14th IEEE International Symposium on Asynchronous Circuits and Systems

Automatic Compilation of Data-Driven Circuits

Sam Taylor; Doug Edwards, Luis Plana
School of Computer Science, University of Manchester
Oxford Road, Manchester, M13 9PL, UK

{smtaylor|doug|lplana} @cs.manchester.ac.uk

Abstract

This paper describes a method of synthesising asyn-
chronous circuits based on the Handshake Circuit
paradigm but employing a data-driven, rather than the
control-driven, style. This approach attempts to com-
bine the performance advantages of data-driven asyn-
chronous design styles with the handshake circuit style
of construction.

The integration into the existing Balsa design flow
of a compiler for descriptions written in a new data-
driven language is described. The method is demon-
strated using a significant design example — a 32 bit
microprocessor. This example shows that the data-
driven circuit style provides better performance than
conventional control-driven Balsa circuits.

1. Introduction

Before asynchronous synthesis techniques will be
seriously considered over their synchronous counter-
parts, they must demonstrate that they can achieve com-
petitive performance. The research reported here aims
to improve the performance of large synthesised asyn-
chronous circuits. The focus of the approach is on a
handshake circuit representation of the circuit; that is
to say, an abstract representation of the structure of the
circuit which is independent of technologies, protocols,
data encodings or any other details of the actual circuit
implementation. Control overhead in the conventional
control-driven style of handshake circuit synthesis (as
used in the Balsa [1, 5] and Haste [8] systems) is iden-
tified as the major obstacle to performance.

The handshake circuit paradigm allows the con-
struction of large scale circuits by the composition of
small handshake components that are straightforward to
implement in isolation. Hardware descriptions are writ-
ten in a high-level language and compiled in a syntax-
directed fashion into the handshake circuit representa-

*Sam Taylor is now with Silistix Ltd. Manchester, UK
This work was supported by EPSRC.

1522-8681/08 $25.00 © 2008 IEEE
DOI 10.1109/ASYNC.2008.14

procedure buf (input i 1 bits;
output o : 1 bits) is
variable x : 1 bits
begin
loop
i -> x —- Input communication
;
o0 <- x —-— Output communication
end
end
activate <— cnannef iapel

sync (activation) channel —>

passive port

data channel

Variable component
push channel

Figure 1. Balsa one-place buffer description & hand-
shake circuit

Fetch component
pull channel

tion. This means the structure of the resulting circuit
is directly related to the source code allowing optimisa-
tions and trade-offs to be made at the source code level.

A Balsa description of a one-place buffer and the
equivalent handshake circuit graph is shown in fig-
ure 1. Handshake components are connected by chan-
nels. Each channel links an active port which sends the
request to a passive port (which responds with an ac-
knowledge) on another component. Data channels are
represented by a line with an arrow that denotes the di-
rection of the data flow. Data channels may be push
meaning the data moves in the same direction as the re-
quest or pull meaning data moves in the direction of the
acknowledge. Sync or activation channels that do not
carry data are mainly used to activate the operation of
various handshake components in the control part of the
circuit.

IEEE
computer
psoue

ty

Even in this small example, it is easy to see how
the tree-like structure of the handshake circuit closely
mirrors the control flow of the source description. This
style of translation is described as control-driven. The
inherent overhead of this style is discussed in the next
section.

Data-driven asynchronous design styles are much
less prone to excessive control overhead and so the ap-
proach of this research is to combine the benefits of a
data-driven style with the convenience and flexibility
of the handshake circuit paradigm which allows the ro-
bust synthesis of large circuits. To this end, the hand-
shake circuit structures of the control-driven Balsa syn-
thesis method have been examined and data-driven al-
ternatives are proposed. To generate these structures,
a data-driven description style is proposed and a com-
piler has been developed to compile these description
into a handshake circuit representation. This compiler
is integrated into the Balsa design flow enabling the use
of existing Balsa tools for moving from the handshake
circuit representation to a gate-level circuit.

The benefits of the new style are demonstrated by
the manual translation of an existing Balsa design of
significant size and complexity directly into the data-
driven style.

2. Control Overhead

Compiled Balsa handshake circuits may be split
into control and datapath. The datapath consists of Vari-
able components, data processing structures and data
channels. The control consists of a tree of control com-
ponents connected with sync channels, which direct the
movement of data around the datapath by activating in-
terface components such as Fetch, FalseVariable, and
While. This style of translation is described as control-
driven meaning that the control tree is responsible for
initiating all datapath operations. This approach is ro-
bust and flexible but there is a significant drawback: the
control is nearly always slower than the data and as con-
trol and data are frequently synchronised, the data is
frequently stalled waiting for the control to catch up.

An example will now be given that attempts
to demonstrate how the control-driven structure con-
tributes to control overhead. Figure 2 generalises the
structure of a control-driven procedure which produces
an output (0) and requires an input (A). Internally the
process uses two variables (VO and VI). The opera-
tion of this structure is extremely sequential. Firstly, the
portion of control labelled write is activated. The con-
trol decides whether to write some data to the Variable
components. Once any data is written, it can be con-
sidered as being available for reading from the Variable
components. However, the control must then complete

activate

A g »——O

activate

&

input

‘ control ‘

write
control

output
control

onditional |5
processing

.

output
processing

Figure 2. General control-driven structure

its handshake before the right-hand side of the tree is
activated.

As well as data stored in variables, data from chan-
nels may also be used by means of input enclosure. The
control (here labelled input) must activate the pulling
of any such data to the FalseVariable (FV) component.
The input control waits for the signal from the FV in-
dicating the arrival of the data. Once again, it is not
unlikely that this data has been available for some time
on channel A which is awaiting synchronisation in order
to deliver it.

All the required operands for the data processing
operations have now been collected. The control may
then initiate data processing operations. It may be nec-
essary to decide what operations should be performed
based on some of the data (e.g. if a case construct is
used). Therefore the control may initiate some data pro-
cessing operations using a Case (@) component for the
purpose of making conditional choices. Following this,
the final data processing operations that actually pro-
duce the outputs are initiated. These outputs are are
written to variables or communicated on output chan-
nels.

When the variable writes and/or output communi-
cations are complete, the data in the Variables and on
input channels may be considered as being no longer
required. However, all the handshaking in the control
for inputs, conditionals and outputs must be completed
before the write control is even activated again to begin
the process of deciding whether to overwrite the data in
the Variables.

Note that for different processing operations, only
a subset of the inputs may be required but all the inputs
are synchronised with each other and the control be-
fore any operations begin. Furthermore, no inputs are
released until after all data operations have completed,
even though some may not be required after some op-
erations have completed. If data were released sooner
then other parts of the circuit will be allowed to proceed
sooner as well.

The three principal problems in the structure of the
handshake circuit that contribute to the control overhead
are:

e All inputs are synchronised with each other before
any further operations are begun. Data is available
in Variable components before the read control is
even activated. If control were operating in paral-
lel with the arrival of data, then data may not be
stalled as long waiting for the control to decide
what to do. The control may even have resolved
itself before the data arrives. If there were no need
to synchronise all inputs before any operation can
proceed, then processing, and control that relies on
part of the data, can get a head start and operate
concurrently with the arrival of the remaining data.

e The sequential activation of the read and write
halves of the control tree. This sequencing is
needed to ensure the Variable is not written and
read concurrently. However, the location of the se-
quencing in the control tree is far away from the
Variable leading to sequential operation of the two
halves of the control tree. More concurrent oper-
ation of the two halves of the tree should increase
performance.

e Data processing operations only begin after the
control initiates them due to the pull style of op-
eration. If the data processing were to operate in
parallel with the control then the overhead of the
control should be reduced.

3. Combating Control Overhead

3.1. Control re-synthesis

Attempts have been made to apply control re-
synthesis to the control of both Haste [9] and Balsa [3,
2]. Control re-synthesis attempts to improve the perfor-
mance of the control tree by clustering sections of the
control tree, determining the overall behaviour, and syn-
thesising a new controller to implement this behaviour
using a controller synthesis tool [4, 6]. By removing the
communications between clusters of components, the
resulting controller should improve performance over
the original control tree.

Control re-synthesis is effective but limited as only
so much improvement can be gained using the exist-
ing structure. The control still synchronises with data at
the same points and so the sequential operation of the
control-driven structure is still maintained. Control re-
synthesis is complementary to other approaches to im-
proving control overhead including the data-driven style
introduced in this paper.

3.2. Concurrent sequencer

This technique specifically addresses the second of
the three issues identified above by applying concurrent
sequencing [15]. The original Balsa Sequence compo-
nent has been enhanced to include concurrent sequence
behaviour implemented using the ‘T-element’ [13]. The
concurrent sequencer allows some overlapping between
the write and read halves of the control. The read half
of the control may be activated at the start of the return-
to-zero phase of the write half, instead of waiting for
the entire handshake to complete. This allows the write
return-to-zero phase to operate concurrently with the
read control. Unfortunately this cannot be done if the
control is reversed so that reads precede writes as a
write-after-read hazard would be inserted [13]. In some
situations a write-after-write hazard may also prevent
the use of concurrent sequencing. The Balsa compiler
has been modified to automatically insert concurrent se-
quencing where it is safe to use it [17]. Concurrent se-
quencing provides performance improvements but it is
limited in where it can be safely applied and only allows
partial overlapping

3.3. Eager inputs

Eager inputs use modified FalseVariable compo-
nents that activate the control without waiting for the
data to arrive. The control is able to proceed up un-
til the point where synchronisation with the data is re-
quired and there it stalls until the data does arrive [17].
Since the original publication, further work has shown
that there are more conditions than originally thought
where eager inputs may not be used. There is the pos-
sibility of automatically detecting when it is safe to use
eager inputs, or allowing the designer to decide where
they should be used by modifications to the source lan-
guage, or a mixture of both these options. At this time,
neither of these options have been fully integrated into
the design flow.

While eager inputs allow control to get a head start
before the arrival of data, it is still necessary to synchro-
nise all the data and control before releasing the data. In
a data-driven style, inputs allow early control activation
without suffering from having to synchronise before re-

leasing the data.

3.4. Source description style

Due to the syntax-directed compilation, the source
description is an important factor in the performance of
conventional Balsa designs. The transparent compila-
tion from language to handshake circuit structures gives
the designer flexibility at the language level to optimise
the resulting circuit. The nanoSpa processor which will
be used as an example has been specifically designed
to try and achieve the best possible performance from
conventional Balsa. The techniques used in the source
description are interesting. The use of variables, in most
cases, is restricted to the pipeline registers of the pro-
cessor. The pipeline registers are implemented using
simple one-place buffer circuits. This is a very small
handshake circuit with the sequencer located as close as
possible to the Variable and, when combined with the
concurrent sequencing, the performance of the pipeline
register compares favourably to highly optimised con-
trollers [11].

The logic within the pipeline stages is split into
small modules that operate concurrently. Each mod-
ule, therefore, has a relatively small control tree which
helps to reduce control overhead. The control tree of
each module has a Loop component at the head and
so operates independently from other modules. Each
module waits for data on its inputs, processes it and
produces outputs. Instead of using a large monolithic
control tree to direct the movement of data, small steer-
ing and merging modules are used to direct the flow
of data. Apart from when modules must synchronise
on channels to exchange data, they operate in parallel
with one another. Within the constraints of the control-
driven system, an experienced Balsa developer attempts
to reduce control overhead by describing a system that
is data-driven [14]. Atleast for an experienced designer,
the data-driven style introduced in this paper is proba-
bly more suitable for describing what is desired than the
control-driven style.

4. Data-Driven Approach

The data-driven style has been designed to reduce
the impact of all three of the problems identified above.
This is achieved by three particular facets of the design
style:

e Data-driven control activation. Control is all ac-
tivated in parallel, synchronising with data only
when it is absolutely necessary and releasing it as
soon as it has been used.

e Localised sequencing. Sequencing is located local

write
control

output
control

conditional
processing

output
processing

Figure 3. General data-driven structure

Control-driven

wiite control NN
variable write

write RTZ
input control

sync input channels ‘ ‘

conditional processing
output control
output processing

read RTZ

status of variables| data being written }dma available not yet used‘ data being used ‘ data no longer required ‘

e Koy
Data-driven
write control nnny
variable write ‘ ‘ N \1
write RTZ ‘ ‘ N N
sync input channels I | N
condional processing A Y
output control N
output processing k\
read RTZ D N\

sta(usolvanables‘ data being written ‘\L\da(a being used ‘databelngwm\ejﬁ ‘ data being used ‘

data available not yet Gsed

Figure 4. Control-driven vs. data-driven timings

to the variable component. The read and write sec-
tions of control can thereby operate entirely in par-
allel as the localised sequencing ensures that the
variable is not concurrently read and written.

e Parallel operation of control and datapath due to a
push data processing style.

The data-driven equivalent to the structure in fig-
ure 2 might be pictured as in figure 3. Figure 4 at-
tempts to give a very rough example of how the data-
driven structure enables much greater concurrent opera-
tion than the control-driven structure. Note how consec-
utive cycles of operation are overlapped due to localised
sequencing and how the push structure enables process-
ing to begin earlier as it does not need to wait for the
control to activate it. Note also that the periods where
data is stored in variables but no use is being made of
it are much shorter. This figure is not based on real
timings or drawn to an accurate scale and may be too
optimistic but it shows, in general, how the data-driven
style aims to reduce the impact of control overhead.

4.1. Why a data-driven approach?

e A data-driven approach is more commonly used
in asynchronous circuit design styles. There are
several examples of high performance data-driven
style circuits such as the AMULET microproces-
sors [7] which were based on the Micropipeline
paradigm and the Caltech MIPS [12] which used
the CAST synthesis system.

e The data-driven approach should suffer from less
control overhead than the control-driven style of
Balsa for the reasons outlined in the preceding sec-
tion. More parallelism is exploited between data
and control by a data-driven style as there is less
synchronisation between control and data.

4.2. Why a handshake circuit style approach?

e The handshake circuit approach is not specific to
any particular implementation style. Many back-
end implementations styles are possible. The com-
pilation does not map direct to transistors or use
unusual circuits such as PCHB [10] so it is much
more flexible than some synthesis approaches.
Standard-cell implementations are possible.

e Transparent compilation allows the designer to
modify properties of the final circuit at the source
level. This direct synthesis approach is relatively
straightforward to understand. Any valid language
description can be compiled into an implementa-
tion and there are no complex restrictions placed
on the designer.

e The new data-driven style fits into an existing,
proven design flow. This saved time and effort in
the development of the style as existing tools and
components are re-used.

4.3

e Due to the more restrictive data-driven style, data-
driven descriptions are less flexible than those of
conventional Balsa. In particular, the nature of
Balsa variables means they can be used in a fashion
familiar to most programmers but data-driven vari-
ables cannot. Additionally, no conditional itera-
tive control structure is available in the data-driven
style although these are less frequently used.

Why not a data-driven approach?

e Circuits in the data-driven style are likely to re-
quire more area and to consume more energy. The
localised control of the data-driven style consumes
more area than the control-driven tree as instead
of appearing once, the control is distributed in

activate

body

Figure 5. Balsa input structure

many places. This effect is exaggerated in delay-
insensitive implementations where an increased
amount of completion detection is required and the
implementation of push-style variables is particu-
larly expensive. However, the increased concur-
rency in this distributed control is a major factor in
the increased performance. Energy consumption
due to switching can also be expected to increase
as a result of the increase in concurrent activity.

5. Data-driven Circuit Structures

The data-driven circuit style will be introduced
in this section by comparison with the conventional
Balsa handshake circuit style. The data-driven style
was largely developed by examining and adapting Balsa
handshake circuit structures so comparison provides the
most instructive method of introduction. Some of the
eight new handshake components required to support
the new style are mentioned. More details can be found
in [18].

5.1. Input

The conventional Balsa input structure is shown in
figure 5. This structure is produced by the active enclo-
sure construct shown below.

a, b -> then
<body - a used once, b used twice>
end

The activation of the input command is used to ini-
tiate pulling data from the environment on the input
channels, (a and b). The FV component is used to im-
plement multicast on the input channels. The body of
the structure is activated following the signal ports of
the FalseVariable component being synchronised at the
Sync component. This activation indicates the availabil-
ity of the data for the body to then pull it from the read
ports of the F'V when required

The data-driven style makes use only of push struc-
tures. Instead of using the F'V to implement multicast,

activate

body

b

Figure 6. Data-driven input structure

an alternative push structure must be used. As the in-
put channels are now push channels, there is no need
to pull the input data. For inputs that are used in only
one place, the data can be pushed directly to the body.
For inputs that are used more than once, a duplicate of
the data must be sent to all the required places. The
Dup component is used to implement this broadcast be-
haviour. See figure 6 for the data-driven version of the
circuit example shown in figure 5.

An advantage of this approach is that the input
channels do not need to be synchronised before activat-
ing the body as the body no longer needs an activation
to indicate the availability of the data; the data will be
pushed to the required places at some point.

The obvious drawback with this approach is that, as
the original structure implemented multicast, the body
was free to select which read ports, if any, of the FV to
use. Where conditional structures are used, the data is
only conditionally required. In the broadcast structure,
the data is sent to all possible destinations whether they
need it or not. The resolution of this problem is outside
the scope of this paper and is fully discussed in [18].

5.2. Variables

Variables provide data storage within the Balsa lan-
guage. They are implemented by the Variable hand-
shake component. This component has a passive input
known as the write port and one or more passive outputs
known as the read ports. This component allows vari-
ables to be very flexible. The control-driven approach
allows data to be written to the Variable component by
pushing to the write port and read from the variable by
pulling from the read ports. The language ensures that
the variable is not written at the same time it is read. To
the designer, a Balsa variable therefore looks very much
like a variable found in most imperative programming
languages.

In the data-driven style pull structures are not used
so this type of variable is not available. The replacement
storage component is called the VariablePush and has
active push ‘read’ ports. Unlike the original Variable
component, this component has a write-once, read-once

activate

(Y

Figure 7. Balsa data processing structure

a

ot

dup

L4 02

Figure 8. Data-driven data processing

behaviour; each time a data value is written it is auto-
matically pushed on all read ports and the handshake on
all read ports must then complete before the next write
data is accepted. Instead of a conventional variable, this
makes a data-driven variable much more akin to a chan-
nel that has storage, thereby allowing each end of the
channel to complete independently. This restricted be-
haviour is a major factor in the somewhat reduced flex-
ibility of the data-driven descriptions over conventional
Balsa.

In common with the input structure from the pre-
vious section, the drawback of this approach is that the
data that is pushed on the read ports of the variable may
not actually be required by the destination.

5.3. Data processing

The original Balsa data-processing structure is a
pull structure implemented using the Fetch component
to initiate a read of the required data from the required
Variable or FalseVariable components, pull it through
pass-through data components, and then push it to the
destination. The following Balsa code produces the ex-
ample handshake circuit structure shown in figure 7.
a, b -> then

ol <— a + b ||

02 <- Db
end

This code sends the sum of a and b to the des-
tination channel ol and sends b to channel 02. As
shown in the preceding sections, in conventional Balsa,
Variables and FalseVariables had passive read ports

activate.req activate.ack

Figure 9. Balsa dual-rail processing circuit

a.ack oi.ack

02.ack

1sppe

m req
b.req ‘ ||=.-I

%@:ﬁm

Figure 10. Data-driven dual-rail processing circuit

whereas in the data-driven style data is always pushed to
all places where it may be required. In the data-driven
style this data is pushed straight through the push datap-
ath components to the destination as shown in figure 8.

The handshake circuit graph for the data-driven cir-
cuit is certainly a lot smaller but what impact does it
have on the control part of the circuit? Figures 9 and 10
show the control for two dual-rail implementations. It
is clear that the data-driven circuit is both smaller and
faster (the same is true, but to a lesser extent, for a bun-
dled data implementation). Note how the AND gates
are opened early (quite probably before the arrival of
data) allowing the data to proceed directly through the
datapath logic (the adder in this case). No synchronisa-
tion is required between the inputs before they can be
processed through the datapath logic and furthermore,
the remaining significant control path dealing with the
return-to-zero on the inputs has been substantially re-
duced.

6. New Input Language

This section will briefly introduce the high-level
language that is translated in a syntax-directed fashion
into the new circuit structures. Note that the language

was primarily conceived as a means to an end; that is, to
generate the data-driven handshake circuits. In the same
way that all valid Balsa descriptions may be compiled to
functional circuits, so all data-driven descriptions may
similarly be compiled to data-driven structures. This
means the language reflects the data-flow style of the
circuits and is less flexible and less familiar than the se-
quential programming language style possible in Balsa.
Note however (as described in section 3.4) that in order
to achieve anything close to reasonable performance,
a Balsa programmer must abandon sequential style, in
favour of a data-flow type description.

This work originally grew from a desire to auto-
mate transformations to existing Balsa handshake cir-
cuits to produce more efficient structures along the
lines of existing data-flow style compilation strategies
[21, 20, 19]. This work was not continued for two rea-
sons: it was not clear what the result of such optimisa-
tion should look like and it was very difficult to guar-
antee the resulting circuit would behave in the same
fashion as the original. Techniques such as data-driven
decomposition (DDD) [21] rely on pipelining sequen-
tial programs and produce modified circuit behaviour.
A Balsa designer may depend on the design behaving
in the manner it was written which could easily not be
the case after optimisation; indeed if a DDD-type strat-
egy were to have been applied to the SPA processor the
memory interface would have broken. The data-driven
style addresses what an optimised circuit might look
like, the second issue is an important area for future
work. The data-driven language could provide a tar-
get for an optimisation strategy and a means for expe-
rienced designers to manually tweak the results or add
their own data-driven style modules if desired.

The language is designed to resemble conventional
Balsa wherever possible. Unlike Balsa where a circuit
consists of commands linked by sequential or parallel
control, the data-driven approach consists of lists of
commands that operate independently and in parallel.
Unlike the control-driven approach, control sections of
the circuit do not wait for an activation but proceed as
far as they are able, pausing only when awaiting data.

6.1. Hello World!

The equivalent of a Hello World program in Balsa
is the one-place buffer. This serves equally well as an
introduction to the data-driven language and is shown
in figure 11.

It can be seen from this small example that much
of the language is very similar to conventional Balsa
(c.f. figure 1). The declaration of the procedure and the
input and output ports is identical. Unlike conventional
Balsa, the procedure input ports will always be passive

—— One-place buffer

procedure buf (input i

output o
1 bits

1 bits;
1 bits) 1is
variable x
begin
input i
output x
during
x <— i
end

input x
output o
during

o <- x

end
ig.@_,o

end
Figure 11. Data-driven one-place buffer & hand-

shake circuit

due to the push style of implementation. Internally to
the procedure the input ports are treated as read-only
channels and the output ports as write-only channels.

The main new feature in evidence here is the di-
vision of the procedure into blocks consisting of in-
put and output declarations and a body containing the
commands that use the inputs and generate the outputs.
Unlike Balsa, the control structures of the circuit are
largely implicit. Blocks implicitly operate in parallel,
as do the list of commands within the block. The only
synchronisation between the two blocks in this example
takes place at the variable; the read must complete be-
fore the next write can overwrite the data in the variable.
This allows the variable reads and writes to overlap to
the largest possible extent.

Incidentally, compared with the circuit of figure 1,
the handshake circuit for this buffer is simply a Vari-
ablePush component.

6.2. Variables

The control-driven style of Balsa allows variables
to be accessed in a very general fashion, so as to appear
very similar to variables in a standard programming lan-
guage. Variables can be read and written in any arbi-
trary sequence. The Variable component has passive
read and write ports and the control tree initiates com-
munication on these as required. In the data-driven ap-
proach, the VariablePush immediately pushes any data
written to it out of its active read ports. This means that
a variable must always be read after it has been writ-
ten. Variables therefore resemble less those of standard
programming languages and are much more similar to
channels. In fact, it may be more helpful to think of a
variable in the data-driven style as a channel that con-
tains storage, or even as a type of channel which each

communicant can use at different times, rather than hav-
ing to synchronise like a normal channel.

Reflecting this, variables are specified as inputs and
outputs (to blocks — procedure ports only connect using
channels) in precisely the same fashion as channels. In
the following discussion use of the term channel gener-
ally implies a channel or variable except where other-
wise stated.

6.3. Input control

The semantics of the input are similar to the eager
inputs described earlier in that the control is activated
early. However, in the eager semantics, it was still nec-
essary for the control and data to synchronise to release
the data once all required reads had been completed on
the channel. As reads are now to be pushed, this syn-
chronisation is unnecessary as the release of all the read
ports will indicate that all reads on the channel are com-
pleted.

In the data-driven approach, therefore, inputs are
merely specified as arriving at some point during the
operation of the commands; the control waits for the
arrival of inputs at any points where they are read (if
they have not arrived already).

6.4. Write command

The write command (e.g. x <— 1) is used to out-
put the result of an expression to an output channel (or
variable). The channels written to must have been de-
clared as an output from the block.

Compilation of the write command involves com-
piling the expression into appropriate push datapath
components and connecting the result to the destination.

6.5. Arrays

Channels and variables can be arrayed in a similar
fashion to Balsa. However there are some differences
in the semantics of variable arrays. The code in fig-
ure 12 demonstrates the full flexibility offered by Balsa
for using arrayed variables. Firstly, a single value is
written to the entire array, then an individual element
is read or written, and then the entire array is read as a
single value. The strategy adopted by Balsa is to imple-
ment the arrayed variable using multiple Variable com-
ponents, one for each element in the array. The control
can then initiate reads and writes of the passive ported
Variables individually or as a group, splitting the write
data and combining the read data as required.

A data-driven equivalent of this circuit structure
presents substantial problems. Once the Variables have
been converted to VariablePush components, it is nec-
essary to write to each VariablePush before it is read.

input i array 0..3 of 2 bits
input ¢ 3 bits
input d : 2 bits
output o 2 bits
output p array 0..3 of 2 bits

variable v array 0..3 of 2 Dbits
i > v ;
loop
c —> then
case c of

Oblxx then
o0 <= v[(#c[0..1] as 2 bits)]
| ObOxx then
d -> v[#c[0..1] as 2 bits)]
end
end
p <- Vv
end

Figure 12. Balsa read and write of arrayed variables

After writing to a single element in the array, only that
element would be available to read.

An option is to leave the management of the struc-
ture to the user, who must only attempt to read elements
of the array that are written. Alternatively the user could
be restricted to always writing to every element if they
wish to use run-time indexing. Alternatively, an elab-
orate scheme to write-back the original data to those
variable elements that are not written could be devised.
This would ensure that every time any element in the
array is written, all the other elements are also written
(with unchanged data). To the read side, the arrayed
variable always appears as if the entire array has been
written.

Neither of these suggestions have been fully
adopted. An arrayed variable declared in the data-
driven language in the same fashion as a Balsa vari-
able generates a single VariablePush that holds an en-
tire value of the array type. The whole of the array must
therefore be written to at one time.

Variables can also be declared in a similar fashion
to arrayed channels producing multiple variables in the
implementation. Each of these variables must be writ-
ten individually; the whole array may not be written by
a single command. This second type of variable can be
used by the user to generate a fairly close approximation
of the functionality of the multi-variable Balsa structure
by implementing, in the source description, the second
of the schemes offered above. Although the functional-
ity may be similar, the area used is substantially greater.

7. A Design Example — nanoSpa

The benefits and drawbacks of the data-driven style
have been explored using a large design example —

nanoSpa which is a 32-bit microprocessor implement-
ing what is essentially a slightly cut-down version of
the ARM instruction set and which is a development of
SPA [16], the first large scale design described in Balsa.

The nanoSpa has been gradually developed with
the sole objective of making a Balsa synthesised asyn-
chronous ARM of the maximum possible performance.
Development has reached the stage where the proces-
sor implements all the main features of the instruction
set and benchmark programs can be run in simulation
to produce a good idea of the performance (which is al-
most ten times that of the original SPA). This makes it
an excellent example in demonstrating whether a data-
driven circuit can offer performance improvements over
the best available conventional Balsa circuit.

7.1. Objectives of this example

e To demonstrate that the data-driven synthesis flow
can be used to construct a significant design.

e To compare the performance of a high perfor-
mance Balsa design with the closest possible
equivalent in the data-driven style.

e To demonstrate the integration into the existing
Balsa design-flow and the use of mixed Balsa and
data-driven designs.

e To attempt some level of qualitative comparison
between the features and flexibility offered to the
designer in both description styles. In particular, it
is believed, that this example demonstrates that the
data-driven description differs very little from the
style of Balsa code that an experienced Balsa de-
veloper would write. Indeed, converting the Balsa
nanoSpa into a data-driven description provided
very few challenges.

7.2. Data-driven nanoSpa

The data-driven nanoSpa has been described in the
new data-driven input language. The description is
roughly the same length as the Balsa original (~3000
lines). As far as possible, the micro-architecture of the
processor has been precisely copied from the Balsa de-
scription. As a consequence, most of the synthesised
datapath logic is the same as the Balsa nanoSpa, and the
control contains most of the significant differences. The
intention is to attempt to explore the advantage gained
by using the data-driven style in describing a design
that is as close as possible to a Balsa description, rather
than by tailoring the design specifically to suit the data-
driven style.

The two major exceptions where it was necessary
to make significant changes to the architecture are in

from fetch
Regular
decode

2Jnoaxa o}

LDM/STM

o |

7 decode ! ::::
! I

[I

I T

I

I

I

Figure 13. Data-driven nanoSpa decode structure

the decode unit, due to its use of (temporal) iteration,
and the register bank, due to its reliance on Balsa-style
variables. These issues are discussed below.

7.3. Decode

Unusually for a RISC-style processor, the ARM
instruction set contains support for multi-cycle load
and store instructions. These load and store multiple
(Idm/stm) instructions allow any given subset of regis-
ters to be loaded from or stored to contiguous words in
memory using a single instruction. The nanoSpa imple-
ments these instructions in the decode stage by simply
generating and issuing multiple single memory trans-
fer operations to the execute unit. Attempting to repli-
cate this structure presents some difficulty in the data-
driven style. The iterative decode for Idm/stm instruc-
tions makes use of the Balsa while loop structure to re-
peatedly generate memory transfer operations. In the
control-driven style the handshake for the inputs to the
decode can enclose all of this iterative operation allow-
ing the inputs to be read repeatedly by each iteration.

An iterative structure of this nature is not available
in the data-driven style. However, it is quite straightfor-
ward to rearrange the structure of the decode to imple-
ment the multi-cycle instructions as shown in figure 13.
In this structure the ldm/stm decode is no longer itself
iterative. Instead the whole decode can be viewed as
iterative with regular instructions simply being a spe-
cial case requiring only a single iteration. When an
instruction arrives at decode it is passed through the
multiplexor to the decode logic. If the instruction is
an Idm/stm, the necessary data for the next iteration is
passed back to the multiplexor and the control signal
is set so as to re-inject the data as the next instruction.
When the ldm/stm is finished, or after a single cycle if
the instruction is a regular instruction, the multiplexor is
signalled to inject the next instruction being sent from

control

Write
Control

TO‘V_W
v

Write
Control

———

v

Write
Control

7’—%)‘1_17
-

7

Write
Control

% L 18

Figure 14. Data-driven nanoSpa register structure

fetch. Although this may not be the most efficient im-
plementation, it has the important advantage that the
two blocks shown in the shaded area in figure 13 (for
regular or ldm/stm instructions) can be copied directly
to the data-driven description.

7.4. Register bank

The Balsa nanoSpa register bank uses the general
read and write structure for variable arrays discussed
previously. The passive-ported Variable component al-
lows reads and writes to occur to variables in any arbi-
trary order. As discussed earlier when using push style
variables it is not so easy to provide this general struc-
ture. In order to read from any variable, it is necessary
for that variable to push its data. Therefore, in order
to implement the register bank in the data-driven style
it is necessary to write to every variable (i.e. register)
during every cycle. The data-driven register bank write
structure is illustrated in figure 14. The write control
and data are here duplicated to individual write control
units belonging to each register. These individual units
decide whether to write the data to their respective reg-
ister. If they do not write the data, they recycle the ex-
isting value and write this to the register instead. The
subsequent read phase may therefore pick the appropri-
ate data from any register as all registers will push data.

The data-driven register bank structure results in an
individual cell for each register that controls the writes
to that particular register (figure 14). A read unit is
generated for each read port. This structure results in
improved performance but also significantly increases
the area over the Balsa counterpart. It will also signifi-
cantly increase the energy consumption as every regis-
ter is written on every cycle.

7.5. Simulation Results

The results of simulations of the control-driven
and data-driven nanoSpa processors are presented here.
This paper only gives a superficial summary of the over-
all performance so as to justify the approach taken; a
more detailed analysis, with deeper insight, is avail-
able [18].

All simulations are performed at gate-level using
fixed gate delays. This does not provide a highly ac-
curate estimate of absolute performance although ex-
perience has shown that the results of these simula-
tions closely approximate transistor-level simulations
in a 180nm technology. As a relative measure for the
comparison of the two styles this level of simulation is
more than sufficient. The control-driven nanoSpa has
previously been simulated at transistor-level and both
bundled data and dual-rail implementations achieve ap-
proximately 55 Dhrystone MIPS. It can be seen from
the results in the next sections that the gate-level sim-
ulations slightly under-estimate the transistor level per-
formance.

Precise transistor-level simulations are not possi-
ble for the data-driven design because the example cell
library used has been designed locally and only con-
tains transistor level models for the precise cells needed
to implement original Balsa components. Some data-
driven components use cells that are not currently pro-
vided and these would need to be added to the cell li-
brary. It is not believed that these results would yield
any greater insight apart from giving a more accurate
absolute performance estimate of the processor.

Dual-rail implementation. The dual-rail control-
driven nanoSpa achieves 50 Dhrystone MIPS. The data-
driven version achieves 79 Dhrystone MIPS, an im-
provement of 1.6 times the original. As expected the
area is significantly increased, from 315373 to 938669
transistors. As anticipated, a significant proportion of
this increase is found in the register bank (from 67036
to 370368 transistors). If the increase in register bank
area is ignored, then the data-driven nanoSpa is roughly
twice the size of the original Balsa version. The area
overhead for dual-rail is particularly large. This is
mainly due to the large size of the VariablePush com-
ponent and the increased number of completion detec-
tors. Note that no attempt has been made to optimise
the back-end component implementations for area so
there is future potential for reducing the area overhead
although given the magnitude of the performance gains,
the area overhead is not excessive.

Bundled data implementation. The bundled data
control-driven nanoSpa achieves 52 Dhrystone MIPS.
The data-driven version achieves 81 Dhrystone MIPS,

an improvement of 1.5 times the original. The im-
provements in throughput of the individual modules are
fairly similar to those shown in the dual-rail imple-
mentation. The difference in area for the bundled data
implementation is much smaller than that for dual-rail
(form 147561 to 223383 transistors). Again, much of
the increase is in the register bank (from 30480 to 79480
transistors). If the increase in register bank area is ig-
nored then the data-driven design is only approximately
18% larger. When compared with the magnitude of the
performance improvement, this area overhead can be
considered as low.

7.6. Register bank hybrid design

The register bank has been highlighted as a particu-
lar problem in terms of area and energy consumption. A
possible solution that may be easily implemented is to
use the conventional Balsa register bank in place of the
data-driven register bank. As the interface to both reg-
ister bank designs is the same and the two design styles
are integrated into the same flow, it is trivial to produce
this hybrid design. This provides an excellent exam-
ple of how designs with mixed Balsa and data-driven
modules can be used. The lower area and energy re-
quirements of the control-driven style can be exploited
for non-critical modules, while the performance of the
data-driven style is exploited for others.

The new hybrid design achieves 62 MIPS in dual-
rail and uses 637119 transistors. In bundled data the
performance is 67 MIPS and the size is 175635 transis-
tors. Performance has been traded for reductions in area
and energy consumption.

8. Conclusions

This paper has described contributions in the field
of asynchronous digital circuit synthesis. The existing
Balsa synthesis method has been examined and perfor-
mance has been identified as a major weakness. The
overhead of the control-driven style of compilation has
been identified as a significant contributing factor to the
shortcomings in performance of the existing synthesis
method. However, the handshake circuit paradigm is
attractive because it is both flexible and robust, indepen-
dent of any particular implementation style, straightfor-
ward to understand, and the transparent compilation al-
lows source-level optimisation.

A data-driven style of circuit would seem to offer
potential for increased performance. Therefore an al-
ternative data-driven style of handshake circuit struc-
ture has been proposed along with a language from
which this circuit style may be compiled. The com-
piler to translate this language into handshake circuits

has been implemented and integrated into the existing
Balsa framework.

The data-driven style has been successfully demon-
strated by the implementation of a complex 32-bit mi-
croprocessor design. The potential performance im-
provements over the control-driven style have been con-
vincingly demonstrated by comparison of this design
with the equivalent control-driven implementation.

The increased area and energy requirements of the
data-driven style have been briefly noted but these are
unlikely to be disproportionate to the performance gains
and could be decreased by further work on modified
or alternative back-end implementation styles. Future
work should also address new structures to better sup-
port the implementation of register banks.

A drawback of the data-driven style is that the de-
scriptions are less flexible and not as familiar to a gen-
eral hardware designer as those that are possible in
Balsa.

Due to the variables and sequential and iterative
control structures, it is possible in Balsa to write a naive
sequential program that appears very similar to a con-
ventional programming language. Such a program will
compile and produce a functioning (but slow) circuit. In
the data-driven style, it is necessary for the programmer
to think in a different, more ‘asynchronous’ manner as
such sequential descriptions are not possible. It is also
similarly necessary to do so when using conventional
Balsa if good performance is required. The rewards of
adopting a data-driven style with respect to performance
are clear but the method introduced herein, being inten-
tionally designed to be data-driven, is clearly superior
to adopting a data-driven approach with control-driven
compilation. By using the handshake circuit paradigm
and integrating the new style into the Balsa framework,
it is straightforward to combine both styles in the same
design-flow and so greater flexibility is offered to the
designer.

The data-driven style has addressed the issue of the
structure of handshake circuits and control overhead.
This is a very useful contribution but is by no means the
end of the story. In general, the performance of synthe-
sised asynchronous circuits is still not competitive with
their synchronous counterparts. More work is required
at all levels of the design-flow before competitive per-
formance is achieved.

References

[1]1 A. Bardsley. Implementing Balsa Handshake Circuits. PhD
thesis, University of Manchester, 2000.

[2] T. Chelcea, S. Nowick, A. Bardsley, and D. Edwards. A burst-
mode oriented back-end for the balsa synthesis system. In
DATE ’02: Proceedings of the conference on Design, automa-

(3]

[4]

(5]

(6]

(7]

(8]
(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

tion and test in Europe, page 330. IEEE Computer Society,
2002.

T. Chelcea and S. M. Nowick. Resynthesis and peephole trans-
formations for the optimization of large-scale asynchronous
systems. In Proc. ACM/IEEE Design Automation Conference,
June 2002.

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Petrify: a tool for manipulating concurrent spec-
ifications and synthesis of asynchronous controllers. IEICE
Transactions on Information and Systems, E80-D(3):315-325,
Mar. 1997.

D. Edwards, A. Bardsley, L. Janin, L. Plana, and W. Toms.
Balsa: A Tutorial Guide. The University of Manchester, May
2006.

R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, B. Lin,
and L. Plana. Minimalist: An environment for the synthe-
sis, verification and testability of burst-mode asynchronous ma-
chines. Technical Report TR CUCS-020-99, Columbia Univer-
sity, NY, July 1999.

S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N. C.
Paver. AMULET?2e: An asynchronous embedded controller. In
Proc. International Symposium on Asynchronous Circuits and
Systems, pages 290-299. IEEE Computer Society Press, Apr.
1997.

http://www.handshakesolutions.com/Technology/Haste/.

T. Kolks, S. Vercauteren, and B. Lin. Control resynthesis for
control-dominated asynchronous designs. In Proc. Interna-
tional Symposium on Asynchronous Circuits and Systems, Mar.
1996.

A. Lines. Pipelined Asynchronous Circuits. PhD thesis, Cali-
fornia Institute of Technology, 1995.

J. Liu. Arithmetic and control components for an asynchronous
microprocessor. PhD thesis, University of Manchester, 1997.
A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Pénzes,
R. Southworth, and U. Cummings. The design of an asyn-
chronous MIPS R3000 microprocessor. In Advanced Research
in VLSI, pages 164-181, Sept. 1997.

T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Taka-
mura. TITAC: Design of a quasi-delay-insensitive micropro-
cessor. IEEE Design & Test of Computers, 11(2):50-63, 1994.
L. Plana, D. Edwards, S. Taylor, L. Tarazona, and A. Bardsley.
Performance-driven syntax-directed synthesis of asynchronous
processors. In Proc. International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, (CASES),
Sept. 2007.

L. A. Plana and S. M. Nowick. Architectural optimization for
low-power nonpipelined asynchronous systems. IEEE Trans-
actions on VLSI Systems, 6(1):56-65, Mar. 1998.

L. A. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley,
S. Temple, J. D. Garside, and Z. C. Yu. SPA— a secure
Amulet core for smartcard applications. Microprocessors and
Microsystems, 27(9):431-446, Oct. 2003.

L. A. Plana, S. Taylor, and D. Edwards. Attacking control over-
head to improve synthesised asynchronous circuit performance.
In Proc. International Conf. Computer Design (ICCD), pages
703-710. IEEE Computer Society Press, Oct. 2005.

S. M. Taylor. Data-Driven Handshake Circuit Synthesis. PhD
thesis, University of Manchester, 2007.

J. Teifel and R. Manohar. Static tokens: Using dataflow to au-
tomate concurrent pipeline synthesis. In Proc. International
Symposium on Asynchronous Circuits and Systems, pages 17—
27. IEEE Computer Society Press, Apr. 2004.

G. Venkataramani, M. Budiu, T. Chelcea, and S. C. Goldstein.
C to asynchronous dataflow circuits: An end-to-end toolflow. In
IEEE 13th International Workshop on Logic Synthesis (IWLS),
Temecula, CA, June 2004.

C. G. Wong and A. J. Martin. High-level synthesis of asyn-
chronous systems by data-driven decomposition. In Proc.
ACM/IEEE Design Automation Conference, pages 508-513,
June 2003.

