
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

A Novel Programmable Parallel CRC Circuit

Martin Grymel and Steve B. Furber

Abstract—A new hardware scheme for computing the transition and con-
trol matrix of a parallel cyclic redundancy checksum is proposed. This
opens possibilities for parallel high-speed cyclic redundancy checksum cir-
cuits that reconfigure very rapidly to new polynomials. The area require-
ments are lower than those for a realization storing a precomputed matrix.
An additional simplification arises as only the polynomial needs to be sup-
plied. The derived equations allow the width of the data to be processed in
parallel to be selected independently of the degree of the polynomial. The
new design has been simulated and outperforms a recently proposed archi-
tecture significantly in speed, area, and energy efficiency.

Index Terms—Cyclic redundancy checksum (CRC), digital logic, error
detection, parallel, programmable.

I. INTRODUCTION

The integrity of data being stored or transmitted over noisy chan-
nels can be protected by means of codes for error detection. A widely
adopted code is the cyclic redundancy checksum (CRC), first intro-
duced by Peterson and Brown in 1961 [1]. The popularity of CRCs has
led to a number of different software and hardware implementations
[2], [3]. Speed requirements usually make software schemes imprac-
tical and demand dedicated hardware. The generic hardware approach
uses an inexpensive linear feedback shift register (LFSR), which as-
sumes serial data input. In the presence of wide data buses, the serial
computation has been extended to parallel versions that process whole
data words based on derived equations [4]–[7] and on cascading the
LFSR [8]. Various optimization techniques have been developed that
target resource reduction [9] and speed increase [10], [11].

The error detection capabilities of CRCs depend greatly on the poly-
nomial used [12]–[14]. The performance of a certain polynomial is af-
fected by the data, its length as well as the anticipated error patterns.
Different applications might therefore favor different polynomials.

This work is motivated by SpiNNaker [15], a spiking neural super-
computer architecture, which aims to mimic aspects of the function-
ality of the human brain. The project will incorporate more than a
million embedded processors. A single SpiNNaker chip will unite up
to 20 ARM968 cores and provide access to a dedicated 1 Gb mobile
DDR SDRAM memory. Each processor is accompanied by a DMA
controller, managing transfers of neural connectivity data between the
processor’s local memory and the SDRAM. The data is protected by a
CRC, which needs to be calculated without affecting the transfer. Re-
stricting the CRC to a certain polynomial would imply a limitation of
the performance as applications, and thus data, in SpiNNaker will vary.

In order to accommodate these requirements, a reconfigurable
parallel CRC unit is desired that can easily adapt to new polynomials
without slowing down the data communication. There is always a
tradeoff between speed and area. In this particular scenario, there
are two dimensions to the speed of a CRC calculation unit: the time

Manuscript received March 22, 2010; revised June 03, 2010; accepted July
01, 2010. The work of M. Grymel was supported by an Engineering and Physical
Sciences Research Council (EPSRC) studentship. The SpiNNaker Project was
supported by EPSRC under Grant EP/D07908X/1 and Grant EP/G015740/1.

The authors are with the Advanced Processor Technologies Group, School of
Computer Science, The University of Manchester, Manchester M13 9PL, U.K.
(e-mail: mgrymel@cs.man.ac.uk; sfurber@cs.man.ac.uk).

Digital Object Identifier 10.1109/TVLSI.2010.2058872

Fig. 1. LFSR for polynomial � ��� � � � � � � � � .

necessary to process a data word, and the time that is required to
reconfigure to a new polynomial.

This work directly extends the parallel CRC realization by Campo-
bello et al. [6] based on state space representation in several ways. First,
restrictions between the width of the data processed in parallel and the
order of the polynomial are lifted. Second, a novel scheme is presented
allowing the inexpensive computation of the CRC transition and con-
trol matrix in hardware. This leads to a programmable parallel CRC
implementation that offers an improved balance between area and both
dimensions of speed.

The structure of this paper is as follows. The basic concepts of the
CRC are reviewed briefly in Section II. The formula for the parallel
CRC realization is then derived in Section III. In Section IV, a new
scheme is proposed that transforms the realization into a programmable
version. Simulation results and the performance analysis of the new cir-
cuit are presented in Section V. Subsequently, the architecture is com-
pared to previous work in Section VI, and conclusions are drawn in
Section VII.

II. CRC

The CRC is a short fixed-length datum (checksum) for an arbitrary
data block. It will accompany the data and can be validated at an end-
point through recalculation. Differences between the two CRC values
indicate a corruption in either the data or the received CRC itself.

A �-bit message can be considered as the coefficients of a polyno-
mial ���� � �����

��� � � � � � ���
� � ���

�. The most significant
bit ���� leads the data stream. Furthermore, an ��� ��-bit generator
polynomial � ��� � �� � �����

��� � � � �� ���
� � ���

� of order
� is selected. Calculations are performed in modulo-2 arithmetic. The
CRC is the remainder ���� of the division of ������ by � ��� and
will be appended to the message. It can be verified that �����������
is divisible by� ���. If the receiver does not agree on this fact, data cor-
ruption must have occurred.

The CRC calculation can be realized in hardware with an LFSR in
Galois configuration as shown in Fig. 1. The polynomial determines
the size and the taps of the shift register. In order to obtain the CRC,
the register needs to be cleared in a first step. Then, after injecting the
message and� additional zeros, the register will hold the desired CRC.

A receiver can verify the received message with its appended CRC
by simply applying the same procedure, with the difference that the
CRC will be shifted into the circuit instead of the zeros. If the register
finally equals zero, no error has been detected.

The circuit can be modified according to Fig. 2, where the message is
combined with the most significant register bit to form the feedback. An
advantage arises as no zeros need to be shifted in at the end, and thus the
CRC can be obtained� clock cycles earlier. Following Campobello et
al. [6] this circuit is referred to as LFSR2 in contrast to the first version,
which is referred to simply as LFSR.

III. FROM SERIAL TO PARALLEL

Where systems use wide data buses, it is advantageous for the CRC
circuits to operate on data words. Many approaches have been made to
address this issue. Albertengo and Sisto [5] derived equations in 1990,

1063-8210/$26.00 © 2010 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 2. LFSR2 for polynomial � ��� � � � � � � � � .

for LFSR2 based on the Z-transform. A simpler method utilizing state
space transformation leading to basically the same circuit was pub-
lished two years later by Pei and Zukowski [4]. In 2003, Campobello et
al. [6] developed a similar proof for LFSR, under the assumption that
the order of the polynomial and the length of the message are both mul-
tiples of the number of bits to be processed in parallel, and reported a
recursive formula for calculating powers of the state transition matrix.

In this section, the equations for the LFSR2 circuit are derived. The
principle of the derivation is very similar to LFSR. Furthermore, the
proof is extended in such a way that there will be no restriction on
the order � of the polynomial or the number of bits � that are to be
processed in parallel. Both parameters are unrelated. It is only assumed
that the �-bit message can be split into data words of � bits, which will
usually be the case in computer systems.

The following considerations are made in Galois Field GF(2) where
addition and multiplication correspond to the bitwise XOR and AND op-
erators. As the LFSR2 circuit is a discrete time-invariant linear system,
it can be expressed as

���� �� � ����� � ����� (1)

where

� � �
	���

�
�

��� � � � � � �

��� � � � � � �
...

...
...

. . .
...

� � � � � � �

� � � � � � �

� (2)

	��� denotes the identity matrix of size � � � and � �
�
���
��� � � �
�
��

� is the vector composed of the polynomial
coefficients. � � ��������� � � � �����

� is the state of the system and
corresponds to the CRC register value whereas � is the scalar input.
In each time step �, one message bit is shifted into the system, and
thus ���� �
���, ���� �
��� and so forth. It can be verified that the
solution for system (1) takes the following shape:

���� � �
�
���� � �� ���

� � � ��� � � ����� � � ����� ���� (3)

with ���� being the initial state of the CRC register.
A simplified way exists to obtain � � from � ���

�
� ��

���
�

��
���

�
	���

�

� �
���

� �
��� 	���

�
(4)

where � starts from 2. Expanding � to the power of � with the help of
(4) leads to

�
� �

����� � � ��� �
�

�
� if � � �

������ � � ������ �� otherwise.
(5)

The columns of �� that drop out in the case where � exceeds � are
combined in the auxiliary rectangular matrix

�� �� �������
� � � ��� � ��

In order to obtain the CRC register value after � bits have been pro-
cessed, ���� simply needs to be evaluated. For this purpose the �-di-
mensional data input vector ���� � �
����� � � �
������

� is intro-
duced. Then (3) becomes

���� � �
�
���� � �����

� � � ��� � ������ (6)

The following wo basic cases can be differentiated.
Case ��� � ���:

���� ��
�
���� � �

���
� � � ��� �

	���

�

����

�

��
�
���� � �

� ����

�
�

Considering additionally that the system is time-invariant, the be-
havior of the circuit can be described as

���� �� � �
�

���� �
����

�
� (7)

The special case of � � � leads to the compact form

���� �� � �
� 	���� �����
 � (8)

Case ��� � ���:

���� �� � �
�
���� � ������������ (9)

The result of (7) and (9) can be condensed into a single equation

���� �� � �������
����

�
�

����

�
� (10)

As an example, polynomial � 	�
 � �� � �� � �� � �� is selected.
It is intended to process 4 bits in parallel 	� � �
. Consequently

� �

� � � �

� � � �

� � � �

� � � �

� �
� �

� � � �

� � � �

� � � �

� � � �

� (11)

According to (8), the necessary logic can be directly assembled with
the help of (11). Matrix entries of �� are numbered from �� � to 0,
where the top left most element is denoted by 	�� ���� �
. Thus,
an entry ���	 in matrix �� indicates that �	 XOR �	 is an input to the
XOR forming the new value of �� one clock cycle later.

IV. FROM STATIC TO PROGRAMMABLE

The parallel CRC architecture from the previous section can be trans-
formed into a programmable entity that is no longer bound to a specific
CRC polynomial � 	�
. A polynomial directly affects the transition
and control matrix ������� of system (10). Programmability can be
achieved by introducing an AND gate with a controlling latch for each
signal that may be a potential input to an XOR function as illustrated in
Fig. 3. Flipflops can be utilized as well, but will have in general higher
demands in terms of area, which may become crucial as �� bits need
to be stored.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 3

Fig. 3. Programmable parallel CRC circuit with � � � for CRC bit � uti-
lizing control latches.

The derivation of the matrix necessary to set up all the latches can be
performed in software. As the data bus width imposes a limitation on
the transferable data, the matrix may need to be communicated line by
line, which requires� clock cycles. Additionally, the software function
itself relies on a processor. Many scenarios may even imply a dedicated
core for this task, if the polynomial needs to be changed frequently and
faster than the matrix can be communicated over the data bus.

A. Proposed Method

The chosen approach is to outsource the matrix derivation into hard-
ware. As there is no computational effort involved in order to obtain the
identity matrix in (5) for the case � � �, it is assumed that � � �,
and thus

������� � �����
� � � ��� � ��

A new recursive formula for a column � �� with � � � is established

�
�
� ���

���
�

� �
����

�
�
���

�

��	
�
� �

���
� � �

����

�
�
���

� (12)

where 	� � �� � � � � ��� is the unit vector. Hence, each column element
�� �� 	� can be easily computed with the help of the previous column
� ���� and �

�� �
� 	� �

���
���� 	��� � �� ���� 	���� if � �� �

���
���� 	���� otherwise.

(13)

For an implementation in hardware, an �� � �	-bit register needs
to be provided to hold the coefficients of the polynomial. This register
already forms the right-most column of �������. Each other column
can then be obtained with � AND gates and � � � XOR gates. The
column element �� �� 	� of a column � can be obtained through an AND

gate that takes as inputs the polynomial coefficient
�, and the column
element �� ���� 	��� of the previous column. For every other element
�� �� 	� of column �, polynomial coefficient
� and �� ���� 	��� need
to be fed into an AND gate, before combining its result with column
element �� ���� 	��� in an XOR gate.

It is possible to reduce the area with equivalent logic as illustrated
in Fig. 4, which additionally shows the attached CRC circuitry. Apart
from the column storing the polynomial, each other column requires
�� � NAND gates, �� � XNOR gates and 1 AND gate. The controlling

Fig. 4. Programmable parallel CRC circuit for the case� � �. Corresponding
elements of �� �� � are indicated with black pixels in the rectangular repre-
senting the matrix.

AND gates have been replaced with NAND gates under the assumption
that � is even. Inverting an even number of inputs to an XOR function
does not affect the result of the function.

A circuit dimensioned for a certain polynomial degree� can be used
to calculate CRCs for a polynomial of smaller degree
. This can be
achieved by providing the polynomial premultiplied by ����. Addi-
tional multiplexing circuitry is required in order to switch between dif-
ferent data input widths, as the most significant bits of the data � and
the state of the system � need to be aligned, when being combined by
the bitwise XOR function according to (10).

V. FROM THEORY TO SILICON

With the scheme from the previous section it is possible to replace
each latch of the programmable CRC circuit (except for the first column
that holds the polynomial) with a NAND and XNOR gate, which can
compute the necessary value of the latch. The � � � latches corre-
sponding to the least significant CRC bit can be replaced with only an
AND gate. Several 130-nm standard cell libraries indicate a saving of
about 6%–7% in logic gate area for a NAND plus XNOR gate in compar-
ison to a latch. Further savings arise from the much smaller AND gate
area and irrelevant latch select logic.

In order to assess the performance of the new circuit in Fig. 4, it is
necessary to consider two different paths. Assuming that the polyno-
mial � is already set up, the logic gate delay for the data (from � to �)
adds up to

��� � ��
��
�
��� �	���� � �	
	� (14)

where � is a logic gate or path delay. Changing the polynomial on the
other hand, affects a longer path. The difference between �� and ���
accounts for

��� � ��
��
 � ��� �	���	�� � �	
	�	� ����� (15)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE I
IMPLEMENTATION COMPARISON

Based on the setup of a polynomial with a subsequent CRC calculation
for 47 data words.

Appending a CRC value to a message will typically require a data
stream to stall for at least one clock cycle. Hence, this clock cycle can
be used to provide a new polynomial for the subsequent message. This
means that the polynomial has two clock cycles to propagate through
the entire circuit.

The same behavior can be achieved on the message receiving side.
Instead of inputting the received CRC as the last data word into the
circuit, and checking the result for 0, the received and calculated CRC
value can be compared directly. Again, this would free up an extra clock
cycle that can be used to set up a new polynomial.

Without any further clock cycles, the frequency of the circuit would
be limited to ������ � ������������� �. In order to achieve best
case frequency ��	�� � ����� , additional ���� ��	��� � � clock
cycles would be necessary between messages to propagate � . Alter-
natively, the number of clock cycles can be reduced by providing �
columns of matrix ������ 	 instead of only one in order to split up
��� . This requires more area as these columns need to be stored in
latches again. In the extreme case the individual paths have a length of
���� � ���� for � � ��

 � �.

The design has been implemented for 	 �
 � �� targeting
130-nm high-speed standard cell technology. The simulation results
in Table I were obtained assuming a typical-typical process corner and
operating conditions of 1.2 V and 25 �C. These are compared to a pre-
vious design [16], which will be discussed in the following section.
Better performance is anticipated with a full-custom design that will
further exploit the regular structure of the circuit.

VI. COMPARISON

A programmable parallel CRC architecture was recently proposed
[16], which is referred to as the cell array architecture. It incorporates
additional circuitry in order to switch between two different data input
widths, which is considered in the following critical path and area anal-
ysis.

The main component of the cell array is a configurable array of
	����	�
� cells, each consisting of an XOR, two multiplexers, and
a configuration register. A preliminary stage of XOR gates combines
data with the current CRC value, which is then fed into the array. Fur-
thermore, a configuration processor is integrated, which performs ma-
trix multiplications in order to obtain the state transition matrix for a
provided polynomial. The matrix is transferred row-wise into the con-
figuration registers of the array.

For the basic CRC calculation, both architectures require the same
number of two-input XOR gates. The present work however, also allows

the utilization of wider and proportionally smaller XOR gates that will
assemble 	 trees each with
 inputs.

Considering the logic that is necessary for programmability, each
cell in the array constitutes two multiplexers and one register. In the
new design, this corresponds to two NAND and an XNOR gate, in
� �
cases only one NAND plus one AND gate, and in 	 cases one NAND gate
and one latch. In all cases this is typically less than for a cell in the cell
array design. More area is saved as there is no need for a processor.

The worst case data path in the cell array can be specified as follows:

���
 �
����

 ������

This linear growth is inferior to the logarithmic growth of ��� (14),
which has also a reduced scaling factor by ����.

The reconfiguration time of the new circuit accounts for ��� (15).
For the cell array, a reconfiguration time of

 � clock cycles is in-
dicated. The operating frequency of the circuit is limited to ��	��
 �
�����
. This means that

���
 �
�

 ������

 ������

Consequently

���

���

� ��
��

This suggests that the new design reconfigures in the order of approx-
imately
 times faster than the cell array with the configuration pro-
cessor.

Both designs have been implemented targeting 130-nm standard cell
technology, and are compared in Table I. The new design can be op-
erated at a more than three times higher frequency than the cell array,
and has a corresponding increased data throughput. It can reconfigure
to a new polynomial 25 times faster than the cell array, while occu-
pying only 22% of its area. Similarly, the energy consumption dropped
by about 78%.

An alternative approach in realizing at least partial programmability,
is to multiplex between several CRC modules dedicated to fixed poly-
nomials. This method is beneficial if only a few polynomials come into
consideration, for which each module can be specifically optimized in
terms of speed. Beyond a certain number of different polynomials how-
ever, which depends on the polynomials and their realization, the area
requirements will exceed those for the proposed architecture. Further-
more, the multiplexing overhead will offset the speed advantage if too
many polynomials are involved.

VII. CONCLUSION

An existing proof [6] for the derivation of parallel CRC circuits has
been extended to any polynomial size 	 and data width
. The proof
has been conducted for the LFSR2 realization, which avoids inserting
a final zero data word.

A simple method has been presented to incorporate programmability
into the circuit through latches, allowing the polynomial to be changed
during runtime.

Furthermore, a novel scheme has been proposed to compute the state
transition and control matrix of the CRC circuit easily in hardware.
The scheme is based on a new recursive formula and offers a range of
advantages over existing techniques.

First of all, it is only necessary to provide the desired polynomial,
instead of a complete matrix for the CRC core. A preliminary matrix
calculation in software is no longer required. Second, the logic area
requirements are lower than those for a realization that stores the ma-
trix in latches. A recently proposed architecture [16] has significantly
higher demands in terms of area as it incorporates a configuration pro-
cessor, and more core logic in comparison to the latch variant. Third,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 5

the data path grows only logarithmically with � in contrast to the ex-
isting architecture where it grows linearly with � with a higher scaling
factor. This implies a faster CRC calculation. Most importantly how-
ever, the new circuit reconfigures approximately � times faster than
the previous circuit.

Implementation figures support the theoretical results showing a sig-
nificant improvement in speed, area, and energy efficiency.

REFERENCES

[1] W. Peterson and D. Brown, “Cyclic codes for error detection,” Proc.
IRE, vol. 49, no. 1, pp. 228–235, 1961.

[2] S. Lin and D. J. Costello, Error Control Coding. Englewood Cliffs,
NJ: Prentice-Hall, 1983.

[3] T. Ramabadran and S. Gaitonde, “A tutorial on CRC computations,”
IEEE Micro, vol. 8, no. 4, pp. 62–75, Aug. 1988.

[4] T.-B. Pei and C. Zukowski, “High-speed parallel CRC circuits in
VLSI,” IEEE Trans. Commun., vol. 40, no. 4, pp. 653–657, Apr. 1992.

[5] G. Albertengo and R. Sisto, “Parallel CRC generation,” IEEE Micro,
vol. 10, no. 5, pp. 63–71, Oct. 1990.

[6] G. Campobello, G. Patane, and M. Russo, “Parallel CRC realization,”
IEEE Trans. Comput., vol. 52, no. 10, pp. 1312–1319, Oct. 2003.

[7] M.-D. Shieh, M.-H. Sheu, C.-H. Chen, and H.-F. Lo, “A systematic
approach for parallel CRC computations,” J. Inf. Sci. Eng., vol. 17, no.
3, pp. 445–461, May 2001.

[8] M. Sprachmann, “Automatic generation of parallel CRC circuits,”
IEEE Des. Test Comput., vol. 18, no. 3, pp. 108–114, May 2001.

[9] M. Braun, J. Friedrich, T. Grün, and J. Lembert, “Parallel CRC com-
putation in FPGAs,” in Proc. 6th Int. Workshop Field-Program. Logic,
Smart Appl., New Paradigms Compilers (FPL), London, U.K., 1996,
pp. 156–165, Springer-Verlag.

[10] C. Cheng and K. Parhi, “High-speed parallel CRC implementation
based on unfolding, pipelining, and retiming,” IEEE Trans. Circuits
Syst. II, Expr. Briefs, vol. 53, no. 10, pp. 1017–1021, Oct. 2006.

[11] C. Kennedy and A. Reyhani-Masoleh, “High-speed parallel CRC cir-
cuits,” in Proc. 42nd Asilomar Conf. Signals, Syst. Comput., Oct. 2008,
pp. 1823–1829.

[12] A. Tanenbaum, Computer Networks, 4th ed. Englewood Cliffs, NJ:
Prentice-Hall, 2003.

[13] P. Koopman, “32-bit cyclic redundancy codes for internet applica-
tions,” in Proc. Int. Conf. Depend. Syst. Netw. (DSN), Washington,
DC, 2002, pp. 459–468.

[14] P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC)
polynomial selection for embedded networks,” in Proc. Int. Conf.
Depend. Syst. Netw. (DSN), Washington, DC, 2004, pp. 145–154.

[15] S. Furber and A. Brown, “Biologically-inspired massively-parallel ar-
chitectures—Computing beyond a million processors,” in Proc. 9th Int.
Conf. Appl. Concurrency Syst. Des. (ACSD), 2009, pp. 3–12.

[16] C. Toal, K. McLaughlin, S. Sezer, and X. Yang, “Design and implemen-
tation of a field programmable CRC circuit architecture,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 8, pp. 1142–1147,
Aug. 2009.

