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Abstract

Machine-Efficient Chebyshev Approximation is a technique that permits practical

evaluation of transcendental functions within a computable arithmetic, such as the com-

putable reals. The approach adopts the usual Chebyshev method so that coefficients are

efficiently handled by current computer hardware. The proposed technique has an ap-

plication to spectral methods for sobolev spaces. A practical demonstration of this work

is presented using Müller’s iRRAM exact arithmetic package. Experimental evaluation

demonstrates that machine efficient approximations do indeed improve the efficiency with

which these operations can be performed.

Keywords: Chebyshev Polynomial, Computable Functions, Exact Real

Arithmetic, Machine-Efficient Approximation, Partial Differential

Equations.

1. Introduction.

Differential equations are important numerical operations for most en-
gineering problems. Therefore, it is crucial to find an efficient and accurate
method to solve them. The spectral method is a powerful technique to
solve these differential equations. In this paper we use Chebyshev spectral
method to provide a highly efficient and accurate approximation of higher-
dimensional functions and particular solution of certain partial differential
equations.

Current numerical algorithms to solve differential equations are compu-
tationally expensive. Methods that use polynomial approximation such as
spectral method are more efficient. The main reason behind this is addi-
tion, subtraction, and multiplication are efficiently implemented in general-
purpose processors [5,11,21,22,24].
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Polynomial approximation such as Chebyshev approximation has coeffi-
cients that are represented by a finite number of bits in modern processors.
This is due to the limitation of the floating-point arithmetic. However, our
practical calculations have been performed using Müller’s iRRAM [22] ex-
act arithmetic package. The iRRAM will allow us to have a high accuracy
bit’s representation for the coefficients. Thus, this enables us to evaluate
function accurate to 1,000,000 decimal places.

The method proposed in this paper aims to increase the efficiency with
which the operations can be performed through using machine-efficient co-
efficients. The idea is to make the Chebyshev approximation’s coefficients
represented in the form: N

2m , where N and m are integers. These machine
efficient approximations do indeed improve the efficiency with which math-
ematical operations can be performed [5,8].

We restrict our work to computable functions, of which there are many
definitions [4,17,18,23]. Basically, we look at continuous functions, as discon-
tinuous functions are not computable at their points of discontinuity [15].

The novelty of this work is to exploit the original work of Brisebarre,
Muller, Tisserand and Chevillard on machine-efficient Chebyshev approxi-
mation [5,8] in the new context of solving PDEs.

In Section 2 and 3 we describe the idea of machine-efficient Chebyshev
approximation. In Section 4 we show some examples of its application to
spectral methods. In Section 5 we evaluate this technique compared to other
numerical techniques. Section 6 is the conclusion.

2. Chebyshev Method.

We choose Chebyshev polynomials as they provide a good polynomial
approximation [1,6]. The Chebyshev polynomials are defined recursively by:

(1) Tn(x) = cos nθ where x = cosθ

where x ∈ [-1,1], and θ ∈ [0,π].
Recurrence relation can also be obtained by:

(2) Tn(x) = 2x · Tn−1(x)− Tn−2(x) n = 2, 3, ...

with initial conditions:

T0(x) = 1 , and T1(x) = x

Chebyshev series expansion of a function f(x) is defined in Equation
(3).

(3) f(x) '
∞∑

i=0

′ ciTi(x)
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where ci are the coefficients:

c0 =
1

n + 1

n∑

k=0

f(xk) T0(xk) =
1

n + 1

n∑

k=0

f(xk)

cj =
2

n + 1

n∑

k=0

f(xk) Tj(xk)

=
2

n + 1

n∑

k=0

f(xk) cos(j
2n + 1− 2k

2n + 2
π)

The nodes or the points xk used in the coefficients calculations are the
Chebyshev nodes. Mason and Handscomb [20] used the following Equation
to define the Chebyshev nodes of Tn+1(x):

xk = cos(
(k − 1

2)π
n + 1

)

where k = 0, ..., n.

3. Machine-Efficient Chebyshev Approximation

The idea of machine-efficient polynomials was proposed by Brisebarre,
Muller, Tisserand and Chevillard [5,8]. They stated that computing systems
which use functions in their implementations need polynomial approxima-
tions. The best polynomial approximation has coefficients that cannot be
represented exactly with a finite number of bits. The approximation uses
finite-precision arithmetic; hence the coefficients are usually rounded to the
nearest multiple of 2−mi [5,8]. The aim is to find the best truncated poly-
nomial approximation which is not necessarily the best minimax approxi-
mation [16,21]. From [5,8] the truncated polynomial is defined by Equation
(4).

(4) ρ[m0,m1,..,mn]
n =

{
a0

2m0
+

a1

2m1
x + ... +

an

2mn
xn

}

where a0, ..., an ∈ Z.
The way we implement machine-efficient coefficients is quite different

from the above. The first step in obtaining a machine-efficient Chebyshev
approximation is to find the Chebyshev series that approximates the re-
quired functions. The next step is to find a machine-efficient version of that
approximation. We implement the machine-efficient coefficients as shown
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in Equation (5). The main difference is that all m are equal for all terms.
Having variables mi as in Equation (4) yields the best accuracy at reduced
cost, since the precision used is the minimum required. However, we choose
to have a uniform and maximal accuracy for all coefficients, because since
we are using an arbitrary precision framework, we are more concerned with
the time complexity: we aim to achieve high accuracy within a reasonable
time.

(5) f(x) ≈
∞∑

n=0

an

2m
xn

where a0, ..., an ∈ Z, and m ∈ N.
For example, if we choose m = 10, then we have the following Equation:

(6) ρ[10]
n =

{
a0

210
+

a1

210
x + ... +

an

210
xn

}

where a0, ..., an ∈ Z.
To find the machine-efficient coefficient ai we apply rounding to the

exact coefficients Ai as follows:

(7) ai = b2m ·Aie
This approach may lead to an important loss of accuracy when imple-

mented using floating-point arithmetic. However, the iRRAM exact arith-
metic package allows us to have high bit-accuracy coefficients ai which, if
carefully chosen, can overcome this loss of accuracy.

4. Application to Spectral methods for Sobolev Spaces

The machine-efficient Chebyshev method has an application to spectral
methods for sobolev spaces. In this section we show the use of this technique
to solve PDEs such as the heat equation.

4.1. One-Dimensional Chebyshev Approximation

Let f(x) be a regular function to be approximated by Chebyshev poly-
nomial within [-1,1]. This function can be approximated by Chebyshev in-
terpolation of degree N using Equation (8).

(8) f(x) ≈
N∑

n=0

an Tn(x)

where Tn(x) are the Chebyshev polynomial, and an are the approximation
coefficients.
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4.2. Multi-Dimensional Chebyshev Approximation

The Chebyshev approximation procedure described in Section 4.1 and
in many papers and books [1,16,20,21] can easily be extended to higher
dimensional cases [2,3,9,12,25]. For example, the Chebyshev approximation
for [-1,1]×[-1,1] takes the form defined in Equation (9).

(9) f(x1, x2) ≈ pN1,N2(x1, x2) =
N1∑

k=0

N2∑

l=0

ak,l Tk(x1) Tl(x2)

where N1 and N2 are the degree of Chebyshev approximation in the direc-
tion of x1, and x2. Equation (10) defines the coefficients ak,l.
(10)

ak,l =
4

N1N2ckcl

N1∑

K=0

N2∑

L=0

f(xK , xL)
cKcL

cos(k
2N1 + 1− 2K

2N1 + 2
π) cos(l

2N2 + 1− 2L

2N2 + 2
π)

where c0 = cN = 2, and cj = 1 for 1 <= j <= N − 1.
This technique is one case of the spectral method. Spectral methods

are distinguished by the choice of trail functions. These trail functions are
global smooth functions. The most common choices of trail functions are
Fourier series and Chebyshev polynomials [10,7,13,14,19]. We choose here
Chebyshev polynomials as they provide a good polynomial approximation
[20]. Another important reason is that Fourier series are not always a good
choice with non-periodic boundary conditions [10].

4.3. Numerical Results

Table 1. Chebyshev Nodes for Time when
N = 5

Chebyshev Nodes

+0.1000000000000000000000000E+0001
+0.8090169943749474241022934E+0000
+0.3090169943749474241022934E+0000
-0.3090169943749474241022934E+0000
-0.8090169943749474241022934E+0000
-0.1000000000000000000000000E+0001

Numerical tests have been performed to find the solution of heat equa-
tion using higher order Chebyshev approximation. These tests do indeed
demonstrate the effectiveness of the proposed algorithm. The standard do-
main rectangle [-1,1]×[-1,1] is used on the linear heat equation that is de-
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Fig. 1. Chebyshev Approximate Solutions

fined in Equation (11).

(11)
∂u

∂t
− ∂2u

∂x2
= 0

with homogeneous Dirichlet boundary conditions:

u(1, t) = 0
u(−1, t) = 0
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For the particular periodic initial condition:

(12) u(x, 0) = sinπx

the exact answer is:

(13) u(x, t) = e−π2t sinπx

the Chebyshev approximate solution has the following representation:

(14) u(x, t) =
N1∑

k=0

N2∑

l=0

ak,l Tk(x) Tl(t)

Table 1 shows the Chebyshev nodes or points for the time variable t
when N2 = 5. Figure 1 shows the Chebyshev approximate solution to the
heat equation defined in Equation (11) at different times where N1 = N2 =
5.

4.4. Machine-Efficient Chebyshev Solutions

This approach may lead to an important loss of accuracy when imple-
mented using floating-point arithmetic. However, the iRRAM exact arith-
metic package allows high bit accuracy coefficients ai that, if carefully cho-
sen, can cancel this lose of accuracy. Figure 2 shows the error between
the machine-efficient Chebyshev approximate solutions and the standard
Chebyshev approximate solutions for the heat equation described in Sec-
tion 4.3. The variable m is the machine-efficient denominator power. The
error graphs in Figure 2 show that the machine-efficient Chebyshev approx-
imation gets closer to the standard Chebyshev approximation as the value
of m increases.

5. Evaluation

5.1. Finite Difference

The finite difference method is a numerical method for approximating
the solution to differential equations. This method works by first dividing
the domain into smaller sub-domains, then local polynomials of low order
are used. This means that finite difference method use discrete numerical
approximation to the derivative. In other words, the main idea of finite dif-
ference is to replace derivatives with linear combinations of discrete function
values.

The main two sources of errors in this method are the round-off and
truncation errors. The round-off error is caused by computer rounding of
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Fig. 2. Machine-Efficient Chebyshev Approximate Solutions Error

decimal numbers, while the truncation error is the difference between the
finite difference method and the exact solution of the differential equation
assuming no round-off. More accuracy is gained in this method by decreas-
ing the size of the sub-domains [3].

The finite difference method differs from the Chebyshev spectral method
by the choice of the trial functions: spectral methods use global smooth
functions, while the finite difference method uses overlapping local polyno-
mials of low order [10].
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The same example of the heat equation in section 4.3 is used to compare
the two methods. Canuto et al [10] compare the results when t = 1 for a
Chebyshev spectral method and a second-order finite-difference method.
Their experiments show the former to be more accurate than the latter.
These results are shown in Table 2.

Table 2. Maximum error for Heat Equation

N Chebyshev Method Finite-Difference

8 4.58E-4 6.44E-1
10 8.25E-6 3.59E-1
12 1.01E-7 2.50E-1
14 1.10E-9 1.74E-1
16 2.09E-11 1.35E-1

5.2. Finite Element

Finite element method is another numerical technique for approximat-
ing the solution to partial differential equations and integral equations.
This method can be applied to a wide range of physical and engineering
problems. It provides more flexibility to solve complex models.

In finite element method, the domain is divided to sub-domains, then
local polynomials or functions of fixed degree are used on the sub-domains.
Finite element method works in a similar way to the spectral method,
the main difference being that the spectral method approximates the solu-
tions using a combination of continuous functions (Chebyshev polynomials),
while finite element method approximates the solution using a combination
of piece-wise continuous functions that are non-zero on the sub-domains.

Finite element method differ from finite difference method in some
points. For example, finite element method has the ability to handle compli-
cated geometric. On the other hand, The finite difference method is easier
to implement.

Finite element is a local approach, while the spectral method is a global
one, hence the spectral method provides more accurate approximation when
the solution is smooth.

6. Conclusion

This research is focused in solving the accuracy problem in the computer
arithmetic for numerical analysis. The primary aim of this research is to
implement high-accuracy solutions to partial differential equations.

The main aims is to increase the accuracy and improve the performance
of the numerical analysis problems as they are needed in most of the engi-
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neering applications. Our goal is to devise a sound solution to the problem
that is efficient in both time and accuracy.

In this paper we showed that the solution to the two dimensional heat
equation can be achieved using higher dimensional machine-efficient Cheby-
shev approximation. The proposed technique can be easily extended to more
than two dimensional problems. Practical experiments proved that these
machine-efficient solutions do indeed improve the performance with which
these operations can be performed. Fast evaluation of functions and solution
to Partial Differential Equations can be performed using machine-efficient
Chebyshev approximation. Moreover, the proposed technique provides ac-
curate solutions to one million decimal places.
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