I could have used the CA analysis to detect previous bugs
that were found by hand.

6.3 Performance Details

New debugging techniques will not be adopted by the
community unless they are efficient, and they work for real-
world programs. The Jikes RVM ARM/Linux backend used
in this case study is 5900 lines of code (loc). This is compa-
rable to other non-optimizing backends for the RVM sys-
tem, which vary between 3800 and 6200 loc. For most
of the metrics, the system completes the analysis in un-
der 5 seconds. This includes the time to parse the Java
source code, to calculate the CA information, to generate
the HTML output and to render the initial HTML output in
a web browser window. The actual calculation of CA in-
formation is a small proportion of this total time. The only
slow metrics are methodbodies and compound metrics in-
volving methodbodies, since these must perform many ex-
pensive string similarity computations. In these cases, CA
takes over 10 minutes on the ARM backend. However, the
tests show that it is not normally necessary to use method-
bodies, since cheaper metrics provide as good or better re-
sults.

7 Related Work

7.1 Syntax-Directed Concept Assignment

Section 2 discussed various other approaches to CA.
This section concentrates on syntax-directed CA and its re-
cent applications. Cimitile et al [4] analyse the structural
characteristics of source code, via abstract syntax trees.
They divide a program into clusters, which are suggested
units for manual CA. Kontogiannis et al [15] use source
code metrics to identify similar sections of code, which are
then identified as possible clones or concepts. Again, the
tool suite requires programmer intervention as soon as the
concepts are identified. Kontogiannis et al use some differ-
ent metrics to this paper, but similar clustering behaviour is
induced.

The contrast between these two approaches and my tool
is that I leverage the syntax-directed CA information to de-
tect inconsistencies, which may indicate bugs.

Other syntax-directed techniques detect similar sections
of code in order to facilitate procedural abstraction for code
size reduction. For instance, Johnson uses pattern match-
ing on a data dependence graph [14]. However, these tech-
niques are not applied to debugging.

7.2 Code Generator Debugging

There are few specialized debugging tools for code gen-
erators. For instance, Engler [6] laments the lack of sym-
bolic debugging facilities for his VCODE code generation
system. He states that, ‘Debugging dynamically generated
code requires stepping through it at the level of host-specific
machine code ... Making sense of the debugging output is
challenging.’

Obviously, general purpose debugging tools can apply,
but for the reasons listed in Section 1 they are not always as
effective as for general purpose programs. One specialized
code generator debugger is bugpoint, for the LLVM com-
piler infrastructure [16]. Unlike the approach in this paper,
bugpoint is a dynamic analysis tool. It compiles and runs
code using ‘good’ and ‘bad’ versions of the code generator
to try and discover inconsistencies. This theme that ‘incon-
sistencies imply bugs’ is common to my work, but all other
principles are very different.

Compiler backends are often derived automatically us-
ing formalisms such as bottom-up rewrite systems (BURS)
[8] or attribute grammars [10]. There appears to be a thriv-
ing field of research in verification of these systems. For
instance, Glesner shows how to use program checking to
ensure the correctness of compiler backends generated by
BURS [11]. Ikezoe et al use algorithmic debugging and
program slicing to detect bugs in attribute grammar spec-
ifications of compiler backends [13]. However, the CA-
based debugging technique is more widely applicable than
these formal approaches, since it can be used for human-
generated compiler backends, which are common in retar-
getted compilers.

8 Concluding Remarks

There are two key points in this paper.
1. Syntax-directed CA works for code generators.

2. Anomalies in syntax-directed CA indicate possible
bugs.

This research leverages these two insights to produce an au-
tomated debugging technique for code generators. A pro-
totype implementation finds 80% of injected bugs in an ex-
perimental code generator module.

In future, I hope to apply this tool to other RVM back-
ends. The same manual CA is valid, so its acquisition cost
is amortized over many applications of the tool.

This debugging technique is lightweight and easily re-
targetable. No deep domain-specific knowledge is required.
The manual CA is domain-specific, but this is often obtain-
able with relative ease from design documentation or simi-
lar specification material. One approach that I have not yet

investigated is to search for inconsistencies between differ-
ent automated CAs. If this also highlights potential bugs,
then it completely obviates the need for domain-specific
knowledge encoded in manual CA.

Note that the technique is not exclusive to code generator
debugging. It should apply to other source code modules
that have a similar style, with small, stereotypical units of
code.

However, the fact that CA-based debugging is effective
indicates significant flaws in current code generator devel-
opment practice. Code generators should instead be con-
structed by means of abstraction layers. Ideally, a code
generator generator would auto-generate source code from
a high-level specification file. This automated approach is
in use, for instance [8], but the practice is far from univer-
sal. Note that CA-based debugging could be relevant even
for high-level specification files. It should still be possible
to detect patterns that indicate conceptually related sections
of the specification.

The underlying message of this paper is that concepts are
a useful debugging aid. I hope that concepts will become
more widespread. Two future developments seem promis-
ing.

1. Programmers and tools may drive concepts explicitly
through the compilation cycle. Concepts could be rep-
resented in a conceptual assembly language in a simi-
lar manner to types in typed assembly language [19].

2. Runtime CA should be possible. In effect, the de-
bugging technique in this paper identified sequences
of machine instructions statically, in code generator
source code. It should not be much more difficult
to identify sequences of machine instructions dynami-
cally, in program execution traces.

References

[1] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Coc-
chi, P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S.
McKinley, M. Mergen, J. E. B. Moss, T. Ngo, V. Sarkar,
and M. Trapp. The Jikes research virtual machine project:
Building an open source research community. /BM Systems
Journal, 44(2):1-19, Feb 2005.

[2] T.J.Biggerstaff, B. G. Mitbander, and D. Webster. The con-
cept assignment problem in program understanding. In Pro-
ceedings of the 15th International Conference on Software
Engineering, pages 482-498, 1993.

[3] M. Chen. A Java virtual machine for the ARM processor.
Master’s thesis, University of Manchester, 2004.

[4] A. Cimitile, A. R. Fasolino, and P. Maresca. Reuse reengi-
neering and validation via concept assignment. In Pro-
ceedings of the Conference on Software Maintenance, pages
216-225, 1993.

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

A. v. Deursen, M. Marin, and L. Moonen. Aspect mining
and refactoring. In Proceedings of the First International
Workshop on Refactoring: Achievements, Challenges, Ef-
fects, 2003.

D. R. Engler. VCODE: a retargetable, extensible, very
fast dynamic code generation system. In Proceedings of
the ACM SIGPLAN 1996 Conference on Programming Lan-
guage Design and Implementation, pages 160-170, 1996.

J. Fitzpatrick. Applying the ABC metric to C, C++, and
Java. C++ Report, Jun 1997.

C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG: fast
optimal instruction selection and tree parsing. ACM SIG-
PLAN Notices, 27(4):68-76, Apr 1992.

S. Furber. ARM System Architecture.
1996.

M. Ganapathi and C. N. Fischer. Description-driven code
generation using attribute grammars. In Proceedings of the
9th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 108-119, 1982.

S. Glesner. Using program checking to ensure the correct-
ness of compiler implementations. Journal of Universal
Computer Science, 9(3):191-222, Mar 2003.

N. Gold and K. Bennett. Hypothesis-based concept assign-
ment in software maintenance. IEE Software, 149(4):103—
110, 2002.

Y. Ikezoe, A. Sasaki, Y. Ohshima, K. Wakita, and M. Sassa.
Systematic debugging of attribute grammars. In Proceed-
ings of the Fourth International Workshop on Automated De-
bugging, 2000.

N. E. Johnson. Code size optimization for embedded proces-
sors. Technical Report 607, University of Cambridge Com-
puter Laboratory, Nov 2004.

Addison-Wesley,

10

[15]

(16]

(17]
(18]

(19]

[20]

[21]

[22]

(23]

K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and
M. Bernstein. Pattern matching for clone and concept de-
tection. Automated Software Engineering, 3(1-2):77-108,
1996.

C. Lattner and V. S. Adve. LLVM: A compilation framework
for lifelong program analysis and transformation. In 2nd
IEEE / ACM International Symposium on Code Generation
and Optimization, pages 75-88, 2004.

T. Lindholm and F. Yellin. The Java Virtual Machine Speci-
fication. Addison-Wesley, 2nd edition, 1999.

T. J. McCabe. A complexity measure. /EEE Transactions
on Software Engineering, 2(4):308-320, 1976.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From sys-
tem F to typed assembly language. ACM Transactions on
Programming Languages and Systems, 21(3):527-568, May
1999.

K. Ngrmark. Elucidative programming. Nordic Journal of
Computing, 7(2):87-105, 2000.

C. Rich and L. M. Wills. Recognizing a program’s design:
A graph-parsing approach. IEEE Software, 7(1):82-89, Jan
1990.

B. Venners. Inside the Java Virtual Machine. McGraw-Hill,
2nd edition, 2000.

G. Wright, A. El-Mahdy, and 1. Watson. Java Microarchi-
tectures, chapter 10: Java Machine and Integrated Circuit
Architecture (JAMAICA), pages 187-206. Kluwer, 2002.

