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System-on-Chip Design and Implementation
Linda E. M. Brackenbury, Luis A. Plana, Senior Member, IEEE, and Jeffrey Pepper

Abstract—The system-on-chip module described here builds on
a grounding in digital hardware and system architecture. It is thus
appropriate for third-year undergraduate computer science and
computer engineering students, for post-graduate students, and as
a training opportunity for post-graduate research students. The
course incorporates significant practical work to illustrate the ma-
terial taught and is centered around a single design example of
a drawing machine. The exercises are composed so that students
can regard themselves as part of a design team where they un-
dertake the complete design of their own particular section of the
system. These design tasks range from algorithmic specification
and transaction-level modeling (TLM) of the architecture down to
describing the design at the register transfer level (RTL) with sub-
sequent verification of their prototype on a field-programmable
gate array (FPGA). With this approach, students are able to ex-
plore and gain experience of the different techniques used at each
level of the design hierarchy and the problems in translating to
the next level down. Throughout the module, there is emphasis
on using industry standard tools for the modeling and simulation,
leading to the use of the SystemC and Verilog hardware descrip-
tion languages and Cadence for the simulation environment.

Index Terms—Integrated circuit design, large-scale systems
modeling, system-level design, system-on-chip, systems engi-
neering education, transaction-level modeling (TLM).

I. INTRODUCTION

T HE design of a modern system-on-chip (SoC) is a com-
plex task involving a range of skills and a deep under-

standing of a hierarchy of perspectives on design, from pro-
cessor architecture down to signal integrity. At a time when
many organizations are walking away from the difficult chal-
lenge of teaching a SoC module that incorporates significant
practical work on the system level design required to imple-
ment SoC, a course in this area is set to be given to third-year
Computer Science, Computer Engineering, and Computer Sys-
tems Engineering students at the University of Manchester in
the U.K. These students will have undertaken digital design in
their first year and an introductory course in VLSI design in their
second year.

The module aims to show how correctly working chips can be
obtained by presenting and demonstrating the techniques and
stages used in the design and implementation of chips. Since
leading-edge, industry-standard software tools and languages
are taught and practiced, the skills gained with this course are di-
rectly transferable into companies and post-graduate research in
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this area. Both the taught and practical components emphasize
the methodology of the design process. This is accomplished
through the use of a top-down design hierarchy, modeling and
simulation of hardware using hardware description languages,
partitioning of systems appropriately to deal with design com-
plexity, and the use of computer-aided design (CAD) environ-
ments for providing a design flow from the system specification
down to implementation, together with software tools for design
verification.

This course differs from earlier courses in its consistent treat-
ment of all design levels from specification to implementation.
Due to the complexity of the topic, many courses emphasize
one level of design. For example, in [1], register transfer-level
(RTL) design and implementation is emphasized, and lecture
topics focus on on-board peripherals and on-chip components.
In [2], lecture topics cover a wider range of levels, but the prac-
ticals only cover the RTL implementations of a memory display
and a video compressor. In [3], on the other hand, the emphasis
is on system-level design using SystemC.

The guiding principles in the design of the course were the
following:

• Consistency across levels of design: The architecture is
constant although progressively refined. The same verifi-
cation environment can be used in all practicals including
the processor code developed by the students.

• A sample system that includes a commercial processor,
multiple communications channels with routing and arbi-
tration, and multiple clock domains is used in the practi-
cals.

• Students are seen as part of a team: They work on a specific
section of the system, but are aware of the complete system
design. They have adequate documentation and clear inter-
face specifications in order to take their design down from
initial concept to implementation.

• External intellectual property (IP) is extensively used, and
the integration of the IP and their custom design is carefully
verified.

• Commercial tools and standard languages are used across
all levels of design.

II. SYSTEM-ON-CHIP DESIGN HIERARCHY

Both the lectures and the practical work follow the design
methodology for top-down SoC design [4], [5]. This method-
ology partitions the design into a number of stages where one
level is designed, tested, and modified until correct. The process
then repeats at the next level down, beginning with the trans-
lation of the design from the upper to the lower level; unfor-
tunately, this translation is not always a direct translation. The
generic design hierarchy used is summarized in Fig. 1.

The design starts with the user requirements, which are then
translated into a formal system specification written in a high-
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Fig. 1. Design hierarchy for SoC.

level programming language such as C or . This specifi-
cation is the user’s view of the system, and this model is modi-
fied until under testing it performs all the functions required by
the user. This level is suited to the exploration of different algo-
rithms for implementing functions, and while the external view
provided has no details of any internal hardware, these may be
implied from the algorithm. Once completed, the model then
represents a “gold standard” by which all other models at other
levels are compared.

Architectural design follows, identifying the functional
blocks and their interconnections. Genuine SoC design de-
mands the use of abstract modeling in order to give the design
the flexibility to explore the hardware/software divide and
different architectural arrangements without needing to specify
low-level detail such as the communication protocol. For these
reasons, a transaction-level model (TLM) [6] having computa-
tional blocks and separately modeled interconnecting channels
is adopted at this level [7], [8]. Such a model allows the external
behavior of the computational and channel components to be
expressed as a set of information transfers between them. Such
a high-level view of the system requires a high-level hardware
description language for efficient modeling, with SystemVer-
ilog [9], [10] or SystemC [11], [12] being the main choices.

Different TLMs are possible depending on whether the com-
putational blocks and the channels are timed or untimed. Totally
untimed models enable hardware/software and architectural ex-
ploration, while totally timed models give a performance indi-
cation. Both model types are used in the course to ease the tran-
sition between the system specification and RTL stages.

Hardware implementation at the RTL follows. Here, the in-
ternal functionality is described in terms of the registers and
combinatorial logic functions required [13]; the former require
storage elements and so have outputs that depend on inputs at a

previous time, while the latter has outputs totally defined by the
inputs at that time. The model is usually a behavioral description
that describes the internal data flow and the operations required.
The RTL description is usually written in the lower-level hard-
ware description language of VHDL [14], [15] or Verilog [16],
[17] since these are compatible with the CAD tools used at the
lower levels of the hierarchy.

From this point onward, much of the process is automated by
the CAD tools. Thus, an important feature of the RTL model
is to obtain a description that can be synthesized by the tools.
Synthesis takes the RTL design and translates this to a digital
logic gate implementation on the targeted technology. Although
practical considerations have dictated the use of a field-pro-
grammable gate array (FPGA) as the implementation vehicle in
the practical work so that the translation and mapping onto the
FPGA is a single process, the more usual target for SoC design
is semicustom silicon. In this case, at the small transistor geome-
tries used in current SoC of 130 nm and below, interconnection
delays dominate the timing, and these are not accurately known
until layout on silicon. Thus, the logic synthesis tool for the tar-
geted technology needs to be timing-aware, and this is incorpo-
rated via a set of timing constraints specified by the user. The
tool uses models to estimate worst-case interconnection timing,
and so determines whether the user’s timing requirements can
be met.

The synthesized logic design is then placed and routed onto
silicon. This CAD tool performs physically aware place and
routing synthesis to ensure the integrity of all signals on the chip.
It checks that pickup between adjacent signals, current flows,
the supply voltage to logic elements, surface unevenness arising
from multiple layers on the chip, and antennae effects are within
limits that ensure the correct transmission of binary informa-
tion between any two points. After checking the outcome of the
placed and routed design for correctness against the top-level
specification, and checking that the design is sufficiently tol-
eranced with respect to operating and transistor variations, the
design is ready for manufacture. Following fabrication, the re-
sulting chip needs to be validated, usually using the same func-
tional tests as at the system specification stage.

III. COURSE OBJECTIVES

A. Course Aims

Usually, in their first two years, students study the funda-
mentals of hardware and software design, ranging from com-
puter technology to databases backed by appropriate practical
exercises, which tend to be relatively short in scope and length.
Third- and fourth-year courses are advanced modules on partic-
ular themes and/or courses based around a particular research
area; the SoC module fits into both these categories. The pri-
mary objective of the module is to provide in-depth theoret-
ical and practical insights into the design methodology, focusing
primarily on the high-level issues of system modeling, IP core
reuse, architecture modeling and testing, on-chip interconnect,
and RTL synthesis.

The course aims to give students experience through prac-
ticing the methodology and the techniques required at each level
of the design hierarchy. To this end, a single design problem
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runs throughout the course. Although relatively simple and
constrained, it is significant enough to illustrate all the prob-
lems likely to be encountered in more complex multiprocessor,
multibus SoC such as arbitration, routing, and the crossing of
time domains. Furthermore, the use of a single problem and
the incremental nature of the practical work gives students a
coherent view of the design flow with the steps that need to be
taken in translating from one level to the next.

An important feature of the practical work is the under-
standing gained of industry-standard languages and CAD
environment. Cadence is used for the simulation environment,
while SystemC is used for the high-level architectural mod-
eling. Verilog is used for behavioral modeling at the RTL
because of its ability to be synthesized.

B. Learning Outcomes

The specific student learning outcomes resulting from com-
pleting this course unit are:

1) a knowledge and understanding of the principle industry-
standard tools used in system-level design;

2) an understanding of the issues relating to on-chip intercon-
nect, architecture, modeling, testing and design verifica-
tion;

3) an understanding of the role of RTL synthesis, technology
mapping, cell libraries, and timing closure in the SoC de-
sign process;

4) an ability to apply this understanding to the design of pro-
totype systems;

5) an insight into future developments in SoC technology.

C. Contribution to Program Learning Outcomes

This module contributes to an overall program of study under-
taken by Computer Science and Computer Engineering students
in the following four areas:

• Knowledge and Understanding
1) acquire knowledge in an advanced topic in Computer

Science at the forefront of research;
2) understand, apply and develop leading-edge technolo-

gies in computer engineering.
• Intellectual Skills

1) use methodologies for the development of computa-
tional systems at an advanced level;

2) solve problems in an academic environment that are
also applicable to an industrial context.

• Practical Skills
1) develop applications to satisfy given requirements.

• Transferable Skills
1) write reports to a professional standard;
2) give talks to a high level of proficiency.

IV. COURSE OVERVIEW

Lectures and the practicals run in parallel and are synchro-
nized throughout the course, with each following the top-down
design methodology. In this way, lectures and practical work
support each other. This enables students to directly see the rel-
evance of taught topics that they then have to apply in their
exercise work. Similarly, the design example provides illustra-
tions of good practice and techniques for use in the lectures to

TABLE I
LECTURE TOPICS

which the students can readily relate. Lectures not only include
the technical aspects required for SoC design, but also the lan-
guages required to support the exercises undertaken.

Table I lists the lectures and practicals in time sequence. The
lectures occupy 22 lecture slots at two per week, as shown in
the left column of the table with the numbers in brackets indi-
cating the number of lectures on a topic if more than one. The
lectures follow the themes of: 1) What do you want? 2) How do
you design it? 3) How do you implement it and get it to work?
and 4) Where is it all going? In the first few weeks, the lecture
sequence is informed by the need to provide students with the
knowledge and understanding to undertake the practical exer-
cises.

The practical work also occupies 22 h and concentrates on
four areas of the design hierarchy: algorithmic, untimed TLM,
timed TLM, and RTL followed by implementation. The most
novel feature of the module is the scope of the practical work,
where students are not only able to gain real experience of de-
sign at different levels of the hierarchy, but also able to get a
view of the processes required in moving from one level to an-
other through the use of a single example that contains all the
essential elements of SoC design.

V. DESIGN EXERCISES

The design example chosen is a drawing machine capable of
accepting commands to draw a particular shape, computing the
points to be drawn, and writing these into a memory called the
frame store. The contents of this memory can then be displayed
on a screen giving an immediate visual check on system activity
and likely correctness.

This type of system partitions naturally into two sections,
comprising an environment testbench and drawing machine
modules. The latter perform the actual drawing of the desired
shapes, while the former initiates the drawing operations and
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can receive the results of the requests to draw shapes. Since it
is difficult for students with no prior knowledge to get a system
up and running, students are given a complete working basic
system, at each level of the design hierarchy, which is capable
of drawing and displaying points and lines.

The student task is to add another shape and to integrate their
design into the system, making any changes required to the ex-
isting system they are given. The integration of their shape into
the system is the major and most challenging part of the ex-
ercises. This task exposes students to the major problems in
SoC design, namely arbitration to access shared resources, the
crossing of time domains, and routing to a specific destination.
While the drawing machine is a relatively simple design with
these features, the techniques used to solve these are illustra-
tive of those required in locally synchronous multiprocessor
multibus systems.

So far, the shape chosen by students is circle drawing, as
this is a computation-friendly algorithm requiring no multipli-
cation hardware. Testing that the expanded system functions at
each level as expected plays an important part in their learning
process. Equally important is their ability to analyze the results
if incorrect, diagnose the problem, and rectify the design. Thus,
diagnostic skills as well as design techniques are enhanced.

Algorithmic Exploration

Since students are given the system specification, the design
starts at the algorithmic level. Here, the system is a top-level
view of what the user wants the system to do without any impli-
cation of how this might be implemented. Any high-level pro-
gramming language could be chosen to describe the system, but

[18] is adopted because, at the architectural design levels
which follow, the system description language used is imple-
mented as a set of library routines.

Fig. 2 shows the logical partitioning of the system into
software blocks performing distinct behavioral functions, with
the environment to the left of the dotted line and the drawing
machine to the right. The command interpreter reads com-
mands from the input stream. Point and line drawing requests
are checked for the correct number of parameters before being
passed to the drawing engine code for execution; in the case
of a line, this engine computes the coordinates of the next
pixel to be lit on the line and then writes the specified color
to that coordinate in the frame store (implemented as a two
dimensional array). The frame store contents are displayed on
a CPU monitor in order to give the students direct feedback of
the memory contents.

Other requests to the command interpreter cause actions
within the environment designed to assist the students. Thus,
the “clear” instruction sets the frame store to all-black, the
“sleep” instruction inserts a delay enabling screen effects that
change to be observed, while the “dump” order writes nonblack
entries in the frame store to a text file enabling students to
have the opportunity to verify formally the correctness of their
computational code.

In the first exercise, students create a separate code block to
draw their particular shape. Thus, they need to determine the
format of the order and also amend the command interpreter
to handle the request. A key part of this exercise is to explore

Fig. 2. Algorithmic model of the drawing machine.

different algorithms for the chosen shape, with the emphasis
on it being computation-friendly since the computations per-
formed by the algorithm will be reflected in the final hardware
implementation. Thus, operations such as multiplication and di-
vision are to be avoided since they involve significant hardware,
and such operations can usually be performed using the sim-
pler, smaller hardware of addition or subtraction combined with
shifting.

A. Drawing Machine Transaction-Level Model

Architectural design follows, and here the system is parti-
tioned into computational blocks with interconnecting commu-
nication channels; these channels can be simple connections
such as those used in buses or can be modules of any com-
plexity, such as buffering data and performing data manipula-
tion or transformations. Formally separating out the computa-
tion from communication allows each to be modeled separately,
enabling extremely large and complex designs to be partitioned
between different teams, enhancing the chances of correct op-
eration when the different sections are merged. A key step in
this process is the formal specification of the interfaces between
modules. Another significant advantage of this approach is that
software development can commence in parallel with hardware
development; previously when the interconnections weren’t for-
mally modeled, software development was unable to proceed
significantly until the hardware was defined at the RTL.

The basic TLM for the testbench and drawing machine given
to students is shown by the solid lines in Fig. 3. The computa-
tional blocks for the drawing machine, to the right of the ver-
tical dotted line, comprise distinct functions with the drawing
engine and frame store code evolving directly from the algo-
rithmic-level description. Located also on the drawing machine
side, the inquisitor, in response to a request from the testbench,
reads a byte from the frame store at a requested address and
returns the pixel color to the testbench. The cathode ray tube
(CRT) controller is an autonomous unit that reads the frame
store sequentially and displays the colors read on a (virtual)
screen. The inquisitor provides a verification tool for use on im-
plemented hardware, which of course has no software dump fa-
cility.

As well as the computational blocks, the drawing machine
has two interconnection channels. The command channel routes
requests from the testbench to the correct computational block.
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Fig. 3. Transaction-level model.

The drawing engine, inquisitor, and CRT controller can all com-
pete to make read or write requests to the frame store, and the
video channel arbitrates to determine which one of these master
requests is forwarded to the frame store. The frame store is a
slave unit as it only ever responds to requests from a master.

An important consideration in developing the testbench from
the TLM downward was to provide a uniform environment
for the students. This uniform environment would mean that
any software written to test their computational block need
only be developed once and could then be reused at each level.
The software environment provided is similar to that used on
the provided hardware, both of which were previously devel-
oped for use in a Microcontrollers course [19]. The Jimulator,
an in-house emulator written in C, mirrors the operation of
an advanced RISC machine (ARM) microprocessor, taking
executable ARM instructions from an input program and per-
forming them. The emulator operation is (automatically) linked
to, and displayed on, an in-house graphical debugger named
Komodo.

ARM instructions that store data to, or load data from, partic-
ular memory addresses communicate with the microcontroller
emulator transactor. A transactor converts from TLM transac-
tions to RTL signals or vice versa. In the drawing machine, the
microcontroller emulator transactor translates the RTL signals
from the microcontroller emulator into the transactions required
by the TLM of the command channel. The microcontroller em-
ulator also has access to the shared memory used by the screen
and is also able to dump the screen nonblack content to a text
file.

SystemC [11], [20], [21] consists of a set of library functions
and a simulation kernel. All of the drawing machine modules are
written in this system description language. Information trans-
fers between modules as a set of transactions, and the code for
the model conforms to the three-layer standard comprising ap-

plication, protocol, and transport layers. This is shown in Fig. 4.
At the top application layer, the code corresponds to the func-
tional operations performed by the master and slave computa-
tional blocks. Masters produce read and write requests. Their
initiator code transforms this into a get, put, or transport (which
is get followed by put) transaction that passes to the transport
layer.

The transport layer implements the channels. If several mas-
ters that can simultaneously request transfers are connected to
this channel, then arbitration is required to select just one for
transmission. If the channel can pass transactions to many com-
putational blocks, then the channel has to route the get, put, or
transport transaction to the specified recipient. The target code
in the slave’s protocol layer transforms the transactions into ap-
propriate read or write requests, and the functional slave code
at the application layer contains the methods to perform these
requests.

B. Untimed Transaction-Level Model

Many of the computational blocks used in SoC design are ac-
quired from firms as IP, and therefore, it is usual to only need
to design the channels and any custom computational blocks
required. Acquired computational blocks are usually supplied
with encrypted descriptions in the system design language Sys-
temC and in the (lower-level) hardware description language
Verilog. These blocks cannot be modified in any way, and to
reflect this real life situation, students are told that they are only
allowed to modify the channels of the drawing engine and that
all supplied computational blocks at whatever level must be left
as is. However, to aid with teaching and learning, the code for
all modules is made visible and available to the students.

SystemC models can be either timed or untimed. Simulation
of a model comprising untimed computational blocks and chan-
nels enables an exploration of different architectures of the hard-
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Fig. 4. Three-layer model for transaction level.

ware–software divide, while simulation with timed modules en-
ables a rough estimate of the system performance to be gained.
The former model yields a system close to the algorithmic de-
scription, while the latter makes it easier to translate to the hard-
ware description of the RTL level. Usually, just one SystemC
model is supplied. However, the use of a single model leads to
a conceptually large gap for students to bridge either from the
algorithmic level above or to the RTL below. For this reason,
the design exercises start with an untimed TLM and then move
to a timed TLM.

In both cases, students are given a complete, working basic
system and are asked to design and add a custom block in Sys-
temC based on their selected algorithm for their chosen shape.
This master computational block is placed in parallel with the
drawing engine and inquisitor blocks and is indicated by the
dotted blocks in Fig. 3. In both TLM models, the insertion of
this new computational block leads to students having to make
significant modifications to the command and video channels in
order to integrate it into the system.

In the untimed TLM, no timing is associated with any of the
modules, and operations are considered to occur in zero time.
Thus, the command channel only needs to detect and route draw
requests to the new shape block. The video channel services
requests from the master blocks connected to it. The servicing of
these requests occurs in the order in which they arrive since the
simulation runs on a single processor imposing an ordering of
arrival in practice. Thus, the video channel in the untimed model
need only be modified to accommodate write requests from the
new block to the frame store.

Having integrated their block into the basic untimed TLM
model, students are expected to expand on the testbench code
running in the emulator so as to test their shape thoroughly and
confirm that modifications to the system have been successful.
Again, a screen allows for a rapid informal assessment as to
whether the model and test code are correct, while the dump
facility is also included to allow for formal verification of cor-
rectness.

C. Timed Transaction-Level Model

In moving to a timed TLM, the students need to convert their
new drawing shape model to a timed block, make appropriate
changes to the command and video channels, test the complete
system and verify correct operation. The test programs devel-
oped for the untimed TLM in ARM assembly language code
can again be used so students can concentrate on their drawing
shape and integration code.

Timing their drawing block involves students in working
through the logical time progression of operations in order
to compute which locations in the frame store to draw and
allocating states to this sequence. States are updated if required
on the positive clock edge, and although operations are allo-
cated to a state, a state may occupy several clock periods—for
example, when reading from or writing to the frame store.
All these considerations give students experience of the real
problems encountered in design while being contained within
the framework of a relatively confined and manageable design
example. In addition, students do have the exemplar of the line
drawing code in the drawing engine block to assist them in their
block design and channel modifications.

The timed TLM also illustrates important problems in ob-
taining correct SoC designs, namely crossing clock domains and
the need to arbitrate when timed masters simultaneously com-
pete for the same resource. In the drawing system, the environ-
ment to the left of the dotted line in Fig. 3 operates from one
clock, and the modules to the right all operate from a different
clock. These clocks are independent of one another, and thus,
data can change at any time on one side with respect to the clock
on the other side. In the model, the synchronization of such data
to the new clock domain is achieved by checking for such data
on the positive clock edge in the new domain.

If no request is currently in progress, the video channel in-
spects for incoming master requests on the positive (drawing
machine) clock edge and selects one for forwarding to the frame
store. Arbitration between masters in the video channel allows
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Fig. 5. Timing in the video channel.

students to consider different methods of achieving this with re-
alistic timings, since the clock rate on the targeted hardware is
known s ns as is the time to read from or write
to the frame store (55 ns). Thus, the store access time means that
once the video channel grants a frame store request, then each
request granted occupies the video channel for three clock slots.

A further complication is that the autonomous CRT controller
sends the video channel a request every eight clock cycles to
read four sequential pixels from the frame store. The controller
needs the data at this rate in order to maintain a continuous
image on the screen. Since the CRT controller is unable to wait
for its data, it is given top priority in the video channel for the
servicing of its requests. Because the CRT controller occupies
three out of every eight time slots, this leaves an average of five
out of every eight of the available time slots for the drawing en-
gine, new draw shape, and inquisitor requests to the frame store.

Fig. 5 illustrates the video channel timing when the drawing
engine is also making requests. When the CRT controller and
drawing engine make their first request simultaneously, the
CRT controller request is granted first and when complete the
drawing engine request is granted. This request completes at
the end of the sixth clock cycle, and the drawing engine is able
to enter its next request to the video channel for the start of
the eighth clock cycle. This new request is granted since the
CRT controller won’t present its next request until the start of
the next clock cycle. The CRT is now queued waiting for the
release of the video channel, and so, will not be granted access
until clock eleven.

In the basic system, the code for the video channel arbitration
assigns a fixed priority to the masters connected to it, with the
highest priority request present selected. The CRT controller is
assigned top priority with the drawing engine next, and the in-
quisitor has bottom priority. In adding their new drawing shape,
students can assign it a fixed priority or are free to consider
other allocation strategies such as a dynamic priority scheme
allowing masters other than the CRT controller a fair share of
the remaining clock slots.

D. RTL Design

The SystemC description is a user’s view of the operations
of each module and the transactions that take place between
them. While the modules may imply much of the internal hard-
ware required, the description is not sufficiently detailed to gen-
erate hardware automatically using CAD software tools. Thus,
the next stage in the design process is to specify the internal

hardware of each module, as a behavioral model, using a hard-
ware description language that can be synthesized by software
tools to provide a logic implementation. The Verilog hardware
description language [5], [16], [17] is chosen since this is the
most commonly used in industry, and hence, the software CAD
tools are designed to work with this language, including the pro-
cessing tools mapping a logic design onto a hardware imple-
mentation. The Verilog simulation of the RTL design runs under
the Cadence CAD environment.

Again, students are given a complete basic system as shown
in Fig. 6. As can be seen, the environment is exactly the same
as before, except that the transactor to translate from signals
to transactions is no longer needed and has been replaced by
an emulator external timing unit to add timing information to
the emulator output; this unit is not required on the actual im-
plementation since this output uses the timing on the provided
hardware.

An RTL design requires the precise definition of signals be-
tween modules, and a protocol is needed to indicate to a module
when its input lines are valid. Often, a source is required to hold
the request on its output constant until the receiver signals that
the request has been accepted, indicating that the source can
remove the request. This simple handshake protocol has been
adopted in the RTL design and replaces the request–response
protocol used in the TLMs.

Handshaking is illustrated in Fig. 7. The request line from
the source going high indicates a valid request on the output
lines, while the acknowledge going high from the receiver frees
the source and causes it to lower its request line. The receiver
then lowers its acknowledge line in response to the lowering
of the request signal. This protocol is essentially asynchronous,
although actions in blocks following the receipt of a request or
acknowledge signal are normally not initiated until the positive
edge of the next clock cycle.

Again, the task for students is to convert their draw shape to
an RTL model, to integrate this into the system making appro-
priate changes to the RTL channel descriptions, and to simulate
the system with the previously generated test programs so as to
observe correct operation on the screen.

Translation to RTL is the most difficult step in the whole
process, requiring the movement from an abstract model to a
real description of the hardware required. This stage is thus
specifically supported in lectures that examine in detail the
translation of the timed TLM of the basic system into its RTL
representation. For the computational blocks, much of the
functional behavior in the TLM can be directly ported into
Verilog.

Allocating states to the RTL model is far more complex. This
allocation requires consideration of the hardware and timing re-
quired since allocating too many parallel or sequential opera-
tions to a state is usually not viable in practice. For example,
allocating two additions to a state will result in an implemen-
tation of two adders. If all other states only require a block to
have a single adder, then using two adders for just one state is
an inefficient use of resources. However, the use of just a single
adder would result in an extra state, thus affecting throughput.
Similarly, a sequence of actions in a TLM state may extend over
a clock cycle in reality requiring partitioning into more than one
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Fig. 6. Register transfer-level model.

Fig. 7. Communication using handshaking.

state at RTL. For these reasons, the number of TLM states used
normally expands at RTL and in the drawing engine; for ex-
ample, four TLM states expand to nine at RTL.

Students are encouraged to take the states developed for their
drawing shape in the timed TLM as a starting point for their
RTL design. A major part of the task at this level is the need for
students to consider resource implications for the first time in the
design process. This exploration of the speed and area tradeoffs
is again typical of the design decisions that SoC designers face
in implementing their designs.

In integrating their drawing shape into the system, again
modifications are needed to the command and video channels.
In the former, code must be included to deal properly with the
synchronization required for moving from one clock regime to
another. As previously explained, data changes from one regime
occur independently of the timing of the clock in the other
regime. While simulators can synchronize by inspecting the
data state on the new regime clock edge, real hardware may go
into “metastability”— a halfway state between “0” and “1”—if
the data change and clock edge are near simultaneous, and this
state can last an indeterminate time and have a nondeterministic
outcome (i.e., either “0” or “1”). Normally, hardware in this
halfway state will settle to a valid binary “0”or “1” level if

given an additional time to settle. For this reason, the logic is
given an additional clock period before using the data from the
sending regime, and this is coded into the command channel.

Transfers across the video channel are performed on a pri-
ority basis as before, with different states of the channel used
to effect transfers across it. States are updated on each clock,
and because the frame store access is so much greater than the
clock period, many states do little more than effectively provide
a delay. However, extra delays can easily be inserted by just
adding extra states. An extra delay proved to be necessary be-
cause the frame store access was greater than 60 ns on the pro-
vided hardware due to the additional delay introduced by the
wiring between the chips, which required allowing four clock
cycles for the frame store access.

E. Hardware Prototyping

Following a successful simulation of the behavioral RTL
model, the design is ready for hardware prototyping, which
can be viewed as another stage in the verification process. As
time constraints dictate that the full application-specific inte-
grated circuit (ASIC) route is not feasible, the student design
is mapped onto an FPGA. This route is also used nowadays
by a number of SoC designers to verify their designs prior to
commitment onto silicon.

The in-house designed board of hardware available to stu-
dents [19] is shown in Fig. 8. The microcontroller comprises
an ARM processor (with its own memory) and an interface to a
host workstation. The microcontroller emulator for the drawing
machine system is implemented on the board’s processor.
The frame store is implemented on the board’s random access
memory (RAM). The RAM and the microcontroller connect to
an FPGA. This general purpose hardware block is configured as
specified by the user to implement specific hardware functions;
the FPGA used is able to provide around 200 000 logic gates. In
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TABLE II
STUDENT ASSESSMENT

Fig. 8. Experimental board.

the design example, it is used to implement the modules of the
drawing machine, i.e., the command channel, drawing engine,
inquisitor, video channel, CRT controller, and the student’s
draw shape. The monitor shown is driven by the FPGA via a
digital-to-analogue converter (DAC).

When the download of the design from the host onto the
FPGA is complete, the test programs are downloaded into the
ARM processor’s memory and then run on the emulator. Having
been successfully simulated, the student’s design should run
successfully and demonstrate the benefits of modeling hard-
ware prior to implementing it. However, if there are errors and
on-board debugging is desired, then the inquisitor has to be ac-
tivated to return frame store values to the ARM emulator. Since
this is likely to yield only limited information, a better approach
is to return to the RTL simulation endeavoring to recreate the
fault conditions. This process would be followed by resynthesis,
download, and retesting on the board, and it demonstrates to stu-
dents the advantages of implementing prototype hardware on a
reconfigurable FPGA.

VI. ASSESSMENT

A. Learning Outcomes

Assessment of students is based on continual assessment
during the time the design runs and on a 2-h examination at the
end. Since the emphasis in the course is to learn by “doing,” the
practical work forms the larger part of the assessment. Students
are expected to demonstrate their practical work and under-
standing in the laboratory sessions as well as to submit short
professional reports. The evaluation is more heavily weighted
toward the demonstration of the practical work.

The examinations are designed to demonstrate those aspects
of the learning outcomes covering knowledge, understanding,
and intellectual skills. The practical work demonstrates these
as well, but also tests the development of a student’s practical
skills. The transferable skills involving written and spoken com-
munication are mainly practiced through the written reports and
laboratory demonstrations.

In meeting the learning outcomes, all students successfully
completed the algorithmic and TLM stages, while most went
on to complete the RTL design and subsequent implementation.
The exam marks and written student feedback confirmed that a
large majority of the students had knowledge and understanding
of the concepts covered in the lectures and in the practical work.

B. Student Assessment

Official student feedback is measured via a course experi-
ence questionnaire. These are distributed toward the end of the
course, and students are asked a variety of questions to which
they give an integer score ranging from indicating strong
agreement to indicating total disagreement. Scores are then
averaged to give mean figures. In Table II, which gives the as-
sessment over the academic years 2006–2007 and 2007–2008,
average scores have been linearly converted to percentages.

The low score for integration reflects the fact that most stu-
dents undertaking the SoC course are straight Computer Science
students, and therefore, this module does not integrate well with
their other software courses. Clearly, the students in 2006–2007
found the course difficult, and further informal feedback has
enabled some problem areas in moving from the TLM to RTL
levels to be successfully addressed in 2007–2008.

VII. CONCLUSION

SoC is a highly challenging topic for including in a degree
course. It includes many difficult concepts and hardware lan-
guages that are unfamiliar to students and, thus, represents a
large, steep learning curve. Nevertheless, the course described
does illustrate that given a strictly bounded design, the major
problems in SoC design can be demonstrated, with students
gaining the techniques necessary to solve these. These design
skills, together with a practical knowledge of industry-standard
tools, are directly transferable to firms working in this area.

However, probably the best advert for the course is the sense
of achievement and enthusiasm that students get from taking
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their design from conception down to implementation. As well
as a great sense of satisfaction from obtaining working hard-
ware, there is also the perception that designing hardware is fun.

Finally, the authors are also very enthusiastic about the prac-
tical work. Thus, the authors would be happy to enable other
academic institutions to have access to the code, and requests
for this should be directed to the lead author.
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