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Abstract. In synchronous circuit design, new levels of abstraction above RTL 
allow the designer to model, simulate, debug and explore various architectures 
more efficiently than before. These are known as transaction level modeling. 
The translation between signals at different levels of abstraction is performed 
by pieces of code called transactors, mainly for the purpose of simulation. This 
paper identifies a set of asynchronous abstractions suitable for asynchronous 
transaction level modeling. Based on these models, we show that asynchronous 
CSP-based transactors can bring many more benefits than their synchronous 
counterparts, while being simpler to describe. We show how they can be used to 
automatically generate complex SystemC templates and hardware-software 
links, and automatically build network-on-chip interfaces facilitating IP reuse in 
embedded systems. Tools were developed after the techniques described in this 
paper. They are used in a case study to describe an asynchronous IP from trans-
action levels to RTL, demonstrating the automatic generation of various com-
plex parts of the design and the minimum amount of specifications required 
from the designer.  

1   Introduction  

Chip design is becoming increasingly complex with billions of transistors and dozens 
of IPs being now commonly placed on single chips. In order to tackle this complex-
ity, Electronic System Level (ESL) design has been developed extensively for the last 
five years, aiming at exploiting IP reuse and integrating higher levels of abstraction 
than traditional HDLs (Hardware Description Languages). Designing at these new 
levels of abstraction above RTL is known as transaction level modeling (TLM).  

Over the same period, GALS (Globally Asynchronous, Locally Synchronous) tech-
niques have made their way into chips as they provide an easy way to interconnect 
multiple modules with distinct clock domains, simplifying many synchronisation 
problems [1]. Implementing a GALS system using ESL tools is, in theory, simply a 
matter of linking ‘locally synchronous’ IPs to the ‘globally asynchronous’ intercon-
nect IP (asynchronous buses or asynchronous networks on chip (NoC) such as 
CHAIN [2]). Although the interconnect IP is, for a GALS system, internally  
asynchronous, its interface is fully synchronous (devoid of asynchronous channels) in 
order to be connected directly to the ports of synchronous IPs. This allows ESL tools 
to handle only synchronous elements. Indeed, actual ESL tools are all designed to 
facilitate synchronous connections.  
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Nonetheless, it could often be beneficial to use IPs with asynchronous interfaces. An 
SRAM, for example, is an internally asynchronous device which sees its performance 
degraded when connected to the synchronous ports of an asynchronous NoC via a syn-
chronous wrapper. This performance degradation could easily be avoided by using 
asynchronous interfaces to connect the SRAM IP block directly to the asynchronous 
NoC. One difficulty tackled in this paper is the description of these asynchronous TLM 
interfaces.  

Another important aspect of ESL design tools and synchronous IPs is the integra-
tion of a hierarchy of models that are reusable across levels of abstraction. As 
specified in the OCP-IP [11] synchronous TLM proposal, tight relations from one 
level of abstraction to the next ensure that decisions made in the SystemC domain are 
carried through to the RTL domain faithfully, removing any chance for translational 
error and ensuring that simulations at various levels of abstraction are consistent with 
each other. These relations, although not inherently synchronous, are usually de-
scribed using properties specific to synchronous interfaces. This paper identifies a set 
of properties that allow asynchronous models to be described consistently through 
abstraction levels. When simple properties cannot be versatile enough to describe all 
the possible configurations, more complex descriptions based on programming lan-
guages are introduced. This is the case with transactors, pieces of code performing the 
translation between signals at different levels of abstraction.  

Section2 provides an overview of the abstractions proposed by the industry as 
standards for synchronous circuits. It introduces the transactors, and exposes the ac-
tual limitations of synchronous TLM and transactors and how asynchronous tech-
niques are able to help. Section 3 defines a set of asynchronous abstractions suitable 
for asynchronous transaction level modeling. Based on these models, Section 4 shows 
how asynchronous transactors can be efficiently written and how they can be used to 
automatically generate SystemC templates, network-on-chip interconnect for IP reuse 
and hardware-software cosimulation links. Section 5 describes a practical example, 
where an asynchronous RAM IP is easily described from TLM to RTL using the tools 
developed after the techniques described in this paper.  

2   Related Work  

With the advent of ESL design, the various levels of design abstraction above RTL are 
referred to as Transaction Level Modeling. The primary goal of TLM is to dramatically 
increase simulation speeds, while offering enough accuracy for the design task at hand. 
The increase in speed is achieved by the TLM abstracting away the number of events 
and amount of information that have to be processed during simulation to the minimum 
required. For example, instead of driving the individual signals of a bus protocol, the 
goal is to exchange only what is really necessary: the data payload. TLM also reduces 
the amount of detail the designer must handle, therefore making modeling easier.  

2.1   Transaction Level Modeling: Synchronous Abstractions  

The two prevalent industry approaches are from OSCI (Open SystemC Initiative) and 
OCP-IP (Open Core Protocol -International Partnership): the former has focused its 
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TLM on the software development concerns, while the later has focused on SOC inte-
gration concerns. OSCI’s TLM leads to a top-down methodology, where the design 
architect describes its design at a software level, via untimed software calls, and 
gradually refines it down to the RTL level. OCP-IP’s TLM, on the other hand, leads 
to a methodology to specify reusable IPs through a bus-centric hierarchy of models 
seamlessly interconnecting via a common “socket” interface at different levels of ab-
straction. In spite of these different origins, both TLMs converge on several aspects. 
Both OSCI and OCP-IP define three levels of TLM above RTL, the former gradually 
refining an initial software-level model towards RTL and establishing a software-like 
top-down design methodology, and the latter gradually abstracting away the details of 
the communications between modules for IP reuse and easy on-chip interconnect. It is 
interesting that two initiatives coming from different fronts led to similar definitions.  

2.2   Synchronous Transactors  

One of the main objectives of ESL design is the transparent interoperability between 
IPs at different levels of abstraction. Transactors were created for this purpose: they are 
pieces of code performing the translation between transactions at different levels of 
abstraction. These transactors receive stimuli and translate the activity to the data struc-
ture, call-structure and temporal mechanisms used by design models at other abstrac-
tions. This enables each component in a system to communicate using the interface 
semantics native to its design abstraction. In a mixed abstraction level simulation envi-
ronment, transactors are used to connect blocks modeled at different abstraction levels 
for simulation in different contexts of speed/accuracy. One main application of transac-
tors is for testbenches: creating a transactor connected to a testbench makes the test-
bench insensitive to changes in the design. Even if the top-level interface of the design 
under verification is modified, only transactors have to be updated.  

Traditionally, transactors were written as two unidirectional components or pieces 
of code: a driver from high to low levels and a monitor from low to high level. These 
allow test library functions written in an abstract, untimed way to exercise and check 
models at different abstraction levels. Transactors are often written in the same lan-
guage as the one used to describe the models. When created manually, the process is 
long and error-prone, and is often as complex and time consuming as the creation of 
the RTL model itself. Moreover, transactors must be updated as the design interface 
changes, leading to many manual iterations. As transactors are complex to design, 
those created by hand often only connect two levels of abstraction. However many 
design simulations today have several abstractions integrated together. Consequently, 
handling only two abstraction levels with a transactor is not sufficient. Complex 
transactors that can handle interconnection of multiple levels of abstraction need to be 
automatically generated, and this requires the capture of the interface abstractions in a 
single formal description.  

Recently, a few initiatives tried to define new languages for describing transactors 
more efficiently and for generating the simulated code automatically [3, 4]. A formal 
description of an interface abstraction hierarchy captures the temporal, data and be-
havioural aspects of an interface protocol at multiple levels of abstraction along with 
the mapping between the levels. Transactors can be generated from these descriptions 
to drive and monitor communications at various levels of abstraction.  
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Balarin and Passerone [5] proposed a methodology where interface protocols are 
specified formally in a way that is very similar to assertions used in verification, using 
regular expressions from the Property Specification Language [6]. Transactors are 
automatically generated from such a specification. Many transactors may be generated 
from a single interface specification, depending on which part of the design is being 
verified, what modes of the interface are being exercised, and which verification tech-
nology is being used (e.g. simulation vs. acceleration). In addition, formal interface 
specifications can be used as assertions and verified either statically or dynamically.  

2.3   Proposed Improvements to the Synchronous TLM Models  

This section presented the levels of abstraction defined as standards for synchronous 
transaction level modeling. These initiatives are extremely valuable as they standard-
ise the development of synchronous IPs. However, they suffer a few drawbacks, 
which can be eased using asynchronous techniques.  

OCP-IP’s TLM defines a standard way to specify interconnectable -and thus highly 
reusable - IPs by defining an abstract bus interface which the designer needs to fol-
low. The downside is that the interface of the IP is constrained by the TLM model. 
We claim that an asynchronous IP can rely on an automatic serialisation-
deserialisation of any asynchronous interface, allowing IPs to plug&play to a network 
on chip without imposing any constraint to the interface.  

Transactors provide a transparent translation between different levels of abstrac-
tion, enabling mixed-mode simulation, verification across levels, etc. Unfortunately, 
even using recent specification techniques to describe transactors more efficiently, 
their design often takes months [3]. The definition and common usage of standard 
asynchronous protocols makes asynchronous communications easier to describe. We 
show how asynchronous transactors can be developed very efficiently using existing 
languages.  

OSCI have based their design methodology on SystemC. SystemC is appropriate 
for system-level design and transaction level modeling: designers can describe high 
level interfaces, structures and algorithms at the same time as delays and bit-level 
signalling. SystemC’s main drawback is the complexity for the designer to describe 
the many required classes and to handle C++ subtleties such as exporting the abstract 
interfaces via inheritance in ports and channels, leading to a huge amount of work 
before being able to start describing the real circuit. We show how OSCI’s methodol-
ogy can be applied to asynchronous design and how the initial complexity of SystemC 
descriptions can be bypassed by using code generators based on the transactors.  

The next section describes how we identified a set of abstractions applicable to 
asynchronous interfaces and how the translation from one level to another can be 
automated.  

3   Asynchronous Transaction Level Modeling  

The first task before being able to describe asynchronous IPs and transactors is to 
identify the levels of abstraction which will be useful for asynchronous transaction 
level modeling.  
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From the previous description of synchronous TLMs, we can see that synchronous 
communications, based on clock cycles and independent wires, are at the same time 
very constrained (by the clock signal) and free to implement any protocol (each wire 
is left to the imagination of its creator). This led to abstractions based on clock cycles: 
groups of events belonging to the same clock cycle and periodic events repeating 
every n cycles are bundled together. Asynchronous communications, on the other 
hand, are not constrained by a clock, and therefore abstractions cannot be based on it. 
However, a set of major asynchronous protocols exists, which are used in most de-
signs, and from which a set of abstractions can be defined. This section focuses on the 
definition of abstraction levels based on these asynchronous protocols.  

3.1   Asynchronous Abstractions 

Asynchronous circuit design, based on asynchronous communications, has its roots as 
a high level model: the CSP (Communicating Sequential Processes) language [7], 
created by Hoare for describing patterns of interaction. Several CSP-based HDLs [8, 
9] have been created over the years to describe and synthesise asynchronous circuits. 
While synchronous languages are striving to raise their level of abstraction while 
keeping enough control over the generated transistors, asynchronous designers have 
striven for years to synthesise low-level transistors from their high-level communica-
tion patterns. Asynchronous design might therefore be able to shine at the transaction 
level, by directly exploiting the CSP abstractions it originated from.  

In synchronous TLMs, the Programmer View (PV) abstraction, based on software 
function calls with no communication events and no timing information, is the basis 
of transaction level modeling. As it is not related to any clock model, it can be defined 
and used in exactly the same way in an asynchronous TLM.  

In OSCI’s second abstraction, PV+T, timing information is added. Delays are a big 
problem in asynchronous simulation. In a synchronous design, every component is 
periodically resynchronised to the clock, minimising the imprecision by resetting any 
skew. In an asynchronous design, timing errors continuously accumulate, drifting to 
very imprecise values. Tackling the problem of asynchronous timing models is be-
yond the scope of this paper. So far we decided not to specify timing as part of any 
level of abstraction. Timing information can however still be associated to events at 
any level of abstraction, providing improved simulation accuracy.  

In both OSCI’s and OCP-IP’s TLMs, the lowest abstraction above RTL is where 
communications are abstracted as “transfers” identical to asynchronous CSP commu-
nications. An asynchronous TLM can therefore be restricted to RTL, CSP and PV 
levels.  

3.2   Abstraction Properties 

In the context of transaction level modeling, and to enable communications to be 
automatically propagated and translated across levels of abstraction, we aimed to 
define levels of abstraction of asynchronous communications such that, given a trans-
action at the highest level of abstraction, a mixed-mode simulator is able to automati-
cally generate a valid set of lowest level signals, and vice versa: given a set of low  
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level signals, an automated process exists to regroup them appropriately to reconsti-
tute a coherent high level transaction. For this, we identified a set of properties able to 
define the transitions from one level of abstraction to the next.  

Such a set of properties should allow, for instance, to convert a handshake transac-
tion from an abstraction where data validity is not taken into account (the data  
becomes valid at exactly the same time as the handshake request is raised) to an ab-
straction where data validity is considered. Depending on the specified data validity 
scheme, the ‘converter’ would need to separate the reception of the data from the re-
ception of the request signal, possibly delaying one of them to satisfy timing validity 
and inserting an ‘invalid data‘ event at the appropriate time (Fig 2). This validity 
scheme would be a property of the abstraction level, which should be provided by the 
IP connected to such a channel when simulated at or through this level of abstraction.  

Fig 1 shows the properties obtained by considering the difference between the PV 
level and the RTL level. It can be verified that setting these properties to false or zero 
makes for a very abstracted high-level description of the transaction, while setting 
these properties to real values makes for a low-level transaction. Each of these proper-
ties can be enabled or disabled, and the combined state of the properties defines a 
specific level of abstraction. Using these abstraction properties, Fig 3 shows how one 
transaction can be simulated and converted across the abstraction spectrum.  

The properties can be grouped into 4 categories: Function, Structure, Protocol and 
Timing (Fig 1). Structure properties specify the interface of the IP blocks in terms of 
I/ Os, from abstract data type transfers to physical wires. Protocol properties define 
the succession of events being sent or received by the IP, therefore affecting its dy-
namic behaviour. Structure and Protocol properties are discrete properties (often just a 
boolean choice). They specify a precisely defined arrangement, usually observable in 
the final physical circuit. On the other hand, Timing properties are estimates of real 
world delays and can take any real value, while Function properties define the rela-
tionship between a structural entity (such as a wire) and a functionality. For example, 
a RnW wire would be activated to indicate a read function and deactivated to request 
a write. As mentioned previously, timing properties are not included in our current 
model. The three lower protocol properties happen to correspond exactly to the 
definition of handshake protocols. Transactions were the handshake protocol is ab-
stracted away characterise the CSP abstraction, where data is sent over individual 
channels following a two-events protocol: request sent with data followed by ac-
knowledge (for a push channel), and where the interleaving of different channels is 
specified.  

4   Asynchronous Transactors 

A transactor is a process able to automatically translate a signal or set of signals from one 
level of abstraction to another. We defined a TLM in the previous section with the aim to 
facilitate these translations for asynchronous IPs. A set of simple properties were pro-
posed, that are able to direct the conversion between two contiguous levels of abstraction. 
Based on the levels of abstraction presented in the previous section, this section shows 
why asynchronous transactors are needed, how they can be written efficiently and how 
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Fig. 1. Abstraction properties of a handshake transaction 
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Fig. 2. Abstraction property example: Data validity  

they can be used to automatically generate SystemC templates, network-on-chip inter-
connect for IP reuse and hardware-software cosimulation links. Our techniques are aimed 
at minimizing the amount of specifications required from the designer.  

4.1   Automatic Translation Between Abstractions  

Although we referred earlier to transactors as ‘pieces of code’, the aim is to perform 
translations across abstractions using the simplest possible specifications. For this rea-
son, in order to automatically translate transactions between different levels of ab-
straction, each abstraction property is assigned a set of possible values. For example, 
data validity can be defined to be broad, early or late. These values are packaged with 
the IPs that require their signals to be translated at or through the associated level of 
abstraction. The major translations associated to our TLM are RTL to CSP, CSP to 
RTL, CSP to PV and PV to CSP. Each major translation is made of a succession of 
minor translations corresponding to each abstraction property.  

The RTL to CSP translation is the simplest one: from a full set of events issued 
from the RTL simulation, we only need to extract the data payload, the initial request 
indicating the start of the CSP function call (send or receive) and the final acknowledge 
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indicating the return of the CSP call. This conversion is processed in three steps, each 
one of them disabling in turn one abstraction property defining the handshake protocol: 
first, if defined in the protocol in use, the Return To Zero phase is removed (all the 
events not part of the RTZ are passed to the next stage), then data validity is “re-
moved” -in fact, it is set to a default state where the data becomes valid with the in-
coming request (for a push channel) and never becomes invalid. Finally, the rest of the 
protocol is removed, leaving just enough information to generate the CSP call.  

CSP to RTL, the opposite translation, is a bit more complex as information is 
added during the conversion process: instead of being disabled, abstraction properties 
are enabled and assigned real values. At the CSP level, the initial request, data pay-
load and final acknowledge are known. From the definition of the handshake protocol, 
a template specifies how to rebuild the data signals at the wire level. All missing sig-
nals are introduced between the initial request and the final acknowledge in three con-
secutive step (Fig 3). In future work, timing constraints will be used at this stage to 
insert appropriate delays between constrained signals. For the moment, delays are 
hard-coded.  

CSP to PV and PV to CSP translations are more complex due to the need to map 
abstract functionalities to channels, and the need to specify the interleaving of channel 
events.They must be handled by transactors specified in a language featuring these 
characteristics.  

4.2   CSP-Based Transactors  

When invoked from the PV level, the task of a transactor is to specify the sequence, 
parallelism and interleaving of the different channels involved in a transaction. Al-
though destined to other uses, a few freely available languages have been designed in 
the past to describe such dependencies: TAST-CHP [8], CH and Balsa [9]. They are 
all CSP-based, which is ideal for PV to CSP translations. Moreover, as they were de-
signed for synthesis, the syntax and grammar they use to describe channel interleav-
ings is precise down to the RTL level. Balsa was created for asynchronous design and 
has the advantages of being synthesisable and being a traditional, easy-to-learn,  
Verilog-like imperative language.  

The interface of a PV-CSP transactor needs to combine the interfaces of the CSP 
and PV levels. PV level is represented by the signature of the function call corre-
sponding to the transaction. CSP level is represented by the channels involved in the 
transaction. As a CSP-based language, Balsa is able to describe the CSP, but not the 
PV interface. Transactor interfaces are therefore specified by prefixing a C-style PV 
function interface to a Balsa block (as shown in the code example from Section 5 Step 
3). In practice however, the Balsa CSP interface of a transactor can be generated from 
an earlier specification of the channels (Section 5 Step 2), eliminating the need to be 
repeated in the transactor.  

The current description language for a transactor’s body is only a subset of the 
Balsa language. There are two reasons for this: although the Balsa synthesiser can 
generate structural Verilog for any language construct, our generation of behavioural 
SystemC code is new and we have only implemented the constructs that were useful 
in our applications. The second reason concerns the invertibility of the language.  
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Most of the time, both PV to CSP and CSP to PV transactors are needed, and there-
fore two “reciprocal” Balsa descriptions need to be written (such as the two descrip-
tions shown in Section 5 Step 3). In order to reduce the amount of work for the  
designer, one tool automatically generates a transactor’s reciprocal description from 
its description.  

CSP transactors enable a variety of automated code generation related to IP block 
interfaces. We describe three of them: Translator code generators, network on chip 
adapters and hardware-software links.  
 
Translator code generators. In order to achieve the best simulation speed, the Balsa-
described transactors are automatically converted to the same language as one of their 
attached components. If the chosen component is described in Balsa (component at 
CSP level), a direct Balsa simulation of component+transactor can be used. If the 
component uses Verilog (RTL level), a Verilog transactor is synthesised from the 
Balsa transactor using the Balsa synthesis tools. Finally, if the component uses Sys-
temC (PV or CSP level), behavioural SystemC code is generated from the Balsa 
transactor. The main difficulty of this generator is also its main feature: fine-grained 
threads.  

The Balsa language allows the easy description of very fine-grained threads, such as 
blocks containing a single assignment. On the other hand, threads in SystemC require a 
lot of “spaghetti coding”, as each thread needs to be implemented in a separate class 
method. Automatically generating this kind of code from Balsa allows a clear and con-
cise description of parallel code, which is often needed in asynchronous transactors.  

 
Network on chip Plug&Play. One of the main motivations of System Level Design is 
IP reuse: describing an IP than can be integrated without any modification in other 
environments. OCP-IP defined a set of interfaces abstracting bus interfaces. IPs adopt-
ing these interfaces can then be connected easily to any bus. The downside with this 
method is that the designer is constrained to use these specific interfaces.  

Asynchronous transactors are able to convert any CSP interface defined by the de-
signer to a high-level transaction assimilable to a datas tructure. This means that 
transactors are able to convert CSP transactions to flows of bits. These flows can be 
transferred over any serial bus. In particular, the Balsa transactors can be used as 
adapters (serialisers and deserialisers) to automatically connect the IP to a network on 
chip.  

 
Hardware-software link. The serialisation feature of the transactors can also be ex-
ploited for hardware-software links. The first application is to connect an emulator 
board to a software simulator via a serial link. On the hardware side (emulator board), 
transactors are synthesised in the same way as if they were connecting the IP to a 
hardware NoC. On the software side, transactors are simulated in the same way as if 
they were connected to a software NoC model. This configuration relies on a serial 
link connection between the simulator and the board.  

The second application is for hardware-software (HW-SW) co-design. The auto-
matic serialisation of the HW-SW interfaces would greatly facilitate the exploration 
of various HW-SW partitions.  
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4.3   Interface and Code Template Generators  

After having described transactors, we realised that an important problem of asyn-
chronous IP design could be solved: the complexity of writing SystemC code. Not 
only SystemC templates can be generated from the description of the interfaces at 
various levels of abstraction, but also transactors make it possible to automatically 
deduce an interface from its description at another level of abstraction. A step by step 
methodology (such as the one used in the case study presented in Section 5) shows 
that we can generate a complete SystemC template from interface descriptions at the 
PV and CSP levels, the RTL interface being deduced from CSP interface associated 
to the CSP to RTL abstraction properties, and large code templates being built from 
the transactor descriptions.  

Multiple languages are used in a typical flow: SystemC at PV and CSP levels, 
Balsa atCSPlevelandVerilogatRTLlevel.Theycanbesynthesisedtolowerlevelsforsystem 
implementation on a chip or FPGA prototyping.  

5   RAM IP Demonstrator  

Traditionnally, synchronous transactors have been used to interface IPs with buses or 
NoCs using complex protocol and routing strategies. The asynchronous transactors 
presented in this paper are aimed more generically at linking any IP together. Some of 
these IPs may be busses or Nocs, but this is not compulsory, and pipelines of compu-
tational IPs can be built with asynchronous transactors. This section presents a simple 
example based on accesses to a RAM. This example, although lacking complexity, 
already implies a large amount of automatically generated code.  

The full source code, interface descriptions and tools can be found in [10].  
 

Step 1: high-level description of the RAM IP with test harness  
From a description of the RAM interface at the PV level, we can generate a SystemC 
template that is easy to start a project with. A typical software-level RAM interface is:  

 

Two classes, RAM and TestHarness, are automatically generated with a top-level 
sc_main function. This function instantiates the two components, connects them to-
gether and starts the SystemC simulation.  

Before being able to simulate something useful, the behaviour of the RAM and test 
harness needs to be specified: the two method declarations (read and write) can be 
filled in and, in this particular case, a class variable for the memory array is declared:  
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Writing the test harness is also easy, simply by filling up the run method of the 
test_harness class:  

 

A minimum amount of coding results in the simulation of our RAM IP. A good 
achievement for whoever tried to do this with SystemC before.  
 

Step 2: Refinement of the interface to the CSP level  
Here we enter the asynchronous domain. The data type of each channel needs to be 
described. The description format of the interface is now based on the Balsa language. 
The CSP implementation of the RAM is based on four channels: a ‘command’ chan-
nel, which indicates whether a write or a read command is issued, and the self-explicit 
channels ‘address’, ‘value_write’ and ‘value_read’:  

 

In the same way as at the PV level, SystemC code at the CSP level can be gener-
ated from this interface, for both the RAM IP and a test harness. The RAM class is 
now defined with SystemC sc_port ports publishing a CSP interface:  

 

At the PV level, the simulation was based on a single thread (the test harness) and 
standard function calls. At the CSP level, each instantiated module is a thread, thus 
modeling hardware more closely. The two PV methods ‘read’ and ‘write’ are replaced 
by a single ‘run’ thread method. A typical implementation of the main method  
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waits for a command to be received, and completes a write operation if the command 
is CMD_WRITE or a read operation if it is CMD_READ: (this code is user-written 
here, but we will see later that it can be generated automatically).  

 

The test harness is described at the CSP level in the same way as the RAM ‘run’ 
method. However, another possibility is to reuse our previously written test harness at 
the PV level and rely on a PV to CSP converter. This is the role of the transactor.  

 
Step 3: Description of the transactor  
The following transactor is able to perform the translation between PV’s read and 
write calls and CSP channels’ send and receive methods.  

 

This transactor is obviously able to translate PV read and write calls to CSP send 
and receive calls. This allows us to connect the PV test harness to the CSP RAM.  

What is really interesting is that, from this PV to CSP transactor, it is possible to 
generate most of the CSP level implementation of the RAM automatically. In our 
example, the Balsa reciprocal transactor (CSP to PV) is generated as below:  

select command, address then
case command in

CMD_WRITE:
select value then

extern write (address, value_write)
end

CMD_READ:
value_read <- extern read (address)

end
end  

The SystemC code generated from this new transactor is exactly the ‘run’ method 
implemented by hand previously. 
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Step 4: Refinement/synthesis to RTL  
In order to go from CSP to RTL level, the handshake protocol used by each channel 
needs to be specified. A possible description is as follow (using multiple protocols): 

 

From these specifications, an RTL-level SystemC interface can be generated. An 
RTL-level ‘run’ method can also be automatically generated. However, using Sys-
temC at the RTL level involves some efforts in order to interleave the handshakes 
appropriately and the designer ends up with a non-synthesisable RTL description. 
This task can be done a lot more easily by using a language such as Balsa to synthe-
sise the RTL automatically from the CSP-style description. Another useful alternative 
is to use a HDL such as Verilog for the description at the RTL level. This is the path 
explored for this application: we decided to target an FPGA and use its RAM struc-
tures to implement the RAM IP. This allows us, in the future, to access the FPGA’s 
RAM structures from any language, even if this language’s synthesis tools would not 
automatically use these on-board RAMs. This is for instance the case with the Balsa 
language.  

The Verilog interface template is generated from the IP interface specifications. 
Even more helpful, a template of the Verilog implementation can be generated from 
the transactor description: this is a synthesised version of the Balsa “CSP to PV” 
transactor, preceded by protocol converters able to adapt each channel’s RTL signals 
to the CSP input of the transactor. Although it does not result in the most efficient 
implementation, this generated template is ideal to start the RTL level design and can 
be optimised by hand if necessary. The template automatically takes care of sending 
requests on outgoing channels and waiting for incoming requests on incoming chan-
nels. The only part to be filled in is the handling of the read and write commands, but 
this time in Verilog at the RTL level.  

6   Conclusions  

We identified the PV and CSP levels as a set of asynchronous abstractions suitable for 
asynchronous transaction level modeling above RTL. Based on these models, we 
showed that asynchronous CSP-based transactors can bring many more benefits than 
their synchronous counterparts, while being simple to describe. We showed how they 
can be used to automatically generate complex SystemC templates and hardware-soft-
ware links, and automatically build network-on-chip interfaces facilitating IP reuse. 
Both CSP to PV and PV to CSP translations were generated from a unique transactor 
description. In order to do this, we were able to make a useful subset of the Balsa lan-
guage invertible. Tools were developed after the techniques described in this paper, 
and a case study demonstrated the automatic generation of various complex parts of 
the design and the minimum amount of specifications required from the designer.  
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