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Abstract

A relationship between the power consumption and the
testability of CMOS VLSI circuits is demonstrated in this
paper. The method used to estimate this correlation is
based on elements of information theory. It is shown that
the average output information content of a circuit node is
proportional to its signal transition probability. As a con-
sequence, design for low power consumption and design
for testability are in direct conflict. The resolution of this
conflict lies in separating the testing issues from the low
power issues by giving the circuit distinct operating and
test modes.

1: Introduction

The rapid development of CMOS technology makes
transistors smaller allowing a chip to incorporate ever
larger numbers of them [1]. CMOS VLSI circuits are
increasingly used in portable environments where power
and heat dissipation are vital issues. Examples of such
applications are portable calculators, digital watches,
mobile computer systems, etc. As a result, the power dissi-
pation of CMOS VLSI circuits is a growing concern for
design engineers.

The power dissipated by CMOS circuits can be divided
into three categories [1,2]:

• static power consumption due to leakage current
(PWstat);

• dynamic power dissipation caused by switching
transition current (PWsw);

• transient short-circuit current (PWsc).

The total power dissipation of a CMOS circuit can

therefore be represented by the following sum:

.

In “well-designed” data processing circuits the switch-
ing power is typically from 70% to 95% of the total power
consumption (if the circuit is badly-designed the propor-
tion of static and short-circuit power dissipation increases)
[3]. The majority of power estimation tools are oriented
towards calculating only the average switching power of
CMOS circuits using the following formula [2]:

,  (1)

where f is the clock frequency;Vdd is the power supply
voltage;M is the total number of nodes in the circuit;Ci is
the ith nodal capacitance; is the transition probability
of theith node.

After fabrication, a digital circuit must be tested to
ensure that it is fault free. This is not an easy task since the
increasing number of logic elements placed on a chip leads
to a reduction in the controllability and observability of the
internal nodes of the circuits. Several design for testability
(DFT) methods have been developed for digital circuits
[4,5] which aim to facilitate the testing of digital circuits for
fabrication faults. Since DFT methods affect the circuit
design, this raises the question: “How do DFT methods
affect the power consumption of a circuit?”. In this paper,
we attempt to answer this question.

The rest of the paper is organised as follows: section 2
describes aspects of information theory and its application
to digital circuits; section 3 shows how the average infor-
mation content of a circuit node correlates with its transi-
tion probability; section 4 is a discussion of the
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implications for low power designs; section 5 summarises
the principal conclusions of the paper.

2: Information theory and digital circuits

Output node capacitances create memories in static
CMOS circuits. The circuit itself can also have state hold-
ing elements. Let us consider a circuit with one output. This
circuit has only two possible states: zero and one. The cir-
cuit changes its states during the application of patterns to
its inputs. This process can be represented by the Markov
chain shown in Figure 1 regardless of whether the circuit is
a sequential one or a combinational one. The Markov chain
contains two states marked by zero and one. The transition
probabilities between the states are placed on the corre-
spondent arcs of the chain wherepi(j) denotes the probabil-
ity of the transition from statei to statej (i,j=0,1).

The following system of equations describes the behav-
iour of the Markov chain illustrated in Figure 1:

,

,  (2)

,

whereP0 andP1 are the probabilities of state 0 and state 1,
respectively.

Note that for the Markov chain shown in Figure 1

,  (3)

.  (4)

Solving system (2) the probabilities of states 0 and 1 can
be found as

,  (5)

.  (6)

Thus, only two transition probabilitiesp0(1) andp1(0) are
required to fully describe the behaviour of the circuit with
one output.

For combinational circuits

Figure 1: Markov chain representing the mechanism
of changing the states of the circuit with one output
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where . As a result,  and .

Figure 2 shows six two-input logic blocks and their tran-
sition probabilities. It is assumed that input signal probabil-
ities pa andpb are independent. The last three logic blocks
shown in Figure 2 are Muller C-elements [6]. A C-element
is a memory element which is widely used in asynchronous
circuits.

The logic function of the two-input symmetric C-ele-
ment (the first C-element) is

,  (9)

wherea andb are the inputs;ct is the output of the C-ele-
ment at timet.

The output of the symmetric C-element is high or low when
both inputs are high or low, respectively. The C-element
preserves its current state when the inputs are different. In
order to calculate the output signal probability of the two-
input symmetric C-element we use equations (5) and (6).
As a result,
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Figure 2: Logic elements and their transition prob-
abilities
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The last two C-elements are asymmetric C-elements
which perform different functions:

- for the second C-element:

,  (12)

- for the third C-element:

.  (13)

The output of the asymmetric C-element which per-
forms according to function (12) is high if both its inputs
are high and low if only inputa is low. It keeps its current
state zero when inputa or b is low and preserves state one
if input a is high. The output of the asymmetric C-element
whose behaviour is described by function (13) is low if
both its inputs are low and high if inputb is high. It does
not change its current state zero if inputb is low and pre-
serves its state one if inputa or b is high. The state proba-
bilities of the asymmetric C-elements can easily be found
using equations (5) and (6).

Let us estimate the average information content on the
output of a circuit. According to information theory, the
average information content or entropy (H) of a discrete
finite state type source is [7,8]

,  (14)

wherePj is the probability of statej; pj(i) is the probability
of the transition from statej to statei.

Thus, the average output information content of the circuit
described by the Markov process shown in Figure 1 is cal-
culated as follows:

,  (15)

i.e.,

.  (16)

The average information content on the output of the com-
binational circuit is equal to

.  (17)

Let  and  then

,  (18)

where  and

.

ct a b a ct 1–⋅+⋅=

ct b a ct 1–⋅+=

H PiHi
i

∑ Pjpj i( )
2

pj i( )log
i j,
∑–= =

H P0H0 P1H1+=

H P0p0 0( )
2

p0 0( ) P0p0 1( )
2

p0 1( )log–log–=

P1p1 0( )
2

p1 0( ) P1p1 1( )
2

p1 1( )log–log–

H p– 2 p 1 p–( ) 2 1 p–( )log–log=

p0 1( ) x= p1 0( ) y=

H x y,( ) x
x y+
-----------H y( )–

y
x y+
-----------H x( )–=

H y( ) y 2 y 1 y–( ) 2 1 y–( )log+log=

H x( ) x 2 x 1 x–( ) 2 1 x–( )log+log=

In order to find an extremum of functionH(x,y) the follow-
ing system of two equations must be solved:

,

 (19)

.

System 19 can be modified as

,

 (20)

.

The only solution of system 20 isx=y=0.5. It is easy to
show that

.

Thus, the maximum information content can be reached
when the transition probabilities between the states of the
circuit are equiprobable. This result can easily be general-
ised for any number of circuit states.

Figures 3 and 4 illustrate graphically the dependencies
between the average output information content (H) and
input signal probabilitiespa andpb of the two-input AND
and XOR gate, respectively. Figures 5 and 6 show graphs
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Figure 3: Average ouput information content of the
two-input AND gate
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Figure 4: Average ouput information content of the
two-input XOR gate
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Hc(pa,pb) andHac(pa,pb) of the two-input symmetric and
asymmetric C-elements which perform according to equa-
tions 9 and 12, respectively. Note that the maximum infor-
mation content is reached when the transition probabilities
of the logic elements are equal to 0.5. For instance,Hand=1
whenpapb=0.5. For the XOR gate (see Figure 4),Hand=1
whenpa=0.5 orpb=0.5. The maximum value of the average
output information content of the symmetric C-element
(see Figure 5) never reaches 1 (MAX(Hc)=0.81) even when
its probability of state 1 or 0 is 0.5 (whenpa=pb=0.5). In
fact, the transition probabilities of the symmetric C-ele-
ment can never be equal to 0.5. The average output infor-
mation content of the asymmetric C-element described by
equation 12 reaches 1 at point (pa=0.5;pb=1) (see Figure 6).
This is because the asymmetric C-element works as a
repeater of the information from its inputa whenb=1.

3: Information content and transition proba-
bility

Let us consider the following expression:

.  (21)
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Figure 5: Average ouput information content of the
two-input symmetric C-element
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Figure 6: Average ouput information content of the
two-input asymmetric C-element
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Equation 22 can be substituted by the following inequal-
ity:

 (23)

since  for .

Taking into account equation 21 and inequality 23,
equation 16 can easily be transformed into the following
inequality:

.  (24)

Inequality 24 can be simplified bearing in mind the basic
relationships between transition probabilities of the
Markov process described by equations 3 and 4. Hence,

or

.  (25)

Substituting the probabilities of states 1 and 0 by expres-
sions 5 and 6, respectively, inequality 25 can be written as

,  (26)

where

 and .

The signal transition probability (Ptr) on the output of
the circuit is calculated as follows:

.  (27)

The following equation can be derived by substituting state
probabilitiesP1 andP0 in equation 27 by expressions 5 and
6, respectively:
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.  (28)

The comparison of expressions 26 and 28 allows us to con-
clude that

.  (29)

For combinational circuits (see equations 7 and 8) the fol-
lowing expressions can easily be obtained:

, , .  (30)

Therefore, the average output information content and the
output signal transition probability correlate strongly.

Consider the following function:

,  (31)

where variablesx andy have the same meaning as in equa-
tion 18.

In order to find an extremum of functionF(x,y) the follow-
ing system of two equations must be solved:

,
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.

After trivial manipulations system 32 is modified as

,
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.

The solution of system 33 isx=y=0.5. It can easily be
shown that

.

Thus, functionsH(x,y) and F(x,y) exhibit very similar
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Figure 7: Graph of function H(x,y)
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behaviour. The only difference is thatH(x,y) is always
greater or equal toF(x,y) when . Figures 7 and
8 illustrate graphs of functionsH(x,y) andF(x,y).

In order to estimate how close functionsH(x,y) and
F(x,y) are, we investigate the following function:

,  (34)

whereε(x,y) is the absolute error between functionH(x,y)
and its approximationF(x,y).

It is trivial to prove that the maximum of functionε(x,y) is
reached at the point whenx=y=0.5 (Max(ε(x,y))=0.28). As
a result, the maximum absolute error of approximation
F(x,y) can never be more than 28%. Figure 9 shows a graph
of functionε(x,y).

4: Discussion

It has been shown that the testability of a circuit is pro-
portional to its output information content [10]. This means
that the more information the nodes of the digital circuit
carry to its outputs, the more testable the circuit is, and vice
versa. The dynamic power consumption of a CMOS circuit
is also proportional to the transition probabilities of its
nodes (see equation 1). Hence, the more testable a circuit
is, the more dynamic power it dissipates. The converse
statement, that the more power consuming the circuit is the
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Figure 8: Graph of function F(x,y)
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more testable it is, can be justified only if the increase in the
circuit power dissipation is caused by increased activity in
its nodes.

Shen et al. observed that both the random pattern testa-
bility and the power dissipation of a combinational logic
network are linked to the signal probabilities of its nodes
[11]. They proposed probability modification techniques to
restructure the combinational networks to improve both
their transition signal probabilities and their power dissipa-
tions but these delivered insignificant improvements.

Williams and Angell showed that increasing the transi-
tion probabilities in the nodes of a circuit improves its con-
trollability and, therefore, its testability [12]. The testability
of the circuit can also be improved by inserting test points
at some of its nodes, increasing the observability of the cir-
cuit. Improving controllability has a direct power cost due
to the increased number of transitions, whereas improving
observability only marginally increases the power dissipa-
tion due to an increased switched capacitance.

Clearly, the power dissipation of a digital circuit is of
interest principally when it is in operation in its intended
application. Power consumption during test is not usually
important.

An approach which offers a compromise between testa-
bility and power consumption is to design the circuit to
work in two distinct operating modes. In normal operation
mode, it performs the specified function dissipating mini-
mal or close to minimal switching energy. The circuit is set
to test mode to make its testing simple. During the test, the
circuit is tested extensively dissipating more energy.

5: Conclusions

We have shown that the testability of CMOS VLSI cir-
cuits correlates with the switching power that they dissi-
pate. The mathematical dependencies presented allow us to
conclude that improving the testability features of a CMOS
circuit leads to an increase in its switching power dissipa-
tion. As a result, design for testability and design for low
power dissipation are in direct conflict. The resolution of
this conflict lies in separating the testing issues from low
power issues by giving the circuit distinct operating and
test modes.
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